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Many physical phenomena can be modeled by partial differential equa-
tions which may be solved by numerical methods such as finite element and
finite volume methods. In this context, a given domain must first be subdi-
vided into many simple cells. Both the shape and size of the cells will affect
the accuracy and convergence of the method. A boundary conforming De-
launay mesh is a partition of a polyhedral domain into simplices that satisfy
the Delaunay and additional criteria. It has many optimal properties and
is particularly needed in Voronoi-box-based finite volume schemes [1] which
are well-suited for diffusion and transportation problems, such as, porous
media flow, semiconduct device simulation, etc. In this paper, we discuss
the problem of generating three-dimensional boundary conforming Delau-
nay meshes with well-shaped tetrahedra and appropriate mesh size.

First of all, we approximate the physical domain Ω as well as its bound-
ary ∂Ω by a piecewise linear system (abbreviated as PLS) which is the gen-
eralization of the geometric object introduced by Miller et al. [3]. Simply
saying, an n-dimensional PLS X is a collection of i-polytopes (−1 ≤ i ≤ n).
Each i-polytope is a union of i-dimensional convex polytopes which have the
same i-dimensional affine hull. The polytopes in X are closed under taking
boundaries. The intersection of any two polytopes of X is again a polytope
of X (note that ∅ ∈ X ). The underlying space of X , |X |, is the union of
all polytopes of X . The i-skeleton of X , X (i), is the collection of polytopes
of X with dimension ≤ i. Hence, Ω ⊂ Rn and ∂Ω can be approximated
(topologically and geometrically) by |X | and |X (n−1)|, respectively.

A boundary conforming Delaunay mesh of X is a simplicial complex T
(of dimension n) such that (i) |X | = |T |, (ii) |X (n−1)| = |K|, where K is a
subcomplex of T , (iii) every simplex of T is Delaunay, and (iv) any simplex
σ ∈ K has its smallest circumscribed sphere Σ empty, i.e., Σ contains no
vertex of T . The dual of a boundary conforming Delaunay mesh is just the
right Voronoi partition for the Voronoi-box-based finite volume scheme.

We then study a classical meshing technique, called Delaunay refinement,
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for generating three-dimensional boundary conforming Delaunay mesh with
guaranteed well-shaped tetrahedra. In particular, Shewchuk’s algorithm [4]
is reanalyzed. We show that this algorithm terminates for a larger class of
inputs than previously proven. Let X be a three-dimensional PLS, and θm

be the smallest input angle between adjacent polytopes of X . We prove that
the algorithm always terminates as long as θm ≥ arccos 1
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≈ 69.3◦ (which

was θm ≥ 90◦ in [4]). Moreover, the restriction on the smallest planar angle
(which was 60◦ in [4]) can be removed by a minor modification in the original
algorithm. This enables the generation of boundary conforming Delaunay
meshes from surface meshes which may contain small planar angles but no
small dihedral angle (< 69.3◦).

It is observed that the change of point insertion order will result various
sizes in the outputs. We investigated several point insertion orders. The
output mesh size with a specific insertion order is analyzed. With a modest
assumption on the inputs, a polylog(∆) upper bound on the output mesh
size is derived, where ∆ is the spread of the input – the ratio of the longest
to the shortest pairwise distance among input points. No previous analysis
provided bound on output mesh size depending only on the input.

Delaunay refinement will generate well-shaped tetrahedra except slivers
which are very flat tetrahedra. We test the use of Delaunay refinement to
remove slivers and compare the results with a theoretical guaranteed sliver-
free algorithm [2]. A tetrahedron in the mesh is identified as a sliver if its
smallest dihedral angle < 5◦. For PLSs having no small input angles, the
method successful removes all slivers, and the number of added points is
O(ns), where ns is the number of initial slivers. This bound is much smaller
than the one given in [2].
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