1.2. Простейший вариант динамической модели межотраслевого баланса В.В. Леонтьева.

Изложенная в п.1.1 модель В.В. Леонтьева носит статический характер. В ней не учитывается фактор времени, оказывающий непосредственное влияние на величины валовых выпусков и конечного потребления. В данном разделе мы рассмотрим простейший динамический аналог модели В.В. Леонтьева, лишенный этого недостатка. Обозначим через


вектор валовых выпусков в период времени t,
- вектор конечных выпусков в период времени t. Предположим, что продукция, произведенная в период времени t, расходуется на производство продукции в период времени t + 1. Тогда модель межотраслевого баланса будет иметь вид

(0.4)

Соотношение (0.4) представляет собой простейший вид динамической модели межотраслевого баланса В.В. Леонтьева.


Пример 1.1. При математическом моделировании экономических явлений особый интерес представляют случаи, когда макроэкономические показатели производства и потребления описываются некоторым специальным законом изменения во времени. Одним из таких законов является режим сбалансированного экспоненциального роста, в котором макроэкономические показатели производства и потребления изменяются с некоторым постоянным темпом s. В этом случае параметр s интерпретируется как темп роста экономики (s > 1 - рост, s < 1 - деградация). Предположим, что показатели валового выпуска и конечного потребления растут во времени с постоянным темпом s. Тогда

,

где и - некоторые начальные значения валового выпуска и конечного потребления. Обозначим ρ = 1/s; . Пользуясь соотношением (0.4), получим
,

где E - единичная матрица. Таким образом, задача о нахождении валового выпуска при известном конечном выпуске сводится доказательству существования и вычислению обратной матрицы к матрице вида (ρE - A), где ρ ≥ 0 - неотрицательная матрица. В главе 2 будет показано, что для существования режима сбалансированного роста в модели (0.4) необходимо и достаточно, чтобы темп роста s < 1/λ(A), где l(A) - наибольшее вещественное неотрицательное собственное число матрицы A3 0, называемое числом Фробениуса-Перрона матрицы A.