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Simulation of transport phenomena based on advection-diffusion equation is very popular in
many engineering applications. Non-monotonicity of the numerical solution is the typical draw-
back of the conventional methods of approximation, such as finite elements (FE), finite volumes,
and mixed finite elements. The problem of monotonicity is particularly important in cases of
highly anisotropic diffusion tensors or distorted unstructured meshes. For instance, in the
nuclear waste transport simulation, the non-monotonicity results in the presence of negative
concentrations which may lead to unacceptable concentration and chemistry calculations fail-
ure. Another drawback of the conventional methods is a possible violation of the discrete
maximum principle, which establishes lower and upper bounds for solution.

We suggest here a least-change correction to the available FE solution x̄ ∈ Rn. This
postprocessing procedure is aimed on recovering the monotonicity and some other important
properties that may not be exhibited by x̄. The mathematical formulation of the postprocessing
problem is reduced to the following convex quadratic programming problem

min ‖x − x̄‖2

s.t. Mx ≥ 0,
l ≤ x ≤ u,

eT x = m.

(1)

The set of constraints Mx ≥ 0 represents here the monotonicity requirements. It establishes
relations between some of the adjacent mesh cells in the form xi ≤ xj , which relates cells i

and j. The corresponding row of the matrix M is composed mainly of zeros, but its ith and
jth elements, which are equal to −1 and +1, respectively. The set of constraints l ≤ x ≤ u

originates from the discrete maximum principle. In the last constraint, e = (1, 1, . . . , 1)T ∈ Rn.
It formulates the conservativity requirement.

The postprocessing based on (1) is typically a large scale problem. We introduce here
algorithms for solving this problem. They are based on the observation that, in the presence of
the monotonicity constraints only, problem (1) is the classical monotonic regression problem,
which can be solved efficiently by some of the available monotonic regression algorithms. This
solution is used then for producing the optimal solution to problem (1) in the presence of all
the constraints. We present results of numerical experiments to illustrate the efficiency of our
approach.


