

Situation Control Software:

From Symbol Manipulation Languages

Through Knowledge Representation Systems

to Semiotic Technologies

VLADIMIR F. KHOROSHEVSKY

Computer Center Academy of Sciences of Russia, AI Problem Department, Expert Systems Division, 117967 Moscow, Vavilov str. 40, Russia

�Situation control software is one of the main parts in this new approach to development and implementation of intelligent systems. This paper provides an overview of software using for situation control systems’ implementations in Russia. The main goal of the paper is to acquaint US specialists with tools and methods developing in situation control community.

�embed MSDraw ���

Fig. 1. Common structure of SC model

After the brief description of first generation situation control software we demonstrate and discuss retrospective of AI languages and knowledge representation systems. Some original languages and systems developing in Russia are described a little bit deeper through this discussion. In the last part of the paper semiotic technology of software engineering is presented.

I. INTRODUCTION

The necessity of large complicated dynamic non-stationary systems controlling has resulted to a major technical barrier in the age of information control theory. To overcome the above outlined barrier the theory of situation control (SC) was developed by D. Pospelov [1] in Russia. This approach provides powerful capabilities for expanding of traditional decision making systems where information is primarily presented in qualitative form. Actually, the success of SC theory application is determined by the development and implementation of a special situation control software (CS). There are several original software systems designed for a support of this theory [2,3].

The main purpose of this paper consists in providing the information about tools and methods of software engineering developing in situation control community.

The structure of the paper is the following. After the brief description of first generation situation control software we demonstrate and discuss the retrospective of AI languages and knowledge representation systems. Some original programming languages and systems developing in Russia are described a little bit deeper through this discussion. In the last part of the paper semiotic technology of software engineering is presented.

II. SITUATION CONTROL SOFTWARE: FIRST GENERATION

A. Situation Control Model - General Remarks

There are several main components in situation control models - discrete situation network (DSN), analyzer, correlator, extrapolator, classifier and tutor [1]. All of them are connected as shown in Fig. 1.

The SC model acts in two main modes: model constructing and decision making. In the first case the set of arbitrary situations is given to the DSN input. The semantic network of input situations is formed as the result of their processing in this block. Then this network is transmitted to analyzer. Some kinds of relations (space and time relationships, is_a, part_of, etc.) between objects and information model of input situation are formed in the analyzer. Lastly, the correlator comes into play where correlation grammar and associated with this grammar classificator are generated. The set of situation-solution pairs is the output of the correlator. This set is divided into classes in such a way that each class is associated with the available solution. Provided non-ambiguity division exists, process of decision making is traditional. State of object under control is transmitted to the input of DSN. After transformation the input data in analyzer and correlator situation solution is generated. This solution is associated with one of the known macro situation and appropriate control actions selected. This action is applied to objects under control and process is repeated in loop.

�embed MSDraw ���

Fig. 2 Common structure of first generation SCS

B. Software of Situation Control

SC model observation gives us the guidance to the implementation of its modules. Analysis of SC model functioning allows to formulate basis requirements to implementation of its blocks. DSN reflects the structure of object under control. It is specific to each domain model. Nevertheless operations of constructing and editing of such models are based on special grammars of relations and these grammars are based on common operations of pattern matching and transformations. Correlator’s and extrapolator’s implementation is also based on grammatical inference. Besides, complicate computation algorithms are used in these blocks. That’s why first generation of SCS had symbol manipulations and special computation packages as a foundation.

Multilevel parametric modules were used in such systems as a rule. Both simple operators (matching, transformation etc.) and compositions of them (inference, computing etc.) were used as modules. In according to this idea, common structure of SCS first generation may be illustrated by the scheme on Fig. 2.

There are two main parts outlined in this scheme. The first one includes the system monitor and languages’ collection supported by the set of compilers with explicit outline of assembler and program modules library.

Problem oriented part of SCS is composed with the special monitor and situation control language compiler. It worse to mention that such implementation scheme is used nowadays in the design of applied programming packages. In this case special specification languages are used as the input languages of the packages.

Main peculiarity of SCS was connected with compilation (but not interpretation) of input job into special situation control language. It is clear that this approach had to be based at the special technological knowledge bases (KB). The architecture of the SC model as well as structure of its components with their connections had to be presented in these KB.

Naturally, intelligent technologies of programming (such as knowledge based software engineering - KBSE) were in their childhood at the beginning of 70-th. That’s why the first generation of SCS implementations was based on common symbol manipulation languages.

Evolution of these software tools is discussed in the next part of the presentation.

III. SYMBOL MANIPULATION LANGUAGES AND SC SYSTEMS

A. Remarks on Symbol Manipulation Evolution

At the beginning of AI special languages and systems oriented on knowledge based systems implementation did not exist. The description of the theory as program was not usual in that times, and the theory of AI was at its start as scientific domain. That’s why symbol manipulation languages and systems were the main tools of AI-systems programming for the decades.

It seems that LISP [4] is the most popular symbol manipulation and AI language in US. Therefore the further short discussion of symbol manipulation tools evolution is based on LISP-evolution and on the remarks connected with the alternatives to this one. The results of this brief overview are summarized in the scheme of intelligent programming tools development presented on Fig. 3.

It is well known that LISP was developed by McCarthy in Stanford at the beginning of 60-th. It was not oriented on AI-programming, but was the next step after FORTRAN in automatic programming domain. Matrixes, pointers and structures of the pointers had to be main operations in this languages. It was supposed that the first implementations of LISP will be interpreters and then the compilers will be implemented. As the LISP father outlines in his brilliant overview [4], “it was happy that there was no money for such ambitious project in the moment”. When the first LISP interpreters were implemented, dialogue became the usual regime, and interpretation was naturally included in this type of computer activity. Approximately in that time the basic principles of LISP were formed: the same program and data list representation; expressions as functions’ definition method; bracket syntax. LISP 1.5 was the first stable version of this language and it defined the way of its improving for many years.

�embed MSDraw ���

Fig. 3. Evolution of programming languages and systems

There were many attempts to extend the LISP by including new basic primitives and/or control structures. But as a rule these innovations did not lead to new point of view at programming. And when powerful LISP-systems, such as MacLisp and Interlisp, were developed the attempts to create new languages at the LISP-platform gone away. The further LISP development flowed to the standardization (for example, Standart Lisp, Franz Lisp and Common Lisp) and/or to the development of knowledge representation languages based on LISP environment.

It may seems from above discussion that LISP (and its modern dialects) is the single AI language. It is not true, of course. In the middle of 60-th there were developed some different languages for symbol manipulation. For my opinion, the most interesting of them were SNOBOL from Bell Lab. [5] and REFAL from Russia [6].

�embed MSDraw ���

Fig. 4. Comparison of LISP and REFAL foundation

First of them, SNOBOL, is the string manipulation language. Impressive pattern matching concept was implemented in this language. From the modern point of view SNOBOL was one of the first practical implementations of advanced production system. SNOBOL-IV is the most famous version of this language. It seems that pattern matching definitions’ and processing technique in SNOBOL-IY were more powerful then it was necessary for applications of that period. May be this reason, may be LISP-politics leaded by McCarthy blocked the way of wide using of this language in AI.

Recursive algorithmic language REFAL was developed in Russia by Turchin in 1968. Its brief overview is the hot spot of the next sub-part in this paper.

At the beginning of 70-th new language PROLOG, competitor of LISP in knowledge based systems implementation domain, was developed in France [7]. This language did not brought new powerful tools of programming but it supports another computation model in comparison with LISP. Alike the LISP closes to programmer the structure of computer memory, PROLOG allows him do not care (if it is not necessary) about program control flows. This language suggests such a paradigm where problem’ description is the set of ill-structured relations. It is OK if the number of relations is not very large and the number of alternatives in each relation description is not large too. Otherwise PROLOG program becomes too complicated for understanding and modification. Some problems of the program efficiency also arise in this case because internal inference mechanism of PROLOG is oriented at the alternatives’ look over and declarative backtracking.

PROLOG was developed in 1971 but its popularity was grown at the beginning of 80-th when its logical basis became solid and when it was chosen as a basic language of inference machine in Japanese fifth generation system project. Second generation of PROLOG systems is in use nowadays. PROLOG-3 and PROLOG-IV are most advanced among the languages of this family. It seems that constraint programming is the hot spot in modern PROLOG community.

We have discussed above about common AI languages. But there were another languages playing significant role in the evolution of such a tools. First at all these are the languages oriented on search tasks’ solving. PLANNER and its modifications, CONNIVER and the languages growing from QA4 planning system are the examples of this evolution branch. All these languages are working in LISP-environment and were developed as its extension. Besides LISP features they supports arbitrary list structures, advance pattern matching and backtracking as well as call of procedures by pattern. Any of them not became universal programming language for AI. But solutions using in their development were utilized in LISP, PROLOG and modern production rules’ languages. It is important that the languages of this group led the designers to revise the notion of program itself. In AI domain led to development of object oriented programming concepts and first generation knowledge representation languages.

B. REFAL - Symbol Manipulation Language for SC

The basis of Recursive Function Algorithmic Language (REFAL) is the theory of Markov’s normal algorithms. The comparison of LISP and REFAL foundation is present on Fig. 4.

The notion of recursive function defined on the set of arbitrary symbol expressions is the basis of REFAL-program. From the modern point of view it can be mentioned that the LISP-like lists (but bi-directional), SNOBOL-like pattern matching and production rule-like symbol processing are amalgamated in this language very well.

REFAL-program consists of the rule-sentences set. Each of them has the left part where the structural pattern with variables is defined and the right part where required result of the left part transformation is described. The patterns are introduced with using of three basic variables’ types - symbols (S), expressions (E) and terms (W) as well as specificators that needed for the description of the restrictions on basic variables’ types. Some general remarks on REFAL syntax are presented below:

REFAL-program ::= {{ Refal-function}}

Refal-function ::= name left-part (pattern) = right-part (actions)

REFAL objects: Any available symbols (for example, a b + /This is a symbol too/ ...); Arbitrary symbol - S (for example, Sx, Sa, S1 ...); Expression is any sequence of symbols, may be empty - E	(Ex, Ey, Ez ...).

For example, let’s examine simple REFAL-program:

Diff	start

	extern	sub

	entry		differ

differ	Ex + Ey = k/differ/ Ex. + k/differ/ Ey.

	Ex*Ey = k/differ/Ex.*Ey + Ex*k/differ/Ey.

..

	X = 1

	X**Ea = (X**(k/sub/(Ea)1.)) *k/differ/Ea.

	sin X = cos X

..

	end

It is oriented on symbol differentiation of simple expressions. The input expression under processing is the argument of the function /differ/. The functional brackets are “k” and “.”. Trace of this program is the following:

Step 1: k/differ/ X+X * sin X .

Step 2: k/differ/ X . + k/differ/ X * sin X .

Step 3: 1 + k/differ/ X * sin X .

Step 4: 1 + k/differ/ X . * sin X + X * k/differ/ sin X .

Step 5: 1 + 1 * sin X + X * k/differ/ sin X .

Step 6: 1 + 1 * sin X + X * cos X

REFAL-program semantics is described in abstract REFAL-machine terms. It has two main memory devices: field of memory and field of view. The program lies in the first one and the data under processing in the last. Returning to our example, it is clear that REFAL-machine will be stopped on step 6 with the reason of absent functional symbols in the field of view.

So, REFAL absorbed the best features of most interesting symbol manipulation languages in 60-th. And nowadays it is possible to talk about second generation of this language. Its main advantages are connected with the shifting to object oriented paradigm and effective compilation of REFAL-programs into C++ language. This language is implemented at all types of computers - from PC to mainframe and is used in analytical computations, translations and, of course, as a basis of AI-systems’ development.

The next part of the paper is connected with the examination of knowledge representation systems and the last - describes the semiotic technology of the development and implementation of situation control systems.

IV. KNOWLEDGE REPRESENTATION TOOLS FOR SC

A. Linguistic Knowledge Representation Language

The first generation of situation control software was implemented at the mainframes and special packages were developed. In particular, the above discussed REFAL language was used as the basis for symbol manipulation in situation control blocks at the level of DSN, analyzer and correlator. The other blocks were implemented at the low level languages and they were failed with the changing of computing platform. At the same time knowledge representation languages’ approach became the usual way to implementation of AI systems. That’s why at the next stage of the situation control software developing new special knowledge representation tools were designed and implemented. Some of them will be discussed in this part of the presentation.

One of the main problem in SC is the transformation of input situation description presented in natural language into internal representation that used by another blocks of the system. The theory of this process is out the frames of this paper. But in any case the designers need an appropriate software support. One of such tools is presented below.

We shall give a brief description of the LKRL, called ANTL-2.0 (Augmented Translation Network Language, version 2.0) and discuss the software of the ATNL-machine that “understands” ATNL.

Augmented Translation Networks (ATN) have been actively used for the linguistic processors (LP) design since 1970 [8]. To our opinion the main advantage of ATN-approach is its “metalevelness” as for the description of the communication language and LPs to be implemented by the it. Several versions of ATNL were developed and implemented in Russia since 1970 [9]. But its practical use made evident the necessity of the simplification of notation of ATNL-programs; addition to ATNL simple tools of module description; addition to ATNL possibilities for data base description. Answering the above mentioned requirements brought in a new version of ATNL - ATNL-2.0. It is also oriented on automation of LP design.

All knowledge necessary for NL-communication module are described as ATNL-program. It includes 4 divisions:

MODULE-DIVISION. module-division-description

VOCAB-DIVISION. vocabulary-division-description

[[DEFINE-DIVISION. nonstandard-functions]]

NET-DIVISION. net-division-description

Any division may be divided into sections and each section consists of some paragraphs and/or sentences. For example, module division consists of two sections: identification-section where we describe the name of module, information about its author, etc., and linkage-section, necessary for the description of synonyms, external objects and description of entry points.

Vocabulary division consists in two sections as well. In the first of them the structure of the morphological model of the communication language is described (vocds-section). Description tools must be convincing for the problem domain specialist and powerful enough for the description of different morphological models. Thus the syntax of sentences in this section is:

picture-name = picture-element {+ picture-element}; where

picture-element ::=	

			|| NIL 										||

			|| vocab-name								||

			|| literal [!] 									||

			|| picture-name[!]							||

			|| (picture-element {, picture-element}) [!]	||

As it is clear from the above BNF notation, every picture of the vocabulary unit is defined by its name (on the left from the sign “=“). Any fragment on the right may be either empty (NIL), or vocab-reference, literal, or reference to another picture, or list of alternate fragments. The last three alternatives may be repeated (which is denoted by the sign “!”).

The vocabulary descriptions are presented in the second section of the vocab-division (vocvl-section). We give a definition of every vocabulary and a recommendation of its memory placing. All vocabulary’ articles are described here too. Each of them includes key-field and a set of named characteristics. General for several vocabulary articles’ characteristics may be placed on the higher levels of the hierarchy of articles.

For example,

VOCAB-DIVISION.

	VOCDS-SECTION.

		WORD = STEM + ENDING + (POSTF, NIL);

		STEM = (PREF, NIL) + ROOT + (AFF!, NIL);

		POSTF = ("Ñß", "ÑÜ");

	

	VOCVL-SECTION.

		VOC PREF IS-INTERNAL.

			vocabula-1.

			vocabula-2.

		

			vocabula-N.

		VOC ROOT IS-EXTERNAL; DB-IS ROOT.

			vocabula-structure.

		

		VOC ENDING.

			vocabula-group-1

			vocabula-group-2

		

			MUST-EXTERNAL vocabula-group-M

			vocabula-group-(M + 1)

		

Description of the vocabulary group (for VOC ENDING) may be exemplified as follows:

01 TYPE = "NOUN"; PERSON = “NO”; MALE = "M".

	02 NUMBER = "S".

		03 NIL	CASE = "È", "Â";

		03 "É"	CASE = "È", "Â";

		03 "À"	CASE = "Ð";

	

	02 CASE = "PL".

		03 "È"	CASE = "É";

	

If a vocabulary is defined by the structure of the vocabulary article (as it was shown above for the ROOT-vocabulary), the names of the characteristics are described and possibly its value restrictions.

Above we have described main constructions of the vocabulary division in ATNL-2.0. The next division of ATNL-program is the division of non-standard functions. In general it consists of two sections: internal and external development of ATNL-2.0. We introduce macroses for the repeated fragments of ATNL-program in the first of them. The second permits to add to the ATNL-program other languages programmed blocks.

Communication models and input analysis and/or output synthesis phrases’ algorithms are described in the net division. This is the core of the ATN-formalism and the only part, that usually presented in publications. It is known [8] that all ATN-analyzers and/or synthesizers are based on the system of oriented graphs. Nodes of this graph fix the states of the process, while arcs describe processing algorithms. Different versions of ATN [10] may greatly differ. The basic things they do have in common are the transition along the net; technology of the LP-memory use, and basic set of system registers.

Following the classic ATN, the ATNL-2.0 net description is the set of nodes and arcs connecting them. All arcs directed out the node describe the functions of information processing at this node. There are four types of arcs used in ATNL-2.0: TST, CAT, PUSH and POP. Structurally they are simulated and all of them include the pragmatics of the arc; condition of its application; set of acts and next node reference, direct or indirect. The former two components comprise the application zone of the arc and two latter - processing zone. Thus

node-description ::= state-name arc {arc}

arc ::= applying-zone ==> processing-zone

applying-zone ::=	|| TST	|| application-condition

					|| CAT	||

					|| PUSH||

					|| POP	||

processing-zone ::=	|| { act; } terminal-act	||

					|| form					||

The ATNL-2.0 formalism of the augmented translation networks is described by production rules. Our point is, that in this case ATNL-programs are more convenient to read then LISP-notations of the classic ATN.

In general, application conditions are divided into S-condition and P-condition. The later is the predicate defined on the set of values of named stack registers. The registers are filled up by acts on the arcs. Thus, the registers in ATN-formalism store contexts. The semantics of the S-conditions is different for the CAT and PUSH-arcs. For the CAT-arcs this condition is “true” if the current lexeme coincides with the literal on the arc or it is possible to match an input word with one of the words in the mentioned vocabulary. On CAT-arcs S-condition has important side effect: if the vocabulary search of the lexeme was successful, its characteristics become available for further use. They are remembered in the system register WORD (*). A special register IMPR (&) is introduced into ATNL-2.0 for managing with morphological omonimus.

For CAT-arcs S-condition is the predicate with the side effect of the vocabulary search. And for the PUSH-arcs S-condition is the predicate that value is “true” if the transition to the subgraph mentioned in the condition is finished successfully by the exit through the POP-arc of this subgraph. Thus S-condition for the PUSH-arc is the Structure Condition. It should be mentioned that S-condition are “true” by default for the TST and POP-arcs.

As it’s mentioned above, acts and forms are the base of the processing zone in ATNL-2.0. Forms are necessary for the computing of the values and acts are used for their store. By definition

act ::=	|| register-name := form				||

		|| register-name.DOWN := form		||

		|| register-name.UP := form			||

		|| DOWN.register-name				||

		|| UP.register-name						||

		|| TRANSMIT	form					||

The ATN-formalism supposes that all registers are “level’ stacks”. Acts of the first kind define assignment of the value on the current recursive level (in classic ATN this is SETR-act); next two kinds are necessary to transfer the value to DOWN or UP levels. These acts are equivalent to SENDR and LIFTR acts. The other acts are localized on the current recursive level and they are used to push or pop some register. The last act in ATNL-2.0 is TRANSMIT. Its argument is a certain form, the value of which is transmitted to the entry of the ATN subcascade. These means serve to implement in ATNL-2.0 the cascaded ATN [11].

There are two groups of forms in ATNL-2.0: for the reading of values and for their forming. Reading of the values is provided with the forms GETS (for the vocabulary characteristics), GETR (destructive reading), GETF (non-destructive reading) and with the forms *,@,#,& (specifications of the system registers). In ATNL-2.0 values are formed by means of the forms of direct value definition; computing value according its prototype; definition of compositions and structures out of the values. In general, forms of this group are the same as in the classic ATN, all deviations are of syntax character.

Terminal acts of ATNL-2.0 are of three types: the jump without the reading information from the input string (JUMP); the jump with reading information from the input string in right-direction (TO) or left-direction (OT) to the system register *; the indirect jump by the #-register value (GO). The jump’s node name may be defined by reference to the name of the register or characteristic where this name is remembered.

This is only a brief review of main elements of the LKRL ATNL-2.0. Its using in NL-processors’ design is the theme of alone paper. At last it would be mentioned that now several versions of the ATNL-language are implemented. REFAL is used as the metalanguage in these implementations.

B. Problem Knowledge Representation Tools

Frame/2 system [12] is developed in Ryazan Radiotechnical Institute in collaboration with Computer Center of Russian Academy of Sciences within the context of PIES Workbench project [13].

It is developed for the design and management of frame type Knowledge Bases. This system supports initial Knowledge Base design and dynamic correction of prototypes and examples. It supports procedures of properties inheritance, demons and generation of frame prototypes. Frame/2 system is implemented in C language for MS DOS and MS Windows.

The technology of Frame/2 usage can be followed in two ways .First, Knowledge Base scheme is designed with system procedures or/and dialog editor. Other way of interaction with Frame/2 consists in using knowledge representation language PILOT/2 described below.

Declaration syntax for prototypes and examples of Knowledge Base objects is simple enough, as can be seen from the examples below.

frame-specification ::=[frame-name]

			slot-specification {{slot-specification}}

slot-specification ::=

	|| with slot												||

	||is_a prototype [[{{ , demon specification }}]]	||

	|| without slot name {{ , slot name }}				||

slot ::= slot name {{ , slot name }}

			|| of type {{ , additional specification }}	||

			|| = value										||

type ::=	[[{]]	|| int		|| [[}]]

					|| float		||

					|| char		||

					|| string	||

					|| frame	||

					|| func		||

If Knowledge Base description is made with Frame/2 one needs to compile the declarative part and then use the compiled program for actual creation of Knowledge Base. When using editor Frame/2 Editor all declarations are interpreted during work and Knowledge Base is created in interactive mode.

Knowledge representation language PILOT/2 also was created in context of PIES Workbench project as the development of PILOT language [14]. Its specifics consists in the powerful tools for programming of inference engine and vast possibilities of pattern description. Another important feature consists in the fact it includes the convenient expandable set of data transformation operators. Besides, this programming environment possesses technological features for program complexion and some macrotools.

In general, PILOT program contains two main components (declarative and procedural) and two auxiliary components (files inclusion and string). The order of these components in program is inessential. Inclusion and redefinition constructs are entirely borrowed from C language, and this was made intentionally: output language of PILOT/2 compiler is C++. Declarative part of program consists from elements that specify variables, function or procedures prototypes and other required objects Production part of program consists from sections. These sections in turn contains productions:

production-part ::= section {{ [[;]] section }} [[;]]

section ::= section section name [[is_main]]

					[[section resolution]]

						production {{ [[;]] production }}

production ::= rule name [[production resolution]]

					condition [[condition]]

					action [[action {{ ; action }}]]

				[[annotation	|| string					||]]

								|| action {{; action }}	||

Inference engine is implicitly implanted into the PILOT/2 as ‘judge’ mechanism. The algorithm of judging is fully adjustable and reprogrammed.

Analysis of knowledge representation formalisms and methods allows to put forward the following requirements to knowledge representation languages for expert systems: existence of simple and powerful tools for representing of interrelated objects of complicated; possibility of multiple representation of objects; existence of flexible tools of inference control, taking into account structuring of decision rules; ‘transparency’ of system mechanisms for programmer, thus providing him possibility of their extension and redefinition at the level of source language; effective implementation.

Quite naturally the above listed demands are contradictory. However, all successful knowledge representation languages and systems resulted from the constructive compromise between these requirements.

V. SEMIOTIC TECHNOLOGY

An experience in the development and implementation of software oriented at the situation control systems allows to switch over at the intelligent technology design nowadays. Of course, this technology has to be semiotic and to reflect explicit representation of knowledge about process of the applied intelligent systems’ design, in general, and situation control, in particularly.

Such a technology is combined the description of three main components of applied systems’ design: project management, system’s architecture design and instrumental tools using in this process. From the formal point of view this technology is defined as:

�embed MSDraw ���

where �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ��� denote models of correspondent components, function �embed Equation.2 ��� maps Plan into Architecture and �embed Equation.2 ���maps Architecture into Tools.

The following common basic model M is used in specification of partial models �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ���.

�embed Equation.2 ���

where �embed Equation.2 ���, �embed MSDraw ��� and �embed Equation.2 ��� are finite non-empty set of basic elements types; relations defined on types and basic elements; operations defined on types and basic elements.

In context of common basic model the set L = {numb, string, frame}. Type frame is selected in this set as the base for generating of new types using defined operations. The structure of basic elements is the following:

�embed Equation.2 ���,

where �embed Equation.2 ��� are domain variables and constants; �embed Equation.2 ��� - variables’ types; and �embed Equation.2 ��� - operations.

Block �embed Equation.2 ��� is called frame title (�embed Equation.2 ���), and blocks �embed Equation.2 ��� denote its slots. In this terms x is frame name, Ti - its type, sm - slot name, Tm - type of ym value, Oframe (Oslot) means set of operations associated with frame (slot).

The partial order is_a (“:”) is the only relation in the model �embed Equation.2 ���. Operations from O provide the important function of semiotic model connected with the modification of basic elements.

O = {CreateFrame, DeleteFrame,

AddSlot, DeleteSlot, SetOf,

AddValue, ChangeValue, DeleteValue, GetValue }.

The partial model �embed Equation.2 ��� is defined as the following extension of common basic model M:

�embed Equation.2 ���

where �embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ���. In our case

�embed Equation.2 ���

�embed Equation.2 ���.

The basic types System and Component are sub-types of type frame and their special features are connected with existing of special slots consist_of and part_of that are fixed the relations with the same names. The relationships is_a and consist_of connected with the following interrelation:

�embed Equation.2 ���

There are some operations at the model �embed Equation.2 ���. The first one is the restr_by. It is defined at the slots’ values and functioned as demon. The last, by_default, is defined at the slots’ types and started when slot value is needed. Operations if_added, if_deleted and if_changed use the demon’s conception too. But all of them are defined at the types and specialized.

The model �embed Equation.2 ��� is the next of the partial models. Its specification is the same as the previous one besides the first component:

�embed Equation.2 ���where �embed Equation.2 ���,

New basic types of the model �embed Equation.2 ���are designed analogous to �embed Equation.2 ��� but have another characteristics.

The last in the set of the partial models of semiotic technology is �embed Equation.2 ���. The support of this model generates from type frame too. In addition to above defined relations this model has incidence relation usual for net description. Thus,

�embed Equation.2 ���where

�embed Equation.2 ���, �embed Equation.2 ��� and �embed Equation.2 ��� - finite sets of nodes and arcs with the following restrictions:

�embed Equation.2 ���, �embed Equation.2 ���,

�embed Equation.2 ���,

�embed Equation.2 ���, and �embed Equation.2 ���- incidence relation with the following features: no isolated nodes (arcs); no loops; single input/output node.

There are two reflections (�embed Equation.2 ��� and �embed Equation.2 ���) in our technology model. They are used to its closure. By definition:

�embed Equation.2 ���,

�embed Equation.2 ���

and �embed Equation.2 ���,

�embed Equation.2 ���

�embed Equation.2 ��� and �embed Equation.2 ��� are non-reflexive, non-symmetrical and non-transitive. They are fixed by the used_for and support_by slots in the objects of the model.

Each of above defined models is implemented as the software component of the special knowledge based workbench. The relationships between these components are depicted on Fig. 5.

�embed MSDraw ���

Fig. 5. Relationships between components

of semiotic technology

Thus we discussed main points in semiotic technology description. Nowadays it is supported by special software implemented in the frame of KBSE approach.

VI. CONCLUSIONS

Situation control software is one of the main parts in this new approach to development and implementation of intelligent systems. The overview of software using for situation control systems implementation in Russia allows to conclude that there is a vast variety of available methods and tools. The problem of adequate method selection is not the simple one, and it highly important for success of application.

Development of new methods of knowledge representation and knowledge processing based on classical approaches is a promising way to formalization and unification of intelligent systems design.

ACKNOWLEDGMENT

This work was partly supported by grant of Russian Foundation of Fundamental Investigations 94-01-00946.

REFERENCES

[1] Pospelov D., “Situation Control - Theory and Practice”, Nauka Publ., Moscow., 1986 (in Russian).

[2] Lozovsky V., “Some Considerations Concerning the Problem Base of Purposeful Systems”, In: Proc. IJCAI-75, Vol.2, Tbilisi, 1975, pp. 538-541.

[3] Zagadskaya L., Klykov Yu., “Practical Use of Situation Control Model”, Izv. AN USSR, “Technicheskaya Kybernetika”, N 2, 1971, (In Russian)..

[4] McCarthy J., “History of LISP”, SIGPLAN Notices, Vol.13 (1978), pp.217-223.

[5] Griswold D., SNOBOL-IV - User Guide, 1978.

[6] Turchin V.F., “Metaalgorithmic Language”, Kybernetika, N 4, 1968.

[7] Clocksin W., Mellish C., “Programming in PROLOG”, Springer Verlag, Berlin, 1982, 576p.

[8] Woods W., “Transition network grammars for natural language analysis”, CACM, vol.13, N 10, 1970.

[9] Khoroshevsky V.F., “The ATNL-based macroprocessor - software tool of communication modules’ implementation”, In: Proc. 3rd Int. Conf. on Artificial Intelligence and Information-Control Systems of Robots, Smolenice, Czechoslovakia, North-Holland, Amsterdam, 1984.

[10] Bolc L., The design of interpreters, compilers and editors of augmented transition networks, Springer-Verlag, New-York 1983.

[11] Woods W., “Cascaded ATN grammars”, American Journal of Comp. Linguistics, vol.6, N 1, 1980.

[12] Sherstnew W.Yu., Worfolomeew A.N., Aleshin A. Yu., “FRAME/2 - Application Program Interface for Frame Knowledge Bases”, In: Proc. of JCKBSE'94, Japan-CIS Symposium on Knowledge Based Software Engineering'94, 1994.

[13] Khoroshevsky V.F., Knowledge Based Design of Knowledge Based Systems in PiES WorkBench, In: Proc. of JCKBSE'94, Japan-CIS Symposium on Knowledge Based Software Engineering'94, 1994, p.p. 256-261.

[14] Khoroshevsky V.F., Shchennikov S., “Instrumental Support of Knowledge Aquisition in PiES System”, Izv. AN USSR, “Technicheskaya Kybernetika”, N 4, 1990, (In Russian).

