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Abstract. Theory, methods and tools for incremental development of knowledge bases for intelligent systems are discussed. Production-frame formalism of knowledge representation is used at the level of the specification of technology and the design of KB. It is shown, that used KRL corresponds to object-oriented paradigm. So, it can be applied to the development of object-oriented knowledge bases. Architecture and components of intelligent system for incremental design and implementation of KB are discussed.





1	Introduction


Powerful arsenal of methods of knowledge acquisition, formalization and coding is used in AI-systems’ engineering nowadays [Wielinga et al., 1992; Yen et al., 1993; Adeli, 1994; Gavrilova, 1995]. KB’s design and implementation still remain the "art" accessible not for all. The problems of knowledge base development support, discussed in the given paper, are called to simplify this process and to make its accessible for more wide community of the developers of intelligent systems.





Exposition is organized as follows. Methods of the specification of knowledge bases and software are discussed at first and it is shown, that production-frame formalism of knowledge representation corresponds to object-oriented paradigm of systems’ design. Then a brief description of knowledge bases’ design technology model is resulted. KB incremental design and implementation (production-frame under the form and object-oriented in depth) intelligent environment is described. An exposition is finished by the discussion of model example.


2	Object-oriented paradigm and production-frame�knowledge representation


The developers always required in such a technology of systems’ design, that would permit to build the decisions directly according to available representation of a problem. Moreover, correspondence of objects and operations is desirable at the level of accepted decisions.





From three main modern approaches (top-down structural design; structured by data design and object-oriented design) only the latter satisfies to indicated requirements. A treatment of objects as of active elements is taken into account here, and each object is connected with its own set of available operations. The classes of objects are united in hierarchy, where encapsulation of data and operations, inheritance of different types, polymorphism and other properties useful for system’s development are supported [Booch, 1992]. Therefore the now object-oriented design is widely used as methodology and technique of "traditional" applied systems’ development.





AI-specialists, as appear, before other have begun to use object-oriented paradigm actively. It can be mentioned about demon’s idea, embodied in languages of PLANNER type, reflection of object-oriented approach in languages of SmallTalk family and frame’s concept, realized in such languages of knowledge representation of the first generation, as KRL, FRL. At the same time, production-frame approach to knowledge representation and manipulation, actively used in AI last 5-10 years, was developed (in certain sense) irrespective from object-oriented design. And only recently the specialists in artificial intelligence begun to understand, that methods and tools of domain description, developed in AI, are object-oriented in depth and in surface as well.





Really, frame-prototypes and generic classes are closely connected: both structures "profess" an idea of data and procedures' encapsulation, visibility regulation and inheritance as well as the dynamic generation of objects and appropriate links. At the same time, on our sight, frame paradigm is closer to declarative, and object-oriented - to procedural description of domain. Therefore production-frame approach (where declarative and procedural components are balanced) is dominant now in the development of knowledge representation methods.





So, in present paper it is offered such semiotic technology of the design and implementation of knowledge bases that bases on the level of initial representations at the production-frame approach, and on the implementation level - at the object-oriented formalism. And transformation from the first one to the last is carried out by specialized compilation from input (production-frame) to output (object-oriented) code.


2	Semiotic Technology


An experience in the development and implementation of software and AI-systems allow to switch over at the intelligent technology design nowadays. This technology has to be semiotic and to reflect the explicit representation of knowledge about process of the design.





Such a technology was developed in PiES-project [Khoroshevsky, 1995a] and it is combined the description of three main components of intelligent systems’ design: project management, system’s architecture design and instrumental tools using in this process. From the formal point of view this technology is defined as:
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where �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ��� denote models of correspondent components, function �embed Equation.2 ��� maps Plan into Architecture and �embed Equation.2 ���maps Architecture into Tools.


The following common basic model M is used in specification of partial models �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ���.


�embed Equation.2 ���


where �embed Equation.2 ���, �embed MSDraw ��� and �embed Equation.2 ��� are finite non-empty set of basic elements types; relations defined on types and basic elements; operations defined on types and basic elements.





In context of common basic model the set L = {numb, string, frame}. Type frame is selected in this set as the base for generating of new types using defined operations. The structure of basic elements is the following:


�embed Equation.2 ���,


where �embed Equation.2 ��� are domain variables and constants; �embed Equation.2 ��� - variables’ types; and �embed Equation.2 ��� - operations.





Block �embed Equation.2 ��� is called frame title (�embed Equation.2 ���), and blocks �embed Equation.2 ��� denote its slots. In above x is frame name, Ti - its type, sm - slot name, Tm - type of ym value and  Oframe ( Oslot ) means set of operations associated with frame (slot).





The single pre-definite relation in the model �embed Equation.2 ��� is the partial order is_a (“:”). Operations from O provide the important function of semiotic model connected with the modification of basic elements:


O = {CreateFrame, DeleteFrame, AddSlot, �DeleteSlot, SetOf, AddValue, ChangeValue, DeleteValue, GetValue }.


The partial model �embed Equation.2 ��� is defined as the following extension of common basic model M:
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where �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ���. 





In our case


�embed Equation.2 ���


�embed Equation.2 ���.





The basic types System and Component are sub-types of type frame.  Their special features are connected with existing of special slots consist_of and part_of fixed the relations with the same names. The relationships is_a and consist_of connected with the following interrelation:


�embed Equation.2 ���


There are some operations at the model �embed Equation.2 ���. The first one is the restr_by. It is defined at the slots’ values and functioned as demon. The last, by_default, is defined at the slots’ types and started when slot value needed. Operations if_added, if_deleted and if_changed use the demon’s conception too. But all of them are defined at the types and are specialized.





The model �embed Equation.2 ��� is the next of the partial models. Its specification is the same as the previous one besides the first component:


�embed Equation.2 ��� where �embed Equation.2 ���, 





New basic types of the model �embed Equation.2 ���are designed analogous to �embed Equation.2 ��� but have different characteristics. 


The last in the set of the partial models of semiotic technology is �embed Equation.2 ���. In addition to above defined relations this model has incidence relation usual for net description. Thus,
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where �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ��� - finite sets of nodes and arcs with the following restrictions:


�embed Equation.2 ���,  �embed Equation.2 ���,


�embed Equation.2 ���,


�embed Equation.2 ���, and �embed Equation.2 ���- incidence relation with the following features: no isolated nodes (arcs); no loops; single input/output node.





There are two reflections (�embed Equation.2 ��� and �embed Equation.2 ���) in our technology model. They are used to its closure. By definition:


�embed Equation.2 ���,
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and


�embed Equation.2 ���,


�embed Equation.2 ���


�embed Equation.2 ��� and �embed Equation.2 ��� are non-reflexive, non-symmetrical and non-transitive. They are fixed by the used_for and support_by slots in the objects of the model.





Within the framework of above definite system of models the elements are objects with encapsulated data (slots’ values) and private methods (operations on slots and types). Each partial model is object too. Their own data are elements, and the methods describe above entered relations. At last, whole PIES-technology is object which data are partial models, and methods - reflections defined on those models.


Each of above defined models' is implemented as the software component of the special knowledge based instrumental system PiES WorkBench [Khoroshevsky, 1995b]. The relationships between these components and �embed Equation.2 ���model already discussed at the previous JCKBSE forum [Khoroshevsky, 1994a].





Thus, in present paper let’s concentrate at the �embed Equation.2 ��� and �embed Equation.2 ��� and theirs using in context of instrumental tools for incremental design and implementation of object-oriented KBs.


3	System of knowledge bases incremental programming


To be useful, intelligent environment of knowledge bases design should support all stages of the KB development and debugging within the framework of certain formalism. Therefore its common structure can be depicted by the H-diagram, submitted on fig. 1. As a whole, the functional opportunities of  environment are traditional for such programming tools. However programs’ design, editing, compilation and debugging have special character stand out discussed below toolkit kBaseDK (knowledge Base Development Kit) among of the similar systems.
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Fig. 1. The H-diagram of kBaseDK


The differences, basically, follow from kBaseDK intelligence and it orientation on production-frame formalism of knowledge representation. They are reduced to following:


- 	Technological knowledge of process of the programs’ design on base of KRL PILOT/2 are submitted in the system explicitly;


- 	PILOT-programs’ editor is syntax-oriented;


- 	PILOT-programs’ incremental compilation is provided in the system. It permits to reduce time of compilation and to reuse already designed fragments;


- 	PILOT-compiler’ output language is the object-oriented programming language C++;


- 	PILOT-programs’ interactive debugger permits to conduct the analysis of program functioning in terms of source language;


- 	The results of the design, received in environment, are accessible for further use as in independent mode, and within the framework of tool system PiES WorkBench.





The core of KB-system development is the compiler processing the special KRL-program’s text. And dialogue mode of the generation is preferable. Thus the user (frequently "not suspecting") prepares KB-program in some specification language. In our case it is KRL PILOT/2.





There are following variants for representation of the results: generation directly into executable program; generation of the output program into special intermediate language and its compilation into executable program with regular software; transformation of the generation task into internal representation, admitting effective interpretation. As a rule, the process of KB development is iterative. Therefore it is necessary beforehand to provide an opportunity of redesign some "ready" component. So, we need in fixing of internal representation of designed KB. The availability of internal representation assumes a mode of the interpretation, that contradicts with the efficiency. In PiES WorkBench this contradiction is removed as follows. The generator forms internal representation, which is the knowledge base about module under design. Further this KB represents itself as the task for generation of the equivalent C++ program, which is processed by the regular compiler.





Above it was already marked, that the KB-generator is the compiler from one language into another. So, let’s discuss how the structure of "classical" compiler (fig. 2) is changed. It is known that main task of compiler’s LEX-module is the input of an initial text and its transformation to representation, convenient for further processing, as well as the compiler’s main tables' formation. SYNT-module is intended for check of the input program on conformity to syntax of source language. The module PREP forms internal representation of the program, convenient for generation, and the module GENER builds the output program. Semantic of the other blocks follows from their names.
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Fig. 2. Common structure of “classical” compiler


In case of knowledge acquisition the text of the program is absent. And it is formed directly in dialogue with knowledge engineer. At the same time input language (in our case PILOT/2) with its own grammar and semantic rules is used in this case too. So, in our approach the block of the analysis of initial texts is transformed into module of dialogue with user and interpreter of his answers with checking of syntactic and semantic restrictions of input language. The set of syntactic-semantic structures is formed as the result of analysis. They define the input of synthesis block. It should (at the basis of these structures) construct a semantic network reflecting the output program structure and assign "free" network’s nodes by structures, received from the analyzer. At the last, the generated semantic network should be represented as the output program.





In creation of knowledge bases it is important, that the changes during design have regular character, and the designed programs’ volume grows quickly. In addition at any time the user needs in executable version of a current KB state. One of the known, but rarely used in practice, approaches to maintenance of user’s requests is incremental compilation [Heering, 1991; Meertens et al., 1992]. The compiler processes not all program, and only that it's part, which were changed from the moment of last compilation in this case. It is easy to outline this process and not so easy to implement it. One of the special programming systems supporting of incremental design of KBs is discussed below.





Common structure of incremental programming system (IPS) in context of all above presented is shown on fig. 3.
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Fig. 3. Common IPS structure


Comparison of this scheme with the "classical" compiler permits to make some conclusions:


- 	Central IPS-component is the knowledge base, instead of procedural modules in classic. The block of initial knowledge base forming is connected with IPS KB. At the functional level it is similar to meta-syntax and meta- semantic components of compiler-compilers;


- 	IPS-analyzer is much more declarative and distributed than in "classic" compilers. It is important that internal representation of the input program (formed during dialogue with user) is fixed here first of all. And surface description of the input program can vary in rather wide ranges;


- 	IPS generator, despite rather serious differences of the other blocks, is close to appropriate component of "classic" compilers.





Taking into account above mentioned, in IPS construction we pass to a new stage of researches in compilation: from "classic" methods of syntax-directed compilation to systems of knowledge representation about processes of compilation. It means the necessity of specialized intelligent environment design, where the developers’ knowledge is integrated in dialogue mode with knowledge in analysis and synthesis of texts (formalized and natural), methods of compilation, programs’ synthesis, etc.


4	Representation of knowledge �about process of object-oriented knowledge bases design


The core of kBaseDK, as well as any IPS, is special knowledge base. Main its sections include knowledge about technology of environment using and knowledge about syntax and semantics basic KRL. The technological knowledge in kBaseDK is submitted in procedural manner as the methods of classes, supporting its functioning. For the user they visualized as options, accessible on each design stage and debugging of applied knowledge base.





Basic knowledge representation formalism in PiES WorkBench is production-frame language PILOT/2 [Khoroshevsky, 1994a]. Therefore the main kBaseDK goal consists in support of development and debugging of the PILOT-programs on the basis of their structural representation and syntax-oriented editing. Main problems, soluble by such editor, are following:


- 	Support of syntax correct creation and editing of the PILOT-programs;


- 	Formation and visualization of structural syntactic units of the PILOT-programs on the basis of graphic images accessible to system and/or created by the user;


- 	Converting of structural representation of the programs into linear and vise versa.





The basis of the editor’s KB is the explicit description of KRL PILOT/2 syntax on base of production-frame formalism. So, in kBaseDK basic KRL is used for "bootstrapping" of knowledge base about this language.





Let’s consider a method of such "bootstrapping" at the example of the PILOT-editor problem KB specification. It consists in regular reflection of each syntactic rule from formal description KRL PILOT/2 in appropriate object of  knowledge base at the level of frame-prototype. The system of such prototypes sets the description of language in frame representation formalism, and the system of frame-examples - the set of the syntactically correct PILOT-programs. The main rules of such reflection are following:


-	The concept from BNF left part is reflected into frame name;


-	The alternatives from BNF right part are reflected into frame’s slots names from the left part of the same BNF;


- 	The type of slots fixing non-terminal concepts is frame;


- 	The type of slots fixing terminal concepts depends on the type of information, reflected by appropriate concept (as a rule, it is restricted by int and string types);


- 	 Recursions in BNF are replaced by iterations, and appropriate slots become multiple.





Main syntactic units of PILOT/2 language are the programs, macro, frames and their specification, section of the rules and rules, left and right parts of the rules and rules’ annotations.





In according to formulated above rules, BNF appropriate to concepts "program", "include-file" and "string-redefinition"


program ::=|| declarative-part||	{{|| declarative-part	||}}


		|| production-part||	|| production-part	||


		|| include-file	||	|| include-file		||


		|| string-redefinition||	|| string-redefinition	||


include-file ::= #include	||"file-name"	||


					||< file-name >	||


string-redefinition ::= #define string string


are reflected into the following set of frame-prototypes:


[ Program is_a prototype;		[ Macro is_a prototype ];


	Macro	{frame};		[ Define is_a Macro;


	Decl		{frame};			Source	string;


	Proc		{frame} ];			Target	string ];


			[ Include is_a Macro;


				FileName	string ];


And concepts "declarative-part", "production-part" and some of subordinated to them sub-concepts are determined by the following BNF:


declarative-part ::= declarative-part-elem �				{{; declarative-part-elem }}


declarative-part-elem ::=|| func/proc-prototype-spec	||


				|| var-spec					||


				|| base-spec					||


............................................................................................


base-spec ::=	|| temp-base-spec	||


			|| const-base-spec	||


temp-base-spec ::=�	|| frame-spec							||


	|| base  [[={frame-spec {{, frame-spec }} }	]]	||


const-base-spec ::=	[[ extern ]] base�		|| base-name				||


		|| (base-name {{, base-name }} )	||


			[[ = { frame-spec {{ , frame-spec }} } ]]


production-part ::= section {{ [[ ; ]] section }} [[ ; ]]


section ::= section section-name [[ is_main ]]


			[[section-resolution ]]


				production {{ [[; ]] production }}


production ::= rule production-name 


			[[production-resolution ]]


			condition [[ cond ]]


			action [[ act {{ ; act }} ]]


			[[ annotation	|| string			|| ]]


						|| act {{; act }}		||


The set of appropriate frame-prototypes is the following:


 [ Decl is_a prototype ];


.......................................................................................


[ kBaseTemp is_a Decl;	[ Proc is_a prototype;


	Spec		{frame} ]; 		MainSection	frame;


[ kBaseRegul is_a Decl;		Sections		{frame} ];


	kBaseType		string; [ Section is_a Proc;


	kBaseNames	{string}; 	SectResolution	frame;


	FrameSpec		{frame} ];	Rules		{frame} ];


[ Rule is_a prototype;


	RuleResolution	frame;	Condition		frame;


	Actions		{frame};	Annotation		frame ];


More complex example of reflection with deep recursion of initial syntactic definitions (this is “cond” from left parts of the rules), which are described by Conwey’s diagrams, depicted on fig. 4.
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Fig. 4. The syntactic diagrams of the conditions description


Direct use of an above method of reflection gives the set of the frame-prototypes "inconvenient" from the point of view of further processing within the framework of the PILOT-editor. Therefore it is expediently to enter uniform slot with name Value, in which to store significance of concepts of an appropriate level. Such technological reception leads us in following system of the frame-prototypes:


 [Condition is_a prototype;	[CondTerm is_a Condition; 	�	Value	{frame} ]; 		Value	{frame} ]; �[CondPerv is_a CondTerm;	Value	frame ];


[Const is_a CondPerv];	[CondInBrackets is_a CondPerv;


[ true is_a Const ]; 			Value		frame ];


[ false is_a Const ]; 		[Relation is_a CondPerv;


[ Pattern is_a CondPerv;		Arg1		frame;


	Value		frame ]; 	Arg2		frame ];


[NotCondPerv is_a CondPerv; [CallFunc is_a CondPerv;


	Value	frame ]; 		FuncName		string;


						FuncArgs		{frame} ];


Now, using is_a inheritance, it is possible to receive significance slot Value irrespective of level, on which it is required. Complete frame description of KRL PILOT/2 is not presented here because of restrictions on volume of paper. But even from its fragments, submitted above, general scheme of a used method is clear. And it is clear that frame formalism is suitable to the BNF formulas representation.


Such a description is insufficient to PILOT-editor full scale functioning because there is not external representation of source language constructions (key words, delimiters, etc.). We should note, that they are not necessary for further processing and output programs generation - all information is already present in the frame-prototypes structure. However for support of surface representation of the PILOT-programs and their editing such formats are claimed. It is possible to use two methods to include this information into given description: declarative or procedural. In the first case all prototypes are supplied by additional slot with standard name SurfaceRepr, where syntactic patterns interpreted by the editor during dialogue with the user are stored as values "by default". The second approach assumes the using of demons connected with frame-prototypes. They "know" how to visualize to user any syntactic concept. Both methods are used in our case.





Of course, each method has its own advantages and defects. Therefore mixed strategy of implementation is used in PILOT-editor. The visualization of all concepts supports by built-in demons "by default". If the knowledge engineer has designed his own graphic images for source language concepts, system demons are replaced by the special demon-interpreter of patterns.





The algorithm of the PILOT-editor functioning becomes simple and regular in this case. When a certain concept is picked out from palette of tools, its pattern is visualized at the working table, and pictograms accessible at the current level of design are "opened" in palette. The editor can use the appropriate frame-prototype which slots describe the current concept. So, procedural core of the editor even not "knows" of semantics of these concepts, but it knows how to process them. For example, all identifiers automatically receive a necessary type and find the location in necessary slots of frame-examples, connected with items of a processable pattern. The situation of creation of the same  names with different types leads to the interruption at the level of frame-example generation. So, it is excluded by the editor yet before it can bring an error in PILOT-program.





For visualization of concepts used in the PILOT-program the editor uses syntactic patterns from SurfaceRepr slot, processed in dialogue with user, which are described by special frames from technological knowledge base [Khoroshevsky, 1994b]. The set of such frame-prototypes is the following:


[ VisualizePicture is_a prototype;	VisualizeElems	{frame} ];


[ VisualizeItem is_a prototype;


	Syntax  frame;	Font	string, by_default “baltica”;


	Style		string, by_default “italic”;


	Size		int, by_default 10 ];


[ VisualizeGroup is_a prototype;	


	GroupElems	{frame};	


	Position		{int}, by_default {0, 0} ];	


[Restrictor is_a VisualizeItem ];


[Keyword is_a VisualizeItem ];


[ Button is_a VisualizeItem;


	Syntax		frame;


	Title			{string}, by_default {“non-terminal”};


	Manner		int, by_default NOT_REMOVED;	Concrete		frame ];


For example, pattern of concept “production” is definite by the following set of frame-examples, generated from the above prototypes:


 [ Production is_a VisualizePicture;


	VisualizeElems	={row1, row2, row3, row4, row5} ];


[ row1 is_a VisualizeGroup;


     GroupElems	={rule, rule_name};Position	={0, 10} ];


[ rule is_a Keyword;	[ rule_name is_a Button;


	Syntax	=Rule ];	Syntax	=Identifier;


					Title		={“rule-name”} ];


[ row2 is_a VisualizeGroup;


     GroupElems	={resolution};Position	={10, 5} ];


[ resolution is_a Button;


	Syntax	=	RuleResolution;


	Title		=	“{[[ rule-resolution ]]”} ];


[ row3 is_a VisualizeGroup;


	GroupElems	=	{condition, cond_body}; 	Position		=	{20, 30} ];


[ condition is_a Keyword;


	Syntax	=	Condition ];


[ cond_body is_a Button;


	Syntax	=	IfRuleResolution;


	Title		=	{“[[ condition ]]”} ];


[ row4 is_a VisualizeGroup;


	GroupElems	={action, act_body, act_body_repeat};


	Position		={30, 30} ];


[ action is_a Keyword;


	Syntax	=	Action ];


 [act_body is_a Button;


	Syntax	=	ThenRuleResolution;


	Title		=	{“[[ action ”} ];


[act_body_repeat is_a Button;


	Syntax	=	ThenRuleResolution;


	Title		=	{“{{ ; action }} ]]”} ];


[ row5 is_a VisualizeGroup;


	GroupElems	=	{annotation};


	Position		=	{40, 30} ];


[annotation is_a Button;


	Syntax	=Annotation;


	Title		=


		{“[[ annotation	||string			||	]] ”,


					||act	{{,act	}}	||”} ];


The visualization of the given knowledge base in PILOT-editor results in occurrence at the working table of the screen form, submitted on fig. 5.
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Fig. 5. The screen form of the "rule” concept visualization


This is the right part of BNF definition, where key words and delimiters (with font) and non-terminals (with font and color) are allocated explicitly. The firsts are rigid terminators, inaccessible to editing. The second, opposite, special buttons, opening appropriate definitions at the next lower level. It should be noticed, that buttons, labeled with brackets "[[...]]" and "{{...}}", can be removed from concept under design.





Thus syntax-oriented design of the production programs and internal representation of appropriate KB is supported at the level of PILOT-editor.





This internal representation of knowledge base has an important advantage. There is possible incremental compilation of PILOT-programs due to the structure, supported at frames' level. Really, each "completed" concept in its  internal representation contains in special slots the tags "ready to compile" and "already compiled". PILOT-compiler processes not all program but only parts that were changed, are already ready for compilation and not yet were compiled. In our case the level of "incrementality" is limited by the specifications of separate bases, sections, productions, conditions, actions and annotations.


5	Incremental PILOT-compiler implementation


Some questions of internal representation of the PILOT-programs in frame knowledge base are considered above. Its verification is a problem of the compiler’s syntactic analyzer. In our case this incremental compiler, is implemented on a meta language REFAL [Turchin, 1968]. Specific character of implementation is in such a fact, that the separate procedures of the analysis "are connected" with appropriate elements of knowledge base as the demons called “from button pressing”. Pressed button testifies that the user has finished the design of a current concept. It should be mentioned, that really the demon is called if and only if when an its tag WasEdit=true. If syntax errors were found at the stage of analysis, the user is informed about them and the process of design is not finished. Thus, incorrect and/or uncompleted PILOT-program can’t be written in knowledge base. This  approach increases the reliability of the production-frame knowledge bases design and creates the basis for incremental generation of the C++ output programs.





Such generation is fulfilled as a special option from menu. At the generation level the transformation of internal representation of concepts is carried out if and only if, when the tag WasCompiled=false. The generator, as well as the analyzer, is implemented on meta language REFAL and actively uses special library of classes, developed for KRL PILOT/2. So, for example, concepts “section” and “production” from this library are described as follows:





// class CRule - base class for rules


// any rule is a SUBCLASS derived from this class


class CRule{


	friend CJudge ; friend CSection ;


	private:	BOOL m_bActive ;   // active flag


			BOOL m_bUsed ;     // used flag


	public:	    


	CRule () {m_bActive = TRUE ;m_bUsed = FALSE ;}


	~CRule () {}


	public:


		void Activate (BOOL bSet){m_bActive = bSet ;}


	private:	virtual BOOL Condition () {return TRUE ;}


			virtual void Resolution () {}


			virtual void Action (int nPart = 0) {}


} ;


// class CSection - base class for sections


// any section is a SUBCLASS derived from this class


class CSection{


	friend CJudge ;


	private:	CPtrList m_RuleList ;    // list of rules


	private:	virtual void Resolution () {}


	public:   	void AddRule (CRule* pRule) ;


			void Activate (BOOL bSet) ; 


};


typedef struct tagSSITEM{


	Csection*	pSection;


	Crule*	pRule; 


	int		nActionPart ; 


} SSITEM ;


typedef SSITEM * PSSITEM ;


With generic class CJudge from the same library, these classes will form the background of the output programs’ generation. For below discussed example, the generator will produce the following C++ program:


		File: example.h


// Section OR_LOGIC declaration 


class CSection_OR_LOGIC : public CSection { 


	public:    CSection_OR_LOGIC () ; };


// Rule R1 declaration


class CRule_R1 : public CRule{


	virtual BOOL Condition () ; 


	virtual void Action (int nPart) ; 


};


..........................................................


// Rule R5 declaration


class CRule_R5 : public CRule{


	virtual void Resolution () ;


	virtual void Action (int nPart) ; };


		File: example.cpp


#include <afxwin.h>


#include "pilot2.h"


#include "pilotdll.h"


#include "example.h"


extern CJudge theJudge ;


extern CSection_OR_LOGIC Section_OR_LOGIC ;


extern CRule_R1 Rule_R1;... extern CRule_R5 Rule_R5 ;


// Rule R1 implementation


BOOL CRule_R1::Condition (){


return p2_condEQVV("Request","arg1","F1","arg1") && 


	  p2_condEQVV("Request","arg2","F1","arg2") ; }


void CRule_R1::Action (int nPart){


	p2_assignVV ("Request", "result", "F1", "result") ;


	SetFrameSlot ("Request", "result");


	bool result = GetValue ();


	p2_msgV ("Result of OR-operation ", result) ;


	Section_OR_LOGIC.Activate (FALSE) ; }


.........................................................................................


// Rule R5 implementation


void CRule_R5::Resolution (){


	if (	theJudge.CS_ready (&Rule_R1) ||


	    	theJudge.CS_ready (&Rule_R2) ||


	    	theJudge.CS_ready (&Rule_R3) ||


	    	theJudge.CS_ready (&Rule_R4)	)


				theJudge.CS_remove (this) ; 


}


void CRule_R5::Action (int nPart){


	p2_msg ("Result of OR-operation ", �			"Error in Arguments!!!") ;


	theJudge.ResetSStack () ; 


}


CSection_S1::CSection_OR_LOGIC (){


	AddRule (&Rule_R1) ;	AddRule (&Rule_R2) ;


	AddRule (&Rule_R3) ;	AddRule (&Rule_R4) ;


	AddRule (&Rule_R5) ; 


}


The volume of PILOT-compiler is about 120 Kb of source on meta language REFAL, the volume of PILOT/2 DLL - 73 Kb of an executable code.


6	An example


Let’s assume, that it is necessary to produce the inference with use of the standard logic operation “OR”. It is clear, that its truth table can be described by the following set of the prototypes and examples:


		[ OR is_a prototype;


			arg1, arg2, result bool ];


	[ F1 is_a OR;			[ F2 is_a OR;�		arg1	=	false;			arg1	=	false;


		arg2	=	false;			arg2	=	true;


		result	=	false ];		result	=	true ];


	[ F3 is_a OR;			[ F4 is_a OR;


		arg1	=	true;			arg1	=	true;


		arg2	=	false;			arg2	=	true;


		result	=	true ];		result	=	true ];


Let also, that an example “Request” of the prototype “OR” with values in slots “arg1” and “arg2” is formed.





Then PILOT/2 program can be submitted by the following set of productions:


#define condition	::


#define action		==>


section OR_LOGIC


Rule R1


::	[ Request : arg1 ] == [ F1 : arg1 ] &&


	[ Request : arg2 ] == [ F1 : arg2 ]


==>   [ Request : result ] = [ F1 : result ];


	message (“Result of OR-operation”, [Request:result] );


	section_off (OR_LOGIC) ;


	...............................................................................


Rule R5


	if (	ready(R1) == true || ready(R2) == true || 


		ready(R3) == true || ready(R4) == true )


			remove (R5);


::	==>	message (“Result of OR-operation”,�				"Error in Arguments!!!"); exit (1);


The above program is inefficient, as executes the "direct" search among all available variants. However it is convenient for the illustration of an initial text transformation into resulting program in C++. Below, for the comparison, more "realistic" PILOT-program is resulted:


#define condition	::


#define action			==>


section OR_LOGIC


	if ( ?[>$curr = * : is_a {==OR}; 


		arg1 {== [ Request : arg1 ] };


		arg2 {== [ Request : arg2 ] } ] )


		set (YES_RESULT)


	else


		set (NO_RESULT);


rule YES_RESULT


::	==>   [ Request : result ] = [ $curr : result ];


	message (“Result of OR-operation”, [Request:result] );


	exit (0) ;


rule NO_RESULT


::	==>	message (“Result of OR-operation”,�				"Error in Arguments!!!"); exit (1) ;


In this program the main work is executed by the section resolution. It describes the search of that example of the prototype “OR” where “arg1” and “arg2” slots’ values are the same as in slots of frame “Request”. In case of success the name of appropriate frame “Fi” is stored in variable $curr and it is used in rule YES_RESULT for receiving of the result. Needed conflict set is formed in the same section resolution. Thus it is possible to increase the efficiency of judge and all program as a whole functioning.





For the illustration of the technique of the PILOT-programs external representation an indicated above example at the level of frame-examples is present:


 [ Example is_a Program;


	Macro	=	{condition, action};


	Decl		=	{OR, F1, F2, F3, F4, Request};


	Proc		=	{ OR_LOGIC } ];





[ condition is_a Define;	[ action is_a Define;


	Source	=“condition”; 	Source	=“action”;


	Target	=“::” ]; 		Target	=“==>” ];


[ OR is_a PrtSpec;	Slots	={arg1, arg2, result} ];


[arg1 is_a SlotDecl;[arg2 is_a SlotDecl;[result is_a SlotDecl;


	Type	= bool ];	Type	= bool ];		Type	= bool ];


[F1 is_a ExmSpec;PrtSpec=OR;Values={false,false,false} ];


...............................................................................................


[F4 is_a ExmSpec;PrtSpec=	OR;Values	={true,true,true} ];


[Request is_a ExmSpec;PrtSpec=OR;Values={true, false} ];


[ logic is_a Proc;


	MainSection	=START_LOGIC;


	Sections		={..., OR_LOGIC}];


[OR_LOGIC is_a Section; Rules={R1, R2, R3, R4, R5} ];


[ R1 is_a Rule;


	Condition	=	cond_R1;


	Actions	=	{act1_R1, act2_R1, act3_R1}];


[ cond_R1 is_a Condition;


	Value={cond_R1_term1, cond_R1_term2} ];


[ cond_R1_term1 is_a Equal;  [cond_R1_term2 is_a Equal;


	Arg1=arg1OfRequest;		Arg1=arg1OfF1;


	Arg2=arg2OfRequest ];	Arg2=arg2OfF1 ];


[arg1OfRequest is_a SlotOfFrame;


	FrameName	=	“Request”;


	SlotName		=	“arg1” ];


[arg1OfF1 is_a SlotOfFrame;


	FrameName	=	“F1”;


	SlotName		=	“arg1” ];


[arg2OfRequest is_a SlotOfFrame;


	FrameName	=	“Request”;


	SlotName		=	“arg2” ];


[arg2OfF1 is_a SlotOfFrame;


	FrameName	=	“F1”;


	SlotName		=	“arg2” ];


[act1_R1 is_a Assign;	


	Variable	=resultOfRequest;


	Value	=	resultOfF1 ];


[act2_R1 is_a Message;


	Caption	= “Result of OR-operation”;


	Value	=	resultOfRequest ];


[act3_R1 is_a SectionOff;


	Rules	=	{R1, R2, R3, R4, R5} ];


..................................................................................


	[ R5 is_a Rule;


		RuleResolution	=	ruleres_R5;


		Condition		=	cond_R5;


		Actions		=	{act1_R5, act2_R5}	];


	[ ruleres_R5 is_a RuleResolutionCond;


		IfRuleResolution	= rulerescond_R5;


		ThenRuleResolution	={ruleresact_R5} ];


[ rulerescond_R5 is_a IfRuleResolution;


	Value={rulerescondelem1_R5, rulerescondelem2_R5,


		rulerescondelem3_R5, rulerescondelem4_R5} ];


[ rulerescondelem1_R5 is_a Ready;


			Rules	= {R1} ];	


[ rulerescondelem2_R5 is_a Ready;


			Rules	= {R2} ];


[ rulerescondelem3_R5 is_a Ready;


			Rules	= {R3} ];


[ rulerescondelem4_R5 is_a Ready;


			Rules	= {R4} ];


[ ruleresact_R5 is_a Remove;


			Rules	=	{R5} ];


[ cond_R5 is_a true ];


[ act1_R5 is_a Message;			[ act2_R5 is_a Exit;


	Caption=“Result of OR-operation”;  ReturnCode=1 ];


	Value=textOfRequest ];		[ 1 is_a Number ];


[ textOfRequest is_a text;


	Value	= "Error in Arguments!!!" ];


6	Conclusion


Theory, methods and tools for incremental development of knowledge bases for intelligent systems were discussed in present paper. Production-frame formalism of knowledge representation was used at the level of the specification of technology and the design of KB. It was shown, that used KRL corresponds to object-oriented paradigm and can be applied to the development of object-oriented knowledge bases. Architecture and components of intelligent system for incremental design and implementation of KB were discussed.


Production-frame approach to the incremental specification of knowledge bases under design seems to be adequate formalism for the special software tools' development and implementation.


Development of new methods of knowledge representation and knowledge processing based on the amalgam of “classic” object-oriented and “new” AI approaches is a promising way to formalization and unification of intelligent systems design and implementation.
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