ПОЛИЭДРАЛЬНАЯ АППРОКСИМАЦИЯ ВЫПУКЛЫХ КОМПАКТНЫХ ТЕЛ МЕТОДАМИ НАПОЛНЕНИЯ¹

Г. К. Каменев*, А. И. Поспелов**

(* 119333 Москва, ул. Вавилова, 40, ВЦ РАН;

** 105064, Москва, Садово-Черногрязская ул., 13/3, DATADVANCE,

127994, Москва, Большой Каретный пер., 19/1, ИППИ РАН)

e-mail: gkk@ccas.ru, alexis.pospelov@datadvance.net

В работе вводится и изучается класс итерационных методов полиэдральной аппроксимации выпуклых компактных тел — методы наполнения. Этот класс отличается от известного класса методов восполнения тем, что вершины аппроксимирующего многогранника могут располагаться не только на границе, но и внутри аппроксимируемого тела. В рамках предложенного класса вводится класс хаусдорфовых или H-методов наполнения, для которых получены оценки скорости сходимости, асимптотические и на начальном этапе аппроксимации. Полученные оценки скорости сходимости сходимости совпадают с оценками для H-методов восполнения при аппроксимации негладких выпуклых компактных тел.

Ключевые слова: выпуклые множества, многогранники, алгоритмы, полиэдральная аппроксимация, скорость сходимости

Введение

Полиэдральная аппроксимация является традиционным средством теории выпуклых множеств [1], [2]. В настоящее время задача аппроксимации выпуклых компактных тел многогранниками возникает во многих приложениях, в том числе в многокритериальных задачах принятия решений на основе использования математических моделей [3], [4]. В рамках этого направления разработаны методы полиэдральной аппроксимации неявно заданных выпуклых множеств, в частности, метод «Уточнения Оценок» (см. историю его создания в [4]). Для исследования

 $^{^{1}}$ Работа выполнена при частичной финансовой поддержке РФФИ (проекты 09-01-00599 и 10-01-00199), ПФИ Президиума РАН П-14 и П-17.

предложенных методов полиэдральной аппроксимации была разработана теория адаптивных итерационных методов восполнения и отсечения, в частности, оптимальных по скорости сходимости хаусдорфовых или *H*-методов [5]. Адаптивные методы восполнения основаны на последовательном уточнении внутреннего вписанного аппроксимирующего многогранника за счет пополнения множества его вершин граничными точками аппроксимируемого тела [6]. Адаптивные методы отсечения основаны на последовательном уточнении внешнего описанного аппроксимирующего многогранника, представленного в виде системы линейных неравенств, за счет пополнения его описания опорными полупространствами аппроксимируемого тела [6].

Существуют, однако, методы, не принадлежащие к двум указанным типам. В некоторых из этих методов точки аппроксимируемого множества, включаемые в описание аппроксимирующего многогранника, не принадлежат аппроксимируемого тела. Так, например, при аппроксимации выпуклой оболочки Эджворта-Парето большого конечного числа точек с помощью метода, предложенного в работе [7], включаемые точки могут быть далеки от границы аппроксимируемого тела. Кроме того, при использовании на практике методов аппроксимации, в частности метода «Уточнения Оценок», компьютерные вычисления являются приближенными. Например, при аппроксимации выпуклого тела, неявно заданного своей опорной, когда опорные элементы находятся с помощью решения задач выпуклой оптимизации линейных функционалов, принадлежность решения границе аппроксимируемого тела гарантируется только приближенно. Поэтому аппарат методов восполнения, основанный на предположении о том, что точки, включаемые в описание аппроксимирующего многогранника, принадлежат границе тела, требует развития.

Цель настоящей работы — разработка аппарата для описания и исследования работы известных методов аппроксимации, таких как метод «Уточнения Оценок», в случае приближенных вычислений, а также для исследования методов аппроксимации выпуклых тел, в которых вершины могут не лежать на границе аппроксимируемого множества. В работе предлагается и изучается класс итерационных методов наполнения для аппроксимации выпуклых компактных тел многогранниками, вводится понятие хаусдорфовых методов наполнения и исследуется их скорость сходимости.

Введем теперь некоторые обозначения и понятия. Будем рассматривать

евклидово пространство \mathbb{R}^m с лебеговой мерой $\mu(\cdot)$ и со скалярным произведением $\langle\cdot,\cdot\rangle$, порождающим расстояние $\rho(\cdot)$ и норму $||\cdot||$. Обозначим через $B_r(z)$ замкнутый шар радиуса r с центром в z, через B^m единичный замкнутый шар с центром в начале координат и через S^{m-1} сферу единичных направлений, т.е. границу B^m . Пусть $\pi_m = \mu(B^m)$. Далее, для $\varepsilon > 0$ и множества $\mathcal{C} \subset \mathbb{R}^m$ обозначим через $\overline{\mathcal{O}}_{\varepsilon}(\mathcal{C})$ замкнутую окрестность множества, т.е.

$$\overline{O}_{\varepsilon}(C) = \{ y \in \mathbb{R}^m | \rho(y, C) \le \varepsilon \}.$$

Множество $A \subset \mathbb{R}^m$ будем называть конусом, если для любого $y \in A$ и $\lambda > 0$, справедливо $\lambda y \in A$. Множество $C \subset \mathbb{E}^m$ называется выпуклым, если $(1-\lambda)y' + \lambda y'' \in C$ для всех $y', \ y'' \in C$ и $0 < \lambda < 1$. Выпуклой оболочкой множества $Y \subset \mathbb{E}^m$ называется множество conv Y, являющееся пересечением всех выпуклых множеств, содержащих Y.

Для двух множеств A и B через A+B будем обозначать сумму по Минковскому, т.е.

$$A + B = \{ y \in \mathbb{R}^m \mid y = y' + y'', \quad y' \in A, \quad y'' \in B \},$$

для $\lambda \geq 0$ и множества A обозначим

$$\lambda A = \{ y \in \mathbb{R}^m \ | \ y = \lambda y', \qquad y' \in A \}.$$

Заметим, что в случае выпуклых множеств A и B результат введенных выше двух операций над множествами также будет выпуклым множеством. Отметим, что замкнутая окрестность замкнутого множества $\mathcal{C} \subset \mathbb{R}^m$ может быть записана в виде

$$\overline{O}_{\varepsilon}(C) = C + B_{\varepsilon}(0).$$

Обозначим через $\mathcal C$ класс выпуклых компактных множеств с непустой внутренностью, т.е. выпуклых компактных тел. Через $\omega(\mathcal C)$ обозначим асферичность тела (минимальное отношение радиусов концентрических внешнего $R(\mathcal C)$ и внутреннего $r(\mathcal C)$ шаров) и через $\sigma(\mathcal C)$ — его поверхностный объем [8]. Через $\partial \mathcal C$ обозначим границу выпуклого компактного тела $\mathcal C$.

Обозначим через $\mathcal{P} \subset \mathcal{C}$ класс выпуклых телесных многогранников (выпуклых оболочек конечного множества точек, не лежащих в одной гиперплоскости \mathbb{R}^m). Для $P \in \mathcal{P}$ через $M^t(P)$ обозначим множество вершин многогранника P, через $m^t(P)$ обозначим число его вершин. Через $M^f(P)$ обозначим множество векторов единичных внешних нормалей к гиперграням многогранника P. Введем класс $\mathcal{P}^{int}(C)$ внутренних многогранников для C, вершины которых не обязательно принадлежат ∂C . Для

 $u \in \mathbb{R}^m \setminus \{0\}$ введем обозначение опорной функции

$$g(u,C) = \max\{\langle u, x \rangle : x \in C\}$$

и опорного гиперпространства

$$L(u,C) = \{x \in \mathbb{R}^m : \langle u, x \rangle \leq g(u,C)\}.$$

Будем рассматривать традиционные метрики на $\mathcal C$ (см. [1], [2]): метрику Хаусдорфа (метрику Бляшке)

$$\delta^{H}(A,B) = \max \left\{ \sup_{x \in A} \inf_{y \in B} \rho(x,y), \quad \sup_{y \in B} \inf_{x \in A} \rho(x,y) \right\},$$

и метрику объема симметрической разности (Никодимову метрику)

$$\delta^{S}(A,B) = \mu(A\Delta B),$$

где $A\Delta B = (A \backslash B) \cup (B \backslash A)$.

Для заданного множества $C \in \mathcal{C}$ под методом восполнения (см. [6]) понимается последовательное применение итерационной схемы полиэдральной аппроксимации (общей схемы восполнения) для некоторого вписанного многогранника начальной аппроксимации P_0 . l-я итерация общей схемы восполнения состоит из двух шагов: выбора $p^l \in \partial \mathcal{C}$ и построения нового многогранника $P_l = \text{conv}\,\{p^l, P_{l-1}\}$.

Конкретные методы, основанные на алгоритмических схемах восполнения, определяются способом построением многогранника начальной аппроксимации P_0 , способом выбора $p^l \in \partial \mathcal{C}$ и способом построения $P_l = \mathrm{conv}\,\{p^l, P_{l-1}\}$ в требуемом для реализации алгоритмической схемы виде. Примеры методов восполнения приведены в [3]-[6], [9].

Среди последовательностей вписанных многогранников $\{P_l\}_{l=0}^{\infty}$, порождаемых для $C \in \mathcal{C}$ некоторым методом восполнения, выделяют хаусдорфовы или H-последовательностьи (см., [6]). H-последовательностью восполнения называется последовательность, порождаемая методом восполнения, для которой существует константа $\gamma > 0$ такая, что для любого l = 0,1,... справедливо

$$\delta^H(P_l,P_{l+1}) \geq \gamma \delta^H(P_l,C).$$

Методы, позволяющие строить H-последовательности восполнения, называются $xaycdop\phioвыми$ (или H-) memodamu восполнения. Аппарат хаусдорфовых последовательностей позволяет получать оценки скорости сходимости для конкретных методов восполнения [5], [6].

В данной работе эти результаты обобщаются на более широкий класс методов полиэдральной аппроксимации – методов, основанных на итерационной схеме

наполнения. Статья построена следующим образом. В параграфе 1 дано определение и описаны основные свойства различных классов методов наполнения. В параграфе 2 получены асимптотические оценки скорости сходимости -методов наполнения. В параграфе 3 получены оценки их скорости сходимости на начальном этапе.

1. Итерационная схема, методы и последовательности наполнения

Определим новую итерационную схему, обобщающую схему восполнения, которую будет называть *схемой наполнения*.

Пусть задано тело $C \in \mathcal{C}$. И пусть на (l-1)-й итерации построен $P_{l-1} \in \mathcal{P}^{int}(C)$. Будем называть схемой наполнения итерационную схему, в которой на -й итерации строится многогранник P_l такой, что

$$P_{l-1} \subset P_l \subset C$$
.

Будем говорить, что схема наполнения экономична, если дополнительно выполнено

$$m^t(P_l) \le m^t(P_{l-1}) + 1.$$
 (1)

Методы, реализующие схему наполнения, будем называть методами наполнения. Двумерная иллюстрация работы схемы наполнения приведена на рис. 1.

Для схемы наполнения справедливо, что если $P_l \in \mathcal{P}^{int}(C)$, то $P_{l+1} \in \mathcal{P}^{int}(C)$. Поэтому, если в некотором методе, реализующем схему наполнения, многогранник начального приближения P_0 принадлежит $\mathcal{P}^{int}(C)$, то и $P_l \in \mathcal{P}^{int}(C)$ для любого l. Такие методы будем называть методами наполнения.

Определение 1. Последовательность многогранников $\{P_l\}_{l=0}^{\infty}$, порожденную методом наполнения для тела C, будем называть последовательностью наполнения для этого тела. Если дополнительно выполнено условие (1), то последовательность $\{P_l\}_{l=0}^{\infty}$ будем называть экономичной последовательностью наполнения.

Из определения экономичной схемы наполнения сразу следует, что для экономичной последовательности наполнения справедлива оценка для числа вершин

$$m^t(P_l) \le m^t(P_0) + l. \tag{2}$$

Для экономичной схемы наполнения при $l \geq l_0 > 0$, если $m^t(P_l) \geq m^t(P_{l_0})$, то напрямую из неравенства (2), и если $m^t(P_l) \leq m^t(P_{l_0})$, то после подстановки вместо l в (2) индекса l_0 , следует неравенство

$$l \ge m^t(P_l) \left(1 - \frac{m^t(P_0)}{m^t(P_{l_0})} \right). \tag{3}$$

Определение 2. Если для любого $C \in \mathcal{C}$ метод наполнения порождает последовательность многогранников $\{P_l\}_{l=0}^{\infty}$, сходящуюся к C в некоторой метрике $\delta(\cdot,\cdot)$, то метод и порождаемую им последовательность наполнения будем называть аппроксимирующими.

Приведем определения классов последовательностей многогранников, неявно характеризующих порождающие их классы адаптивных методов полиэдральной аппроксимации.

Определение 3. Последовательность многогранников $\{P_l\}_{l=0}^{\infty}$, порождаемую для $C \in \mathcal{C}$ некоторым методом наполнения, будем называть хаусдорфовой для тела C (или $H(\gamma,C)$ -последовательностью наполнения), если существует константа $\gamma>0$ такая, что для любого l=0,1,... справедливо

$$\delta^{H}(P_{l}, P_{l+1}) \ge \gamma \delta^{H}(P_{l}, C). \tag{4}$$

Метод наполнения, порождающий хаусдорфову последовательность наполнения, будем называть $xaycdop\phioвым$ или $H(\gamma,C)$ -методом для тела C.

В силу компактности P_{l+1} и $P_l \subset P_{l+1}$ имеем

$$\delta^{H}(P_l, P_{l+1}) = \rho(p^l, P_l), \tag{5}$$

где p^l — наиболее удаленная от P_l точка многогранника P_{l+1} . Поэтому условие (4) может быть переформулировано в виде

$$\rho(p^l, P_l) \ge \gamma \delta^H(P_l, C).$$

Определение 4. Метод наполнения будем называть хаусдорфовым методом наполнения для класса тел $\mathcal{C}^* \subset \mathcal{C}$ с константой γ (или $H(\gamma, \mathcal{C}^*)$ -методом наполнения), если для каждого $\mathcal{C} \in \mathcal{C}^*$ он является хаусдорфовым методом наполнения с одной и той же константой γ .

Очевидно, что при $\gamma_2 \leq \gamma_1$ хаусдорфов метод наполнения для класса тел \mathcal{C}^* с константой γ_1 является хаусдорфовым методом наполнения для класса тел \mathcal{C}^* с константой γ_2 .

Из определения -метода восполнения и H-метода наполнения непосредственно вытекает следующее очевидное свойство.

Свойство. $H(\gamma, \mathcal{C})$ -метод (последовательность) восполнения является $H(\gamma, \mathcal{C})$ -методом (последовательностью) наполнения.

Покажем, что *H*-методы наполнения являются аппроксимирующими, т.е. для любого выпуклого компактного тела они порождают в рассматриваемых метриках

сходящиеся последовательности многогранников.

Теорема 1. Пусть $\{P_l\}_{l=0}^\infty$ есть Н-последовательность наполнения для $C\in\mathcal{C}.$ Тогда

$$\underset{l\to\infty}{\lim}\delta^H(P_l,C)=0,\ \underset{l\to\infty}{\lim}\delta^S(P_l,C)=0.$$

Доказательство теоремы 1. Рассмотрим сначала метрику Хаусдорфа. Утверждение теоремы следует из компактности C. Действительно, для схемы наполнения рассмотрим последовательность точек $\{p^l\}_{l=0}^{\infty}$, на которых достигается расстояние по Хаусдорфу (см. (5)) на итерациях схемы наполнения. В силу компактности соответствующих множеств справедливо

$$\lim_{l \to \infty} \rho(p^l, \{p^i\}_{i=0}^{l-1}) = 0.$$

Но поскольку $ho(p^l,\{p^i\}_{i=0}^{l-1})\geq \delta^H(P_{l-1},P_l)$, учитывая неравенство (4), получаем что $\lim_{l\to\infty}\delta^H(P_l,\mathcal{C})=0$.

Из сходимости в метрике Хаусдорфа и непрерывности объема как функции относительно хаусдорфовой топологии (см., например, [8] стр. 155) следует сходимость в метрике объема симметрической разности. Таким образом, утверждение теоремы доказано.

2. Асимптотическая скорость сходимости Н-методов наполнения

В теории хаусдорфовых адаптивных методов полиэдральной аппроксимации [5] рассматриваются различные методы исследования скорости сходимости. В каждом случае (при исследовании скорости сходимости конкретного класса алгоритмов при аппроксимации конкретного класса выпуклых компактных тел) наиболее сильные оценки удается получить одним из следующих методов:

- 1. метод изменения объема на итерациях является хронологически первым и наиболее общим методом исследования методов полиэдральной аппроксимации и дает наиболее сильные оценки при анализе скорости сходимости *Н*-последовательностей, в том числе и на начальном этапе аппроксимации, а также для нехаусдорфовых методов;
- 2. *метод упаковок нормалей* к границе аппроксимируемого множества дает наиболее сильные оценки скорости сходимости при аппроксимации негладких тел;
- 3. *метод Глубоких Ям* на границе аппроксимируемого множества позволяет получить наиболее сильные результаты для скорости сходимости хаусдорфовых

алгоритмов в гладком случае.

В настоящей работе для исследования вопросов скорости сходимости хаусдорфовых методов наполнения будет использован метод изменения объема на итерациях, который был разработан в [6]. Основной задачей настоящего раздела является доказательство следующей теоремы о скорости сходимости *Н*-последовательностей наполнения в общем случае.

Теорема 2. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma, C)$ -последовательность наполнения для $C \in \mathcal{C}$. Тогда для любого $\varepsilon > 0$, существует $N(\varepsilon)$ такое, что при $l \geq N(\varepsilon)$ справедливо

$$\delta^{S}(P_{l},C) \leq (1+\varepsilon)\lambda_{1}(\gamma,C)l^{1/(1-m)},$$

$$\delta^{H}(P_{l},C) \leq (1+\varepsilon)\lambda_{2}(\gamma,C)l^{1/(1-m)},$$

где

$$\lambda_1(\gamma, C) = \left(\frac{m}{(m-1)\pi_{m-1}} \left(\frac{\sigma(C)}{\gamma}\right)^m\right)^{1/(m-1)} \omega(C),$$

$$\lambda_2(\gamma, C) = \left(\frac{m}{(m-1)\pi_{m-1}} \frac{\sigma(C)}{\gamma^m}\right)^{1/(m-1)} \omega(C).$$

Метод изменения объема состоит в оценке приращения объема аппроксимирующего многогранника на каждой итерации и получении на этой основе скорости уменьшения отклонения многогранника от аппроксимируемого тела. Для оценки изменения объема используется шар, вписанный в многогранник, вернее, часть конуса его видимости, присоединяемая на итерации. Для доказательства нам понадобятся следующие утверждения.

Лемма 1 ([5], лемма 1.3.4**).** Пусть $C \in \mathcal{C}$, $z \in C$ и r, r > 0, такие, что $B_r(z) \subset C$. Тогда для любого $C' \in \mathcal{C}$ такого, что $C' \subset C$ и $r' = \delta^H(C',C) < r$, имеем $B_{r-r}(z) \subset C'$.

Лемма 2 ([5], лемма 2.2.1**).** Пусть дан шар $B_r(y^0)$, точка y вне его и гиперплоскость L, разделяющая их и находящаяся от y на расстоянии h. Тогда L отсекает от конуса видимости из точки y пирамиду с объемом, не меньшим

$$\frac{\pi_{m-1}}{m} \left(\left(\frac{\rho(y, y^0)}{r} \right)^2 - 1 \right)^{(1-m)/2} h^m.$$

Лемма 3. Пусть $\{P_l\}_{l=0}^{\infty}$ — аппроксимирующая последовательность многогранников, порождаемая для $C \in \mathcal{C}$ некоторой схемой наполнения. Тогда при $\delta^H(P_{l-1},\mathcal{C}) < \varepsilon r, \, 0 < \varepsilon < 1$, справедливо

$$\delta^{S}(P_{l}, P_{l-1}) \geq \lambda_{3}(\varepsilon)(\delta^{H}(P_{l}, P_{l-1}))^{m}$$

где

$$\lambda_3(\varepsilon) = \frac{\pi_{m-1}}{m} \left(\frac{r}{R} (1 - \varepsilon)\right)^{m-1},$$

а r и R — радиусы концентрических внутреннего и внешнего шаров для \mathcal{C} . Кроме того, при любом l>0 справедливо

$$\delta^{S}(P_{l}, P_{l-1}) \geq (\delta^{H}(P_{l}, P_{l-1}))^{m} \lambda'_{3},$$

где

$$\lambda'_{3} = \frac{\pi_{m-1}}{m} \left(\frac{r'}{R' + \delta^{H}(C, P_{0})} \right)^{m-1},$$

а r' и R' – радиусы концентрических шаров, внутреннего для P_0 и внешнего для $\mathcal{C}.$

Доказательство леммы 3. Пусть $z \in \mathcal{C}$ такая, что $B_r(z) \subset \mathcal{C} \subset B_R(z)$. Пусть $\rho(p^l, P_{l-1}) = \delta^H(P_l, P_{l-1})$, $p' = \operatorname{proj}(p^l, P_{l-1})$ — проекция p^l на P_{l-1} и $L = L((p^l - p')/||p^l - p'||, P_{l-1})$ (см. иллюстрацию на рис. 2). Тогда $\rho(p^l, L) = \delta^H(P_l, P_{l-1})$. По условию леммы 3 и лемме 1 имеем $B_{r(1-\varepsilon)}(z) \subset P_{l-1}$, поэтому $\delta^S(P_l, P_{l-1})$ больше, чем объем части конуса видимости $B_{r(1-\varepsilon)}(z)$ из точки p^l , отсекаемой гиперплоскостью ∂L , причем $\rho(p^l, z) \leq R$. Из леммы 2 тогда следует, что

$$\delta^{S}(P_{l}, P_{l-1}) \geq \frac{\pi_{m-1}}{m} \left(\left(\frac{R}{r(1-\varepsilon)} \right)^{2} - 1 \right)^{(1-m)/2} (\delta^{H}(P_{l}, P_{l-1}))^{m}.$$

Первое утверждение леммы доказано.

Для доказательства второго утверждения достаточно заметить, что из точки p^l шар радиуса r' виден при любом $l \geq 0$. Далее рассуждаем, как при доказательстве первого утверждения. Лемма 3 полностью доказана.

Следующая лемма необходима для получения оценок скорости сходимости для последовательностей отклонений многогранников в метриках объема $\{a_l\}$ и Хаусдорфа $\{b_l\}$.

Лемма 4 ([5], лемма 2.2.4**).** Пусть $\{a_l\}_{l=0}^\infty$ и $\{b_l\}_{l=0}^\infty$ – невозрастающие последовательности положительных чисел, и пусть существуют константы $c_1,c_2>0$ и $\beta>1$ такие, что $a_l-a_{l+1}\geq c_1b_l^\beta$ и $c_2b_l\geq a_l$ при l=0,1,... Тогда для любого $l\geq 0$ справедливо

$$a_l \le \left(\lambda_4^{(\beta-1)}l + a_0^{(1-\beta)}\right)^{1/(1-\beta)}.$$

Кроме того, для любого $\varepsilon>0$ существует номер l_0 , зависящий только от ε,β , c_1 , c_2 и a_0 ,

для которого при $l \ge l_0$ справедливо

$$a_l \le (1+\varepsilon)/(\lambda_4 l^{1/(\beta-1)}), \qquad b_l \le (1+\varepsilon)/(\lambda_5 l^{1/(\beta-1)}),$$

где

$$\lambda_4 = \left(\frac{(\beta - 1)c_1}{c_2^{\beta}}\right)^{1/(\beta - 1)}, \qquad \lambda_5 = \left(\frac{(\beta - 1)c_1}{\beta c_2}\right)^{1/(\beta - 1)}.$$

Доказательство теоремы 2. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma, C)$ -последовательность наполнения. Пусть $r, R \in \mathbb{R}$ и $z \in C$ такие, что $B_r(z) \subset C \subset B_R(z)$ и $R/r = \omega(C)$. По теореме 1 последовательность $\{P_l\}_{l=0}^{\infty}$ сходится к C в метрике Хаусдорфа. Поэтому для любого ε_1 , $0 < \varepsilon_1 < 1$, существует номер l_1 такой, что при $l \geq l_1$ имеем $\delta^H(P_l, C) < \varepsilon_1 r$. Согласно лемме 3, при этих условиях

$$\delta^{S}(P_{l}, P_{l+1}) \geq \lambda_{3}(\varepsilon_{1})(\delta^{H}(P_{l}, P_{l+1}))^{m} \geq \lambda_{3}(\varepsilon_{1})(\gamma \delta^{H}(P_{l}, C))^{m}.$$

Из монотонности по включению последовательности $\{P_l\}_{l=0}^{\infty}$ вытекает, что $\delta^S(P_l,P_{l+1})=\delta^S(P_l,C)-\delta^S(C,P_{l+1}).$ Обозначим $a_l=\delta^S(P_l,C),\,b_l=\delta^H(P_l,C).$ Тогда $a_l-a_{l+1}\geq \lambda_3(\varepsilon_1)(\gamma b_l)^m.$

Так как для $\sigma(C)$ справедливо

$$\sigma(C) = \lim_{S \to 0+} \frac{\mu(\overline{O}_{\varepsilon}(C)) - \mu(C)}{S}$$

(см., например, [8] стр. 179), а из $b_l=0$ следует $a_l=0$, то для любого $\varepsilon_2>0$ существует номер l_2 , при котором $a_l\leq (\sigma(C)+\varepsilon_2)b_l$, где $l\geq l_2$. Кроме этого, члены последовательностей $\{a_l\}_{l=0}^\infty$ и $\{b_l\}_{l=0}^\infty$ положительны и не возрастают. Поэтому для $l\geq l_3=\max(l_1,l_2)$ справедливы условия леммы 4 с константами $c_1=\lambda_3(\varepsilon_1)\gamma^m$, $c_2=\sigma(C)+\varepsilon_2$ и b=l. Таким образом, для любого $\varepsilon_3>0$ существует номер $l_4\geq l_3$, для которого

$$\begin{split} a_l &= \delta^S(P_l, \mathcal{C}) \leq (1 + \varepsilon_3) \left((m-1) \lambda_3(\varepsilon_1) \left(\frac{\gamma}{\sigma(\mathcal{C}) + \varepsilon_2} \right)^m l \right)^{1/(1-m)} = \\ &= (1 + \varepsilon_3) \left((m-1) \frac{\pi_{m-1}}{m} \left(\frac{r}{R} \right)^{m-1} (1 - \varepsilon_1)^{m-1} \left(\frac{\gamma}{\sigma(\mathcal{C}) + \varepsilon_2} \right)^m l \right)^{1/(1-m)}, \end{split}$$

при $l \geq l_4$. Выберем $\varepsilon_1,\, \varepsilon_2$ и ε_3 так, чтобы

$$(1 + \varepsilon_3)(1 + \varepsilon_2/\sigma(C))^{m/(m-1)}(1 - \varepsilon_1)^{-1} \le 1 + \varepsilon.$$

Тогда, обозначая

$$\lambda_1(\gamma, C) = \left(\frac{m}{(m-1)\pi_{m-1}} \left(\frac{\sigma(C)}{\gamma}\right)^m\right)^{1/(m-1)} \frac{R}{r},$$

получаем $\delta^S(P_l,\mathcal{C}) \leq (1+\varepsilon)\lambda_1(\gamma,\mathcal{C})l^{1/(1-m)}$ при $l \geq l_0 = l_4$. Первое утверждение

теоремы доказано.

Согласно лемме 4, при $l \geq l_0$ имеем

$$b_{l} = \delta^{H}(P_{l}, C) \leq (1 + \varepsilon_{3}) \left(\frac{(m-1)}{m} \frac{\pi_{m-1}}{m} \left(\frac{r}{R} \right)^{m-1} \frac{(1 - \varepsilon_{1})^{m-1} \gamma^{m}}{\sigma(C) + \varepsilon_{2}} l \right)^{1/(1-m)}.$$

Поскольку

$$(1 + \varepsilon_2/\sigma(C))^{1/(m-1)} \le (1 + \varepsilon_2/\sigma(C))^{m/(m-1)}$$

то при $l \geq l_0$ имеем $\delta^H(P_l,\mathcal{C}) \leq (1+\varepsilon)\lambda_2(\gamma,\mathcal{C})l^{1/(1-m)}$, где

$$\lambda_2(\gamma, C) = \left(\frac{m}{(m-1)\pi_{m-1}} \frac{\sigma(C)}{\gamma^m}\right)^{1/(m-1)} \frac{R}{r},$$

что доказывает второе утверждение теоремы. Теорема 2 полностью доказана.

Следствие 1. Для экономичных последовательностей наполнения оценки скорости сходимости теоремы 2 справедливы не только по числу итераций l, но и по числу вершин аппроксимирующего многогранника $m^t(P_l)$.

Это следует из свойства (3) при выборе l_0 , таким что величина

$$\frac{1}{\left(1-m(P_0)/m(P_{l_0})\right)^{1/(m-1)}}-1.$$

достаточна мала.

3. Скорость сходимости Н-методов наполнения на начальном этапе

В настоящем параграфе будет рассмотрена скорость сходимости изучаемых методов на начальном этапе аппроксимации. Будут получены результаты, которые позволяют с полной определенностью оценить скорость сходимости рассматриваемых методов на начальном этапе аппроксимации и ресурсы, достаточные для достижения полученных ранее асимптотических свойств.

Лемма 5 ([5], лемма 2.7.1**).** Пусть $C \in \mathcal{C}$, a R и z таковы, что $C \subset B_R(z)$. Тогда для ε и ε_0 , $0 \le \varepsilon \le \varepsilon_0$, справедливо

$$\mu(\overline{O}_{\varepsilon}(C)) - \mu(C) \leq \frac{\pi_m((R + \varepsilon_0)^m - R^m)}{\varepsilon_0} \varepsilon$$

Лемма 6. Пусть $\{P_l\}_{l=0}^{\infty} - H(\gamma, C)$ -последовательность наполнения для $C \in \mathcal{C}$, и пусть R и z таковы, что $C \subset B_R(z)$. Тогда для любого $l \geq 0$ справедливо

$$\delta^S(P_l,C) \leq c \delta^H(P_l,C),$$

где

$$c = \frac{\pi_m((R + \delta^H(P_0, C))^m - R^m)}{\delta^H(P_0, C)}.$$

Доказательство леммы 6. Так как $\delta^S(P_l,C) \leq \mu(\overline{O}_{\varepsilon}(C)) - \mu(C)$, где $\varepsilon = \delta^H(P_l,C)$, а величины $\delta^H(P_l,C)$ не возрастают, то утверждение леммы 6 вытекает непосредственно из леммы 5. Лемма 6 доказана.

Теорема 3. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma, \mathcal{C})$ -последовательность наполнения для $\mathcal{C} \in \mathcal{C}$ и пусть r, R и z таковы, что $B_r(z) \subset P_0 \subset \mathcal{C} \subset B_R(z)$. Тогда для любого l>0 справедливо

$$\begin{split} \delta^H(P_l,C) & \leq \lambda_2^0(\gamma,C,P_0) l^{-1/m}, \\ \delta^S(P_l,C) & \leq \left(\lambda_1^0(\gamma,C,P_0)^{(m-1)} l + \delta^S(P_0,C)^{(1-m)}\right)^{1/(1-m)}, \end{split}$$

где

$$\lambda_2^0(\gamma,C,P_0) = \frac{m\delta^S(C,P_0)}{\gamma\pi_{m-1}} \left(\frac{R+\delta^H(C,P_0)}{r}\right)^{(m-1)/m},$$

$$\lambda_1^0(\gamma,C,P_0) = \left(\frac{(m-1)\pi_{m-1}}{m(\pi_m\gamma)^m}\right)^{\frac{1}{m-1}} \frac{r}{R+\delta^H(C,P_0)} \left(\frac{\delta^H(C,P_0)}{(R+\delta^H(C,P_0))^m-R^m}\right)^{\frac{m}{m-1}}.$$

Доказательство теоремы 3. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma,\mathcal{C})$ -последовательность наполнения. Согласно лемме 3, при этих условиях при любом $l\geq 0$ справедливо

$$\delta^{S}(P_{l}, P_{l+1}) \geq \lambda'_{3}(\delta^{H}(P_{l}, P_{l+1}))^{m},$$

где

$${\lambda'}_3 = \frac{\pi_{m-1}}{m} \left(\frac{r}{R + \delta^H(C, P_0)} \right)^{m-1}.$$

Обозначим $\delta^S(P_l,\mathcal{C})$ через a_l , $\delta^H(P_l,\mathcal{C})$ через b_l . Из монотонности по включению последовательности $\{P_l\}_{l=0}^{\infty}$ вытекает, что $\delta^S(P_l,P_{l+1})=\delta^S(P_l,\mathcal{C})-\delta^S(\mathcal{C},P_{l+1}).$ Поэтому

$$a_l - a_{l+1} \ge \lambda'_3 (\gamma b_l)^m$$

и для любого l > 0 имеем

$$a_l - a_{l+1} \ge c_1 b_l^m,$$

откуда

$$a_0 \ge \sum_{i=0}^{l-1} c_1 b_i^m \ge l c_1 b_l^m$$

где $c_1 = \lambda'_3 \gamma^m$, в силу невозрастания b_l . Отсюда вытекает первое утверждение теоремы.

Далее, по лемме 6, для любого l > 0 имеем $a_l \le c_2 b_l$, где

$$c_2 = \frac{\pi_m((R + b_0)^m - R^m)}{b_0}.$$

Поэтому по лемме 4 имеем

$$\delta^{S}(P_{l},C) \leq \left(\lambda'_{4}^{(m-1)}l + a_{0}^{(1-m)}\right)^{1/(1-m)},$$

где

$$\lambda'_4 = \left(\frac{(m-1)c_1}{c_2^m}\right)^{1/(m-1)}.$$

Подставляя в константу λ'_4 выражения для c_1 и c_2 , получаем второе утверждение теоремы. Теорема 3 доказана.

Следствие 2. Для экономичных последовательностей наполнения оценки скорости сходимости теоремы 3 справедливы не только по числу итераций l, но и по числу по числу вершин $m^t(P_l)-m^t(P_0)$, присоединенных к многограннику начальной аппроксимации.

Это утверждение вытекает из (2).

Приведенная выше теорема позволяет рассчитывать скорость сходимости хаусдорфовых методов наполнения для любых аппроксимируемых тел (в том числе и многогранников) на начальном этапе аппроксимации. Используя ту же технику, можно получить и явные выражения (через величины γ , r(C), R(C), $\delta^H(P_0,C)$, $\delta^S(P_0,C)$) для номера, с которого начинается асимптотическое поведение точности, однако, они слишком громоздки. Ограничимся указанием на сам факт такой зависимости. Впервые такого рода теорема была доказана в [10].

Теорема 4. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma,C)$ -последовательность наполнения для $C\in \mathcal{C}$ и пусть r, R и z таковы, что $B_r(z)\subset C\subset B_R(z)$. Тогда существуют номер l_0 и константа κ , зависящие только от величин γ , m, R, r, $\delta^H(P_0,C)$, $\delta^S(P_0,C)$ и $m(P_0)$, такие что для любого $l\geq l_0$ справедливо

$$\delta^H(P_l,C) \le \kappa/l^{1/(m-1)}.$$

Доказательство теоремы 4. Пусть $\{P_l\}_{l=0}^{\infty}$ есть $H(\gamma,\mathcal{C})$ -последовательность наполнения. По теореме 2 для любого $\varepsilon>0$ существует номер

$$l_1(\varepsilon) = \min(l|\delta^H(P_0, C) \le \varepsilon),$$

зависящий только от величин ε , γ , m, R, r, $\delta^H(P_0,C)$ и $\delta^S(P_0,C)$. Обозначим $\delta^S(P_l,C)$ через a_l , а $\delta^H(P_l,C)$ через b_l . Из монотонности по включению последовательности $\{P_l\}_{l=0}^{\infty}$ вытекает, что $\delta^S(P_l,P_{l+1})=\delta^S(P_l,C)-\delta^S(C,P_{l+1})$. Положим в условии леммы 3 параметр $\varepsilon=1/2$. Тогда при $l\geq l_1(r/2)$ имеем константу $c_1=\lambda_3(1/2)$, зависящую только от r, R и m, такую что

$$a_l - a_{l+1} \ge c_1 b_l^{\beta},$$

где $\beta = m$. Далее, по лемме 3, для любого l > 0 имеем

$$a_1 \leq c_2 b_1$$

где константа c_2 зависит только от $\delta^H(P_0,C)$, R и m.

Положим в условии леммы 4 параметр $\varepsilon=1/2$. Тогда, согласно утверждению леммы, существует номер l_2 , зависящий только от β , c_1 , c_2 и a_0 , для которого при $l\geq l_2$ справедливо

$$a_l \le (3/2)/(\lambda_4 l^{1/(\beta-1)}), b_l \le (3/2)/(\lambda_5 l^{1/(\beta-1)}),$$

где λ_4 и λ_5 зависят только от β , c_1 и c_2 . Выбирая $l_0=\max(l_1(r/2),l_2)$, получаем утверждение теоремы. Теорема 4 доказана.

Следствие 3. Для экономичных последовательностей наполнения оценки теоремы 4 справедливы не только по числу итераций l, но и по числу вершин аппроксимирующего многогранника $m^t(P_l)$.

Это следствие вытекает из свойства (3).

Заключение

В работе предложена и изучена итерационная схема наполнения полиэдральной аппроксимации выпуклых компактных тел. Полученные в работе оценки скорости сходимости для -последовательностей (и H-методов) наполнения не уступают оценкам скорости сходимости H-последовательностей восполнения в негладком случае (см. [5] и [6]).

Полученные результаты могут быть использованы для теоретической оценки скорости сходимости методов аппроксимации выпуклых компактных тел, а так же методов аппроксимации оболочки Эджворта-Парето множества достижимых критериальных векторов в многокритериальных задачах, в которых вершины аппроксимирующего многогранного множества могут не принадлежать границе аппрокимируемого множества (см. [7]).

Авторы благодарят А.В. Лотова за внимание к теме статьи и плодотворное обсуждение результатов.

Список литературы

1. *Бронштейн Е.М.* Аппроксимация выпуклых множеств многогранниками // Современная математика. Фундаментальные направления. Геометрия. М.: РУДН. 2007. № 22 С. 5-37.

- 2. *Gruber P.M.* Aspects of Approximation of Convex Bodies // Handbook of Convex Geometry / Ed. by P. M. Gruber, J. M. Wills. Elsevier Sci. Publishers B.V. 1993. P. 321-345.
- 3. *Лотов А.В.*, *Бушенков В.А.*, *Каменев Г.К.*, *Черных О.Л.* Компьютер и поиск компромисса. Метод достижимых целей. М.: Наука. 1997.
- 4. Lotov A. V., Bushenkov V. A., Kamenev G.K. Interactive Decision Maps. Approximation and Visualization of Pareto frontier. Boston: Kluwer Academic Publishers. 2004.
- 5. *Каменев Г.К.* Оптимальные адаптивные методы полиэдральной аппроксимации выпуклых тел. М.: ВЦ РАН. 2007.
- Каменев Г.К. Об одном классе адаптивных алгоритмов аппроксимации выпуклых тел многогранниками // Ж. вычисл. матем. и матем. физ. 1992. Т. 32. № 1. С. 136-152.
- 7. *Поспелов А.И*. Аппроксимация выпуклой оболочки Эджворта-Парето в многокритериальных задачах с монотонными критериями // Ж. вычисл. матем. и матем. физ. 2009. Т. 49. № 10. С. 1765-1778.
- 8. Лейхтвейс К. Выпуклые множества. М.: Наука. 1985.
- 9. *Лотов А.В.*, *Поспелов А.И*. Модифицированный метод уточнения оценок для полиэдральной аппроксимации выпуклых многогранников // Ж. вычисл. матем. и матем. физ. 2008.Т 48. № 6. С. 990-998.
- 10. Каменев Г.К. Об эффективности хаусдорфовых алгоритмов полиэдральной аппроксимации выпуклых тел // Ж. вычисл. матем. и матем. физ. 1993. Т. 33. № 5. С. 796--805.

Рис 1. Схема наполнения

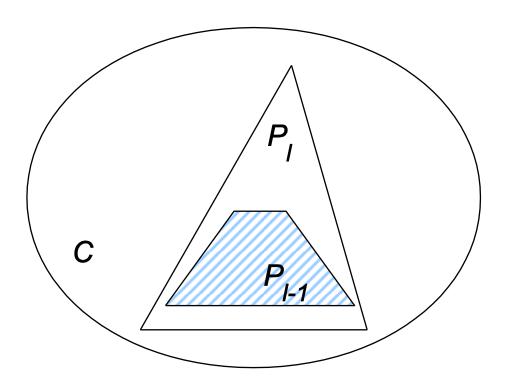


Рис. 2. Метод изменения объема для схемы наполнения

