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Abstract

The mathematical model of the platelet thrombus formation has been investigated.

The model of platelet transport on the shear flow is shortly described. The model can

be applied for studying of inflammatory diseases of kidneys.

Introduction

Traditionally, when studying in vitro blood coagulation process, more attention was paid
to the fibrin thrombus formation. Donor blood plasma, which was used for experiments,
contained no blood corpuscles.

Meanwhile, in vivo are usually formed platelet thrombi at first. The secreted thrombin
is one of the blood factors which lead to formation of fibrin thrombus. The later formation
of the thrombus is mixed, it is carried out due to both fibrin polymerization and embedding
of the activated platelets into the thrombus.

Here we consider a simple mathematical model for platelet thrombus formation in the
blood flow. Note, that such mathematical model was derived for describing experiments in

vitro in the artificial system, which excludes donor blood plasma.

Mathematical model

We consider an inner problem of the liquid flow with dissolved chemicals in the cylindrical
vessel of variable cross-section. The cross-section of the vessel can change in time due to
thrombus formation. We used the Navier-Stokes equations [1] for describing the liquid flow.
Under this approximation blood or blood plasma are considered as Newtonian incompressible
fluid. The permanent Poiseuille profile of velocity is maintained at the vessel entrance.

We consider a simple kinetic model of platelet transport in the shear flow. We neglect
the aggregation of the platelets in the flow. Let us assume that platelets are warp-free
spherical particles (usually platelets are of ellipsoidal shape).

To estimate the result of platelet collision in the blood flow let us assume that: the
platelet size is sufficiently less then the radius of the vessel, the velocity of the center of mass
of platelet couple doesn’t change at collision and is equaled to local velocity of the blood at
the couple location. We also neglect the spin of the platelet. As a result, the platelet couple
would rotate around its center of mass until the contact between the platelets is broken. The
contact breaks when both platelets have the same axial velocity. The platelets in the blood
flow change their location relative to the flow with the collision rate so that the center of
mass of each platelet couple doesn’t shift relative to the flow. We assume that the velocity
of the flow is big enough to neglect the axial shift of the platelet during the time of collision.
Thus we can consider only radial component of platelet transport.

The rate of collisions for control platelet can be calculated as an integral:

ν = 2

∫

2a

0

2c(r + x)∆v(r, x)
√

(2a)2 − x2 dx. (1)

where a — is the radius of the platelet, c(r + x) — concentration of the platelets, v(r, x) —
relative velocity.
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We used simplified view of platelet state evolution. It assumed that platelets can be
differentiated by following characteristics: passive-active and full-empty. For a platelet to
go from passive to active state activator (thrombin) is needed, and when a platelet goes
from full to empty state, it releases thrombin to the flow. The kinetics of state changes is
described by a system of equations [2]:

∂ w

∂ t
= −kww + k1cf + (V,∇w) + Dwdiv(∇w), (2)

∂ cp

∂ t
= −f(cp, w) + (V,∇cp) + div(D‖∇‖cp + D⊥∇⊥cp), (3)

∂ cf

∂ t
= f(cp, w) − k2cf + (V,∇cf) + div(D‖∇‖cf + D⊥∇⊥cf), (4)

∂ c

∂ t
= f(cp, w) + (V,∇c) + div(D‖∇‖c + D⊥∇⊥c) (5)

where ∇‖c denotes projection of concentration gradient vector parallel to the fluid velocity
vector, ∇⊥c — normal projection, D‖ is small, and D⊥ ≈ a2ν, ν is determined by (1), w

— activator concentration, cp — assive platelets concentration, cf — concentration of full
active platelets, c — concentration of all active platelets, k1, k2, kw — constants of mono-
molecular reactions, k, w0, m — constants of the function which determines transition of
passive platelets to active state when interacting with activator:

f(c, w) =
k · wm

· c

wm + wm
0

.

The values of parameters are: kw = 2.0, k1 = 15.0, k2 = 0.5, k = 20.0, m = 2.0. At
the vessel entrance all concentrations are set constant, at the vessel exit free (unreflecting)
boundary conditions are set. At the axis of the vessel symmetrical conditions are set, on
the vessel wall diffusive flow of activator equals to zero ∂ w

∂ n
= 0, the flow of platelets to the

active zone of the wall is determined by D⊥
∂ ci

∂ n
= ci(R−2a)a

τ
, ci = cp, cf , c, where ci(R−2a)

is the concentration of the platelets at R − 2a distance from the vessel wall.

Thrombus formation at inflammatory kindey diseases

We calculated a simplified variant of the problem. It is known, that at inflammatory kidney
diseases (e.g. pyelonephritis) almost all platelets are active and thrombin concentration in
the blood is highly elevated. We assume that in large blood vessels only platelet thrombi
are formed and neglect the processes connected with fibrin polymerization. Such approach
allows one to investigate medically important DIC syndrome, and also platelet formation in
veins. In particular, one of the most dangerous areas of thrombus formation is abdominal
vein. When all platelets are activated the system (2–5) is simplified and we can only consider
evolution of active platelets using only one equation

∂ c

∂ t
= f(cp, w) + (V,∇c) + div(D‖∇‖c + D⊥∇⊥c).

Below are represented results of numerical experiments. Diffusion coefficient was as-
sumed to be constant for test experiments. The speed of thrombus formation increases
with increasing of the flow velocity. The initial concentration was rather big, so at Re=100
concentration of the platelets behind the growing thrombus isn’t zero, which happened in

2



the experiments with lower concentrations, when all the platelets coming to vessel adhered
on the thrombus. Also the thrombus grows upstream. The time of thrombus growth was
about 5s, which is several times faster than in vivo due to high concentration of the platelets
and velocity of the flow. At slow velocities almost all platelets adhere on the wall in the
vicinity of active zone. As a result, behind the thrombus is formed a region with almost zero
concentration of the platelets.

Figure 1: Platelet distribution (3d surface), vessel boundary and active zone and velocity
field (arrows). Re=100.

Conclusions

Here we considered a mathematical model for platelet thrombus formation based on a simple
model of particles transport in the shear flow. Numerical method was implemented which
allows one to calculated thrombus formation on the linear parts of the vessels. A simplified
model of thrombus formation when all platelets are active was investigated. It is known that
large veins with relatively high velocity of the flow are more exposed to thrombus formation.
The results of numerical experiments are in qualitative agreement with clinical data. The
other area which is subject to thrombus formation are venules, where velocity of the flow is
small. Within the framework of the examined model the formation of platelet thrombus in
such vessels is slow. But the model doesn’t include fibrin clots formation, which are more
actively formed in slow flows. The development of the model is to integrate both platelet
and fibrin models of thrombus formation.
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