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The mathematical model of the processes in z-pinch includes the following set of elec-
tronic magnetohydrodynamic (EMH) equations (in the undimensional form) [1, 2]:
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The of electronic current velocity was added to consider the ”two-liquid” effects. To
solve this non-linear set of partial differential equations numerically, there was implied the
splitting method (on physical processes). In the first stage of we neglected dissipative effects
in plasma movement. In the second stage the program calculated the magnetic field pene-
tration in plazma material, taking into account the finite conductivity. In the subsequent
stages there were considered the dissipative effects (electron and ion termal conductivity)
and radiative transport using one-group diffusion approximation.

We use the free Lagrangian grid for the calculational area and built the implicit dif-
ference sheme on the base of variation method [1, 2]. The Lagrangian in this model is the
following:
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The variation of Hamilton’s principal function is equal to zero on the trajectory:
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The discrete analogue of Hamilton’s principal function:
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The mass conservation law was used as quantity equation while varying the Hamilton’s
principal function: δ(ρdΩ) = (dm) = 0.

As the result of the variation and subsequent transformations, we get the discrete
differential equation for the calculation of whole pressure:
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Ûk +
∂Ωij

∂zk

V̂k

)

= 0

where Ω - the volume of the cell, η - the artificial viscosity, which is added to the pressure
to dicrease the oscilations on shock waves, w - the balance coefficient.

The set of equations for pressure can be solved autonomously and, using the solution,
we could find the rest unknown quantities (Fig. 1). This differential scheme takes into

Figure 1: The distribution of magnetic field on the 71th step

account the edge effects and has the second approximation order in the entire calculational
area.

During the modelling we can analyse the dynamic of z-pinch: spatially it gripes 10
times, there are shock waves and inhomogeneities (the example − electrode effects). All
these effects involve the deformation of the calculating grid, which is rectangular in the
beginning and repeatedly deformates during the calculation (Fig. 2). To avoid the reversing

Figure 2: The deformation of the grid during calculation

of the cells and getting physically incorrect results, the limitations on the minimal size of
the cells were implied. If spatial size of the cell becomes smaller than the acceptable value
or after the definite number of time steps, then all physical parameters were conservatively
converted to the new grid [3, 4]. Not only the ”traditional” values (such as temperature,
impetus and mass) were converted, but also the average charge of ion in cell and losses on
ionization.
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