KNOWLEDGE  BASED  DESIGN  


OF  INTELLIGENT INTERFACES


IN  PIES  WORKBENCH





Vladimir F. Khoroshevsky


Computer Center Academy of Sciences of Russia


AI-Problems Division


Expert Systems Department


Vavilova 40, 117967 Moscow GSP-1, RUSSIA


e-mail: khor@sms.ccas.msk.su


ABSTRACT


Knowledge based design and implementation of intelligent interfaces is the theme of present report. There are some hot spots in this presentation: structure of intelligent instrumental system PiES WorkBench; Questionnaire Development Kit architecture and features; knowledge representation in QDK - problem, meta and technological; object-oriented implementation of QDK and applied interfaces.





1.   Introduction


Knowledge based  systems  design  technology is changing nowadays from stand-alone tools,  may be powerful,  to the development of system within the integrated framework during the whole life cycle. Modern trends in this domain connected with integration of suitable instruments into the balanced environment supporting intelligent system design and implementation.  Intelligence of the tools  itself  is determined by implantation   of   knowledge representation and knowledge acquisition techniques in this domain and their integration with the classical approaches in technology of programming.


Current state of art in intelligent instruments' domain should be  the subject of separate paper. Organization of this presentation is the following. The structure of intelligent instrumental system PiES WorkBench and the general framework of intelligent design of intelligent interfaces are briefly discussed in the next section. Then we describe  Questionnaire Development Kit (QDK) architecture and main features. Knowledge representation in QDK,- problem, meta and technological,- is the focus of the section three. Object-oriented implementation of QDK and applied interfaces are done in the last section.


2.   The General Framework


The development   of   modern   instrumental   tools  for intelligent  systems  design  and  implementation   is   based nowadays at the following cornerstones:


   - tools  itself  have  to support the explicit definition of design methodology and technology;


   - tools  can  be  designed as knowledge based systems using knowledge of different modalities;


   - prime  conceptions  of  instrumental  workbenches   for intelligent  systems  design  and  implementation  are formed up to now;


   - KBSA-approach (Knowledge Based Software Assistant) and CASE-technology (Computer Aided Software Engineering) are widely used methods nowadays, and their integration in KBSE-methodology (Knowledge Based Software Engineering) is the main current trend;


   - some examples of such intelligent tools already exist.


It can be mentioned that  intelligent technological tools commonly grow from knowledge acquisition systems and  rarely  use  useful  results  from  "classical"   support development  tools.  All  these  reasons  give us assurance that discussed below conceptions of PiES WorkBench  [1] may be interest for the designers of applied intelligent systems.


Collection of PiES WorkBench intelligent instruments supports all stages of expert systems design and implementation. But in this presentation we'll concentrate at the intelligent interfaces design process because communication with users is one of the main tasks for any dialog system.


The interface design and implementation problem  can be divided on two sub problem: the design of interface elements (IE) itself where user suitable presentation of communication units should be fixed, and the development of each IE behavior and communication process behavior. The solution of the first sub problem has serious instrumental support nowadays (for example, MicroSoft SDK and Borland WorkShop for IBM PCs or Development Guide for Sun Workstations, etc.). But situation is quite different at the level of the design IE behavior and implementation of communication modules. Usual solution in this point is the programming with high level languages and/or special libraries. It is pure solution for traditional dialog systems and bad solution for intelligent systems where the design and implementation of communication more complicate. That's why one of the main instruments in PiES WorkBench is an intelligent environment for interfaces' development.


Different types of man-computer communication well known now. Among these messages, menu and questionnaires are most practically useful. But in intelligent systems communication with users is mainly based at the questionnaires. It is necessary to outline that intelligent questionnaires have a wide spectrum of IE and their nontrivial behavior in a dialogue. Dialogue design and implementation in frame of intelligent systems is complicated because they should be united with knowledge base and inference engine. In this situation instrument itself should be intelligent and to support all stages in dialog design and implementation life cycle.


That's why Questionnaire Development Kit in PiES WorkBench is knowledge-based system with explicit representation of knowledge about dialog models, interface design technology and knowledge about instrument itself.


QDK, as useful designer's instrument, has to support


- design of IE itself;


- design of dialogues with different IEs;


- design of IE and dialogues behavior;


- forming of the explicit descriptions of interface specifications in project knowledge base;


- testing of the interfaces under design and verification of the specifications;


- executable code generation and


- on-line help and explanation for the designers.


In addition to these features QDK should be integrate with others instrumental PiES WorkBench components and with basic software tools.  As a result the architecture of QDK can be picked at the following H-diagram (Fig. 1).





Questionnaire Development Kit





	kBase					Objects				New					QA-Elem			Open...					Standard


		Close						Custom


		Save...					QAE-Chain


		Save As...				QAC-Schema


		Exit





	Options			Window		Quit


		Browse			Tile					Test				Cascade


		Generate			Arrange Icons


						Close All


		


				Help										Help Index


					Explanation


					About QDK...


					About QDK knowledge...





Fig. 1. H-diagram of QDK architecture


QDK "kBase" option is standard and supports the creation ("New") or loading ("Open") knowledge base for future specifications. Others sub options semantics flow from their titles.


Design itself is supported in option "Objects" and discussed below. 


Option "Options" is serve to view different knowledge bases ("Browse"), questionnaires hot test ("Test") and resulting specifications' generation ("Generate"). 


And options "Windows" and "Help" are usual for the modern windows-based systems.





3.   Knowledge Representation in QDK


As it was mentioned above in QDK should be explicitly represent


- interface element model;


- dialogue model;


- questionnaire design and implementation technology;


- model of instrument itself and


- knowledge about instrument.


The first and the second components are consist QDK problem knowledge base, technology is reflected in knowledge base of meta level, QDK model - in instrumental knowledge base and the last component - in help and explanation knowledge base.


Help and explanation knowledge have their own specific outline of this presentation. And we are concentrate at the problem, meta and instrumental levels of QDK knowledge.


Knowledge representation in QDK environment is object-oriented in core and production-frame in surface. That's why we'll use the basic PiES WorkBench formalisms - KBMS package FRAME/2[2] and KRL PILOT/2[3]. And at the implementation level we'll discuss how these representations are reflected at C++ level.


3.1.   Problem Knowledge in QDK Environment


All questionnaires outlined above can be divided for two classes. The first one is the class of questionnaires with "outside" and the last - with "hot" reaction on the answer. Usually the outside-reaction questionnaires are linear and hot-reaction questionnaires are tree and/or network. By the way, lexical check of answers is hot reaction as a rule.


An analysis of existing intelligent systems shows that IE with the answers' types "yes-no", "a-b-c" and their common type "case-list" (disjunctive or conjunctive), "graphical scale" (with points or intervals) and "text" are most frequently. All of them are supported in QDK as standard IEs. But the designer of dialogues can use basic tool kits for the development of custom IEs too.


In common IE-structure of all answers' types it is possible to outline Question-Answer Pair (QAP) and service information. Of course QAP representation is depended from IE type. For example, in text QAP question and answer are symbolic strings, in graphical scale question is the text united with the "picture" of the scale, and answer - an element (Elem) with the following restrictions: Min<=Elem<=Max, where Min and Max are the scale bounds. Service information structure is common for all types of IE. It presents IE surface representation, IE-place hold in common dialogue scheme describing with the links of the current IE with his neighboring elements.


Above described points fix declarative component of IE. But each of them has procedural part that determines its behavior. From the logical point of view IE should have the following "behavioral" programs:


- visualization itself as an object of the design;


- on-line help to designer and


- visualization itself as an subject of the design;


- local goal implementation (catch the answer of needed type and, may be, its processing);


- global goal support (dialogue processing).


IE behavior at the design level is connected with instrumental QDK knowledge and discusses below. And here we present problem knowledge that mainly concentrates in frames with the following prototypes:


ynQAE 	is_a	QA-Elem;


	CurrChain frame; if_added ynDemon(); if_changed ynDemon ();


abcQAE 	is_a	QA-Elem;


	CurrChain frame; if_added abcDemon(); if_changed abcDemon ();


listQAE 	is_a	QA-Elem;


	CurrChain frame; if_added listDemon(); if_changed listDemon ();


	ListType    int;    by_default OR_LIST;


	ListValue   {string};


scaleQAE 	is_a	QA-Elem;


	CurrChain	frame;if_added scaleDemon();if_changed scaleDemon();


	ScaleType	int;    by_default HORIZONTAL | POINT;


	From		int;    by_default 0;


	To		int;    by_default 100;


	Grain		int;    by_default 1;


txtQAE 	is_a	QA-Elem;


	CurrChain frame; if_added txtDemon(); if_changed txtDemon ();


As it is follow from above specifications each IE has reference at his dialogue (slot "CurrChain") and, may be, additional information (for example, case-list type and basic set of alternatives for the "listQAE" frame). Beside this, demons are connected with slots "CurrChain". They support IE visualization and implement local goals (in all aspects) and global goals (in particularly).


All local IEs are subclasses of the following QA-Elem frame:


		QA-Elem  	is_a	QAE-Chain;


			Question		{string};


			NextQAE		frame;


			PrevQAE		frame;	


Question common information is present in the slot "Question" and references for the next and the pervious IEs are present in slots "NextQAE" and "PrevQAE". And frame "QA-Elem" is connected by is_a hierarchy with frame "QAE-Chain" where current IE, references at the answer's prototype and example, answer name slot are fixed:


QAE-Chain  	is_a   	prototype;


	CurrQAE	  frame; if_added RunQAE (); if_changed RunQAE ();


	AnswPrt	  frame; by_default Questionnaire;


	AnswExm frame;


	AnswSlot  string; by_default "Answer";


Answer slot name is "Answer" and answer prototype is "Questionnaire", by default. This frame prototype is determined in text IE case as:


Questionnaire	is_a	prototype;


	Answer	{string};	if_added AnswDemon ();


Dialogue global goal is supported by "RunQAE" and "AnswDemon".  FRAME/2 based specification first of them done below:


	RunQAE (){


		CurrElem = GetValue ("CurrQAE");


		if (CurrElem && ExistFrame (CurrElem)){


			CurrChain = GetCurrExmName ();


			ChangeValue (CurrElem, "CurrChain", CurrChain);


		}


	}


It is necessary to exec the operator 


	AddValue (CurrChainName, "CurrQAE", NameFirstQAE);


for the activate the demon RunQAE (). And the last is started the questionnaire. The questionnaire processing is supported by the appropriate demons when they are activate.


Prototypes' descriptions done above are oriented at the linear questionnaires with models represented by "QA-Elem" and "QAE-Chain" frames. Clearly that tree and network questionnaires need another prototype of "QA-Elem". But the problem knowledge base description scheme is the same.





3.2. Meta Knowledge in QDK Environment


Analysis of problem knowledge shows that two types of activities can be outlined in questionnaires' design. The first one is connected with the IE creation, and the last - with the development of dialogues as a whole. Top-down design approach demands to determine dialogue structure and only than interface elements itself. Bottom-up technology stands for vice versa activity sequence. But from the designer's point of view these components are at the same level. That's why convenient instrumental environment has to support flexible mixture of top-down and bottom-up approaches and QDK supports the following technological scheme of questionnaires' design (Fig. 2):


�IMPORT E:\\OFFICE\\PAPER\\RIS3.BMP \* mergeformat���


Fig. 2. Questionnaire design technological scheme


Clearly from this figure that there are three stages in questionnaires' design at the high level:


- specification knowledge base set up (kBase);


- design itself (QA-Chain and QA-Elem) and


- designer's service (Browse, Test and Generate).


First stage is connected with the loading of needed knowledge base, the assigning of current set up and with the saving of results.


At the design stage the developer can choose QA-Chain or QA-Elem sub scheme. First of them, QA-Chain, is picked at Fig. 3.


�IMPORT E:\\OFFICE\\PAPER\\RIS4.BMP \* mergeformat���


Fig. 3. QA-Chain design technological sub scheme


It is follows from this sub scheme that QA-Chain design also divided on the design set up (SetChainsPat and SetElemsPat); current chain and elements set up (SelectChain and SelectElems); chain's specification including its topology (CreateChain, DeleteChain, CopyChain and RenameChain, as well as AddAll, Add, Remove and RemoveAll), and browsing of concrete interface elements (ViewElem). 


QA-Elem sub scheme is present at Fig. 4.





�IMPORT E:\\OFFICE\\PAPER\\RIS5.BMP \* mergeformat���


Fig. 4. QA-Elem design technological sub scheme


In present diagram set up option exist too. But here design itself is performs on arcs CreateElem, DeleteElem, RenameElem and CopyElem as well as on arcs Question, txtAnsw, ynAnsw, abcAnsw, scaleAnsw and listAnsw. Arc Question supports the design of first part of QAP - question text representation. Other arcs support answer type choose. Only scaleAnsw and listAnsw arcs demand of additional parameters that are set up on arcs H(orizontal), V(ertical), From, To and Grain for scale type and S(ingle), M(ultiple) and ListValue for case-list type.


Designer's service is supported at this level too (arcs Browse and ViewElem). 


At the finishing stage verification of current specifications is performed and executable code is generated.





3.3. Instrumental Knowledge Component


According to questionnaires design technological scheme the developer has two main instruments - QA-Chain and QA-Elem modules. Both of them use the same knowledge base with the following prototypes:


DesignQAC is_a prototype;	if_added CreateBoxQAC ();          	


	ChainsPattern   string; by_default "*"; if_changed UpdateChainsLst ();


	CurrChain	   frame;


	CreateButton	   int; by_default INACTIVE; if_changed CreateChain ();


	ViewButton	      int; by_default INACTIVE; if_changed ViewElem ();


	......................................................................................................


	ButtonOK		int; by_default INACTIVE; if_changed Close ();


ChainDsc	is_a	prototype;


	WasChanged		int;		by_default UNCHANGED;


	ChainElems		{frame};	if_changed WasChange ();


Demon CreateBoxQAC supports visualization of instrument (Fig. 5) and start set up. Other demons determine the functioning of QA-Chain module and designer's acts as well.


QA-Elem model is the same. But here state alone IE is designed. And then the designer himself determines when and where such IEs will be used. Frame representation of QA-Elem module is the following:


DesignStandartQAE 	is_a	prototype;	if_added CreateBoxQAE ();


	ElemsPattern	     string; by_default "*"; if_changed  UpdateElemLst ();


	HighLightElems {frame};


	CreateButton      int; by_default INACTIVE; if_changed CreateElem ();


	................................................................................................


	AnswTypesDsc    {frame};


	ButtonOK	      int; by_default INACTIVE; if_changed Close ();


	................................................................................................


DscStandartTxtAnsw	is_a	prototype;


	txtButton	int; by_default UNCHECKED; if_changed ActivateEmpty ();


DscStandartScaleAnsw  is_a  prototype;


	scaleButton	int; by_default UNCHECKED; if_changed ActivateScale ();


DscStandartListAnsw	is_a	prototype;


	listButton	int; by_default UNCHECKED; if_changed ActivateList ();





�IMPORT E:\\OFFICE\\PAPER\\RIS6.BMP \* mergeformat���


Fig. 5. QA-Chain module screen form


4. QDK Implementation


At the previous sections we have discussed the specifications of  QDK environment at the level of knowledge representation adopted in PiES WorkBench. This section is devoted to object-oriented implementation of QDK environment. 


According to general methodology of object-oriented design we have made the analysis of QDK specifications. It was proved that frame representation of instrumental components can be used as the convenient background for design of classes' hierarchy. Using such approach frame prototypes represent the structure of basic classes. Demons associated with slots of these frames implement methods of these classes. 


However, there are certain additional limitations due to adopted implementation of our approach using Borland C++ 3.1 and Object Windows Library (OWL). For instance, because of absence of multiple inheritance in Borland C++, we were obliged to duplicate some objects together with wide usage of friend classes. The structure of OWL itself doesn't coincide well enough with MS Windows environment and it doesn't provide sophisticated objects, so it was necessary to develop new interface elements. It worse to mention that some of our newly designed elements such as button rulers and speedbars are already included into the new version of Borland C++ 4.0 libraries.


QDK environment is implemented as MS Windows MDI application. According to CUA/GUI standards, when starting the program user is enabled to select main menu commands kBase, Quit and Help. After selection of specifications base he obtains the "upwinded" environment. At this level the designer can use all main technological scheme components.


The objects as the class examples are visualized at the work table when local instruments are called . A chunk of using under implementation classes' hierarchy is picked at Fig. 6.


�


Fig. 6. Fragment of classes hierarchy using in QDK implementation


Whenever any QDK component is called the frame example is created. And the demon of this frame prototype is activated. For example, if QA-Chain module is called demon CreateBoxQAC is activated, object TDialogQAC and all inheritance objects are created and above discussed screen form (Fig. 5) is visualized. The same idea is used in any QDK modules' activation.


QDK modules' functioning itself is organized at the basis of demons linking to frame examples slots. For example, if the designer checks Scale button (Fig. 5), scaleButton slot value in frame example DscStandartScaleAnsw is changed from UNCHECKED to CHECKED and demon ActivateScale runs. As a result object TDialogScale will be created.


Above discussed demons are oriented at the instrumental level of QDK. And demons linked to functional buttons are used to problem level objects creating. For instance, if option Create is chosen CreateButton slot value in frame example DesignStandartQAE is changed from INACTIVE to ACTIVE and demon CreateElem is run. The main task of this demon is the problem knowledge base update and visualization is a side effect of this job.


So, we discussed main aspects of QDK object oriented implementation. Its instrumental knowledge base volume consists at about 100 K, the volume of executable code written in C++ and PILOT/2 - at about 400 K. Problem knowledge base volume depends on complexity of questionnaires under design. For questionnaires of Cattell expert system [4] appropriate knowledge base volume consists at about 70 K.





5. Conclusion


Knowledge based design of intelligent interfaces for AI-systems was discussed in this presentation. QDK structure was outlined and methods of its knowledge representation were discussed at the basis of PiES WorkBench formalisms. QDK implementation was also in focus of this presentation. We used Borland C++ (version 3.1) and OWL in this case. QDK is run under Windows 3.1 environment as an instrumental component of intelligent KBSE system PiES WorkBench.


6. References


1. V. F. Khoroshevsky, Knowledge Based Design of Knowledge Based Systems in   PiES WorkBench, Proc. Russian-Japanis Symp. "Knowledge Based Software Enginereing", 1994.


2. W. Yu.  Sherstnew, A. N. Worfolomeew, A. Yu. Aleshin, FRAME/2 - Application Program Interface for Frame Knowledge Bases, Proc. Russian-Japanis Symp. "Knowledge Based Software Enginereing", 1994.


 3. V. A. Zharkov, Mashina  vyvoda  jazyka  predstavlenia znanii  PILOT i ie realizacia v srede Windows 3.0. III Joint Conference on Artificial Intelligence VKII-92.-Proceedings, "Center Programm System", (Tver, 1992) (In Russian).


4. E. S. Narushev,  V. F. Khoroshevsky,    Programmnoe obespechenie ekspertnoi systemy Cattell (Opyt razrabotky).- II Joint Conference on Artificial Intelligence VKII-90.- Proceedings, "Center Programm System", (Minsk, 1990)  (In Russian).








