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1. LEGENDRE TRANSFORM AND POLAR POLYHEDRA

Let us consider twice continuously differentiable function u(x) of d real variables

and introduce new variables p = p1, …, pd using relation

(1)

Suppose that the Hessian matrix of the function u is not degenerate. Then using Eq. (1) one can express
at least locally xi as functions of p1, …, pd.

Let us define new function u* via

(2)

Substituting function x(p) into (2) one can derive

Let us express variation of function u* via variations of variables pi.

For completion of this expression one should express variations of x via variation of p. This task is greatly
simplified by the fact that due to Eq. (1) coefficients multiplying δxi are equal to zero. Hence we derive

(3)

u u x( ) u x1 … xd, ,( )= =

pi ∂u/∂xi.=

u* x
т
p u x( ).–=

u* u* p1 … pd, ,( ).=

δu* Σ∂u*
∂pi

�������δpi Σ xiδpi piδxi+( ) δu–= =

=  Σ xiδpi pi
∂u
∂xi

�����–⎝ ⎠
⎛ ⎞ δxi+⎝ ⎠

⎛ ⎞

xi ∂u*/∂pi.=
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This equality illustrates remarkable duality of the Legendre transform which can be expressed by the fol�
lowing diagram [1]

Transform

(4)

Thus, new variables are partial derivatives of primal function with respect to primal variables, ans vice
versa. Hessian matrices for primal and dual functions are mutually inverse. One can see that transform
defined by (4) is symmetric.

Of course, above considerations are not rigorous, because, for example, one cannot guarantee that
nonlinear systems of Eqs. (1), (3) are uniquely solvable.

Suppose now that function u(x) is strictly convex. Then equality u*(p) = xтp – u(x) where x is expressed
as a function of p using equality pi = ∂u/∂xi can be obtained as the solution of the maximization problem

.

Since function xтp – u(x) is strictly concave, its maximum is attained in a single stationary point pi =
∂u/∂xi. These arguments explain the idea of rigorous formulation of the Legendre transform suggested by
Fenchel [18].

Definition 1. (Legendre stransform). Consider function u : �
d
   with closed epigraph. Legendre

transform of u is given by relation

(5)

where function u*(x*) is called dual function (or polar function). 
The following theorem shows when the generalized Legendre transform formulation can be reduced

to the original one. 

Theorem 1. (see [2]). (a) Let function u ∈ C1(�
d
) be convex and finite. Then

(b) If function u is strictly convex and if

then u* ∈ C1(�
d
). Moreover, if u ∈ C1(�

d
) and

then

Geometric interpretation of Legendre transform. In order to explain geometric meaning of the Legendre

transform, one has to recall the relation of polarity in projective geometry [20]. Consider point p ∈ �
d
 and

Primal system
Variables

Functions u* = u*(p1, …, pd).u = u(x1, …, xd)

x1, …, xd p1, …, pd

Dual system

pi
∂u
∂xi

�����= xi = ∂u*
∂pi

�������

u* = x
т
p u x( )– u = x

т
p u* p( )–

u* = u* p1 … pd, ,( ) u = u x1 … xd, ,( )

Hij
∂2

u
∂xixj

���������, H H*( ) 1–
= = Hij*

∂2
u*

∂pipj

���������, H* H
1–

= =

u* p( ) x
т
p u x( )–{ }

x
max=

�

u* x*( ) x
т
x* u x( )–{ }

x �
d

∈

sup ,=

u x( ) u* ∇u x( )( )+ x
т∇u x( );=

u x( )
x

��������
x ∞→

lim +∞,=

u x( ) u* x*( )+ x
т
x*,=

x* ∇u x( ), x ∇u* x*( ).= =
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nondegenerate (d – 1)�dimensional quadric surface P in �
d
. Suppose that one can draw from point p rays

touching surface P which is shown in Fig. 1.
If quadric is defined by generic equation

where A is d × d martix, then any touching point is the solution of the system

or

Thus the set of all touching points is the intersection of the surface φ(x) = 0 and the plane Π

(6)

As a result one�to�one correspondence between point p and plane Π is established.
Consider relation (6) for sphere and circular paraboloid.
Definition 2. Point p and (d – 1)�dimensional plane Π = {x : xтp = 1} are polar with respect to unit

sphere.
Definition 3. Point p and (d – 1)�dimensional plane Π = {x : xтp = r2} are polar with respect to sphere

with radius r.

Definition 4. p ∈ �
d + 1

 and d�dimensional plane

(7)

are polar with respect to circular paraboloid, 

(8)

Formula (6) was derived assuming that point p is placed outside quadric, as shown in Fig. 1. In this case
plane Π intersects the quadric. When point p is placed inside quadric, then one have to consider all planes
passing through p. These planes intersect quadric along certain curves. Tangent planes to quadric at the
intersection curve define a cone. With variation of plane, the summit of the resulting cone sweeps precisely
the plane polar to p.

Geometrization of the Legendre transform is formulated in the following theorem due to W. Frenchel.

φ x( ) 0, φ x( ) 1
2
��x

т
Ax b

т
x c,+ += =

y p–( )т∇φ y( ) 0,=

φ y( ) 0=

y
т
Ay b

т
y p

т
Ay– p

т
b–+ 0,=

y
т
Ay 2b

т
y 2c+ + 0.=

Π x : x
т

Ap b+( ) p
т
b 2c = 0+ +{ }.=

Π x : pixi pd 1+ xd 1+  = 0+ +
i 1=
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Fig. 1. Polar correpondence between point p and plane Π.
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Theorem 2 (see [18]). Let u(x) : �
d
   be convex function with closed epigraph, not equal to +∞ and

not taking value –∞. Then epigraph of function u*(x*) is intersection of halfspaces lying above planes polar
with respect to paraboloid (8) to the point of the graph of u.

Let u(x) be smooth strictly convex function. Point x, u(x) on the graph of u has the polar plane {(x*, h) :
h = xтx* – u(x)}. Infinitesimal displacement dx leads to new point x + dx, u(x) + ∇u(x)тdx and new polar
plane {(x*, h) : h = xтx* + dxтx* – u(x) – dxт∇u(x)}. Intersection of two d�dimensional planes is (d – 1)�
dimensional plane defined by dxтx* = dxт∇u(x). Since differential dx is arbitrary, one obtains

(9)

Thus in full accordance with original formulation of the Lagrange transform, the plane {(x*, h) : h =
xтx* – u(x)} touches the graph of u* at the point x* = ∇u(x) and u*(x*) = h(x), where x is expressed via x*
from Eq. (9).

2. DELAUNAY AND VORONOI PARTITIONINGS AND POLAR £ POLYHEDRA

Consider finite point system {p1, …, pn}, pi ∈ �
d
. Let us remind that the Delaunay partitioning is normal

partitioning of the Euclidian space into convex polyhedra where each polyhedron is the convex envelope
of the points from � lying on the surface of a certain ball, which is empty, i.e. it does not contain any
points from � beside vertices of the polyhedron. Dual partitioning to the Delaunay partitioning is called
Voronoi partitioning (or Voronoi diagram) and consists of convex polyhedra Vi being the set of the points
which are closer to a given point pi ∈ � compared to any other point pj ∈ �, i ≠ j.

It is well known that the problem of constructing Delaunay and Voronoi partitionings in �
d
 can be

reduced to construction of convex envelopes in �
d + 1

. For simplicity consider a finite point set � on the

plane �
2
. Consider paraboloid of revolution

and lift the points from � on the surface of paraboloid, i.e. for a point a ∈ � we define  = .

The lifted point set is denoted by �l.

Let us consider lower convex envelope of the points from �l which constitutes the graph of the piece�
wise linear function x3 = uD(x1, x2). Function uD is assigned value +∞ beyond convex envelope of �. It can
be easily shown, that projection of the faces of resulting polyhedral surface on the plane x3 = 0 is nothing
else but the Delaunay partitioning. Intersection of upper halfspaces above tangent planes to paraboloid at
the points from �l constitutes epigraph of the convex piecewise linear function uV(x1, x2) which is called
the Voronoi generatrice (see [4]). Projection of the faces of the graph of this function onto plane x3 = 0 is
precisely the Voronoi partitioning. Function uVD can be obtained from uD using Legendre transform and
vice versa. These statements hold in multiple dimensions as well.

One can consider lifting to elliptic paraboloid as well, which is shown in Fig. 2, since this case reduces
to the case of circular paraboloid via affine map.

It is clear that polyhedra inscribed into paraboloid and circumscribed around paraboloid are special
cases of general polar polyhedra. Hence one can consider inexact lifting procedure when lifted points are
not placed on the graph of paraboloid. In this case one can construct two polyhedral surfaces as well: lower

convex envelope Ph of the set of lifted points �l and another convex polyhedral surface  being polar to
Ph with respect to the paraboloid. In this case projection of faces of Ph onto plane x3 = 0 constitutes

weighted Delaunay partitioning, while projection of faces of  makes up radical partitioning or power
diagram (see [5, 6]).

Figure 3 illustrates the concept of polarity with respect to sphere in 2D and 3D.
Polarity with respect to sphere implies certain orthogonality properties. Consider d�dimensional case.

If two polyhedra are polar with respect to sphere and origin lies inside both polyhedra then each k�dimen�
sional face f of polar polyhedron Q* is orthogonal to (d – k)�dimensional plane passing through origin and

�

x* ∇u x( ).=

x3
1
2
�� x1

2
x2

2
+( )=

a
l( )

т
a

т
 1
2
�� a

2

⎝ ⎠
⎛ ⎞

Ph
*

Ph
*
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(d – k – 1)�dimensional face e of primal polyhedron Q dual to face f. Simple orthogonality proof can be
found in [19].

3. DISCRETE CURVATURES AND SURFACES OF BOUNDED CURVATURE

One of the hard problems of modern geometry is approximation of nonregular surfaces by polyhedra
allowing to approximate curvature of the surface in a certain generalized sense. In the sense of intrinsic
metric (based on the distance along surface) this problem was solved in the works of A.D. Alexandrov and
his school [8]. Alexandrov introduced concept of the curvature of polyhedral manifolds and developed
theory of “good” approximation of manifolds of bounded curvature by polyhedral manifolds implying
weak convergence of curvature. However these results are not sufficient to establish “good” convergence
in the sense of extrinsic metric. The class of surfaces being manifolds of bounded curvatures in the intrinsic
senses well defined: they are called surfaces of bounded curvature (see [9, 11–13]).

Extrinsic curvatures for polyhedra can be introduced using integral relations. Gauss–Bonnet theorem
allows to assign to the vertex of polyhedron curvature which is equal to angular excess of its conical neigh�
borhoods (see [8, 19]). Balance equations for vector mean curvature can be used to derive discrete mean
curvature for polyhedra and to construct discrete approximation to the Laplace–Beltrami operator (see
[7]). To this end one can also use variation of surface area and its relation with the sweep volume (see [17]).
In [15] with each region on the surface it is associated a tensor which in the smooth case is the average of
curvature tensor over this region. For polyhedral domain the same value provides weakly convergent esti�
mator of the curvature tensor. In [16] it is shown that if a sequence of polyhedral surfaces converges to a
regular surface in Hausdorff distance, then the following conditions are equivalent: a) convergence of nor�

(a) (b)

Fig. 2. Polarity with respect to elliptic paraboloid and Delaunay/Voronoi partitionings.

Fig. 3. Polar polyhedra and polygones.
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mal fields, b) convergence of metric tensors, c) convergence of area, d) convergence of Laplace–Beltrami
operators in inverse Sobolev norms.

3.1. Properties of DC Surface, Short Review 

DC surface (short for surface representable as a difference of the convex functions) is a surface which
can be at least locally represented as a graph of the function

and g(x) and h(x) are convex functions. A.D. Alexandrov [24] has shown that any DC surface can be
approximated by a sequence of DC surfaces fm(x) = gm(x) – hm(x), where hm  h, gm  g are convex
functions which can be chosen as analytical or polyhedral ones. Such a convergence is called a strong one.
In 2D case strong convergence implies uniform convergence of intrinsic metric of the surfaces of graphs
fm to f.

For each point on the DC surface one can define tangent cone, the same cone is tangent in the sense
of intrinsic metric. Neighborhood of each point on DC surface is almost isometric to the surface tangent
cone at this point.

Each DC surface is manifold of bounded curvature and can be approximated proportionally by the
sequence of polyhedral manifolds in the sense of intrinsic metric.

In 1d case complete characterization of DC surfaces (curves) is well known: each curve with bounded
variation of turn can be locally represented as a difference of convex functions and vice versa. It is very well
known fact (the Jordan theorem) that any function of bounded variation can be represented as a difference
of two monotone functions. Integrating this difference once one obtains difference of convex functions.
Unfortunately precise characterization of DC functions in multiple dimensions is not available.
A.D. Alexandrov has proved that any polyhedral surface where neighborhood of each vertex admits one to
one projection onto certain plane is the DC surface. In [10] it was shown that the surface which can be
touched at each point by a ball of fixed radius are DC surface. Each twice continuously differentiable sur�
face is DC as well.

DC surfaces inherit many nice properties of the convex surfaces [24]. In particular, the number of con�
ical points on the DC surface is at most countable. The set of points where tangent cone becomes dihedral
angle (sharp edges) represents at most countable set of rectifiable curves. If at a certain point p of the DC
surface M it is defined a tangent plane, and a sequence of points pk ∈ M converges to p, then the sequence
of tangent cones at pk converges to tangent plane at p.

At each point p of the DC surface one can compute one�sided derivative in arbitrary direction, this
derivative can be approximated by secant and convergence of secant to derivative is uniform with respect
to angle around point p. One can assume that the DC surface is lipschitz continuous and differentiable
almost everywhere. Moreover, it is twice differentiable almost everywhere and for almost every point p of
the DC surface one can define tangent paraboloid

, (10)

where entries of matrix A(p) are bounded. In formula (10) it is assumed that the origin of the coordinate
frame is placed at p and tangent plane is defined as x3 = 0.

4. SPHERICAL MAPPING AND EXTRINSIC CURVATURE

Let M denote sufficiently smooth 2D surface in �
3
 (in a sense that it admits thrice continuously differ�

entiable nondegenerate local parameterization) xт(ξ) = (x1(ξ1, ξ2)  x2(ξ1, ξ2)  x3(ξ1, ξ2)). Tangential basis
vectors si at the point p of M are given by si = ∂x/∂ξi. Denoting by ν(p) unit normal to M at p, one can con�
sider representation of the vectors ∂ν/∂ξi using s1, s2, ν as a local basis:

(11)

One can easily show that βi = 0. Matrix A = {aij} is called shape operator matrix or curvature tensor.

x3 f x1 … x2, ,( ), f x( ) g x( ) h x( )–= =

f x( ) 1
2
��x

т
Ax o x

2( )+=

∂ν/∂ξ1 –a11s1 a21s2– β1ν,+=

∂ν/∂ξ2 –a12s1 a22s2– β2ν.+=
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Let us remind that spherical map or Gauss map (see [23]) φ identifies with each point p of regular surface

M a point b = ν(p) on a unit sphere �
2
. Matrix A is nothing else but the jacobian matrix of the spherical

map φ.

If neighborhood of a point p lies on strictly convex surface then spherical mapping locally preserves ori�
entation, while for strictly saddle surface it reverses orientation.

The set of points φ(p) for all p ∈ Q, where Q is subset of M is called spherical image of Q and if denoted
below by ψ(Q).

One can compute intersection point q between plane, passing through point b = ν(p) and orthogonal
to ν(p) and a ray going through ν(p'), where point p' belongs to some neighborhood of p. Mapping
p'  q is called normal map and defines normal image of neighborhood of p, as illustrated in Fig. 5a. Nor�
mal mapping is distance extending compared to spherical mapping. Normal and spherical mappings coin�
cide at the point p = p'. It is said that polyhedral surface Ph is normal graph over M if projection  of sur�
face M onto Ph along normals to M is homemorphism, which is shown in Fig. 5b.

Extrinsic Gauss curvature K is the limit of the following ratio (specific curvature)

  K

assuming that diamQ  0 and areaB/areaQ � C, where C is a constant and B is the smallest circle on
the surface M, containing Q. If DC surface is smooth then its specific curvature is bounded. Intrinsic cur�
vature of domain Q ⊂ M can be defined via total angle of ∂Q using the Gauss–Bonnet theorem. Extrinsic
curvature of Q is just area of the spherical image ψ(Q). For sufficiently smooth surface intrinsic and extrin�
sic curvatures coincide which was established by Gauss is his famous Theorema Egregium (remarkable
theorem see [23]).

For nonregular surfaces in general Theorema Egregium does not hold. However for DC surfaces
intrinsic curvature coincides with extrinsic one in the following sense (see [24]): suppose that the bound�
ary of Q ⊂ M is simple closed curve γ, not passing through the conical points of the surface. Suppose that
spherical image of this curve is certain, generally self�intersecting curve γs on the unit sphere. Then the
curve γs can be partitioned into a finite set of simple closed curves with different orientations. One can
assign to interior of each such curve a signed area where sign depends on the orientation of the bounding
curve. Area of the spherical image of Q is computed as a sum of these signed areas and is equal to the intrin�
sic curvature of Q.

ψ̃

areaψ Q( )
areaQ

�������������������

(a) (b)

1

2

4

3

1
2

4 3

1 2

4 3
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2
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~

Fig. 4. Spherical mapping for convex surface (a) and for concave surface (b).

Fig. 5. (a) Spherical and normal images, (b) normal graph over the surface.
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One should note that absolute extrinsic curvature for DC surfaces can exceed absolute intrinsic curva�
ture.

Multivalued behaviour of spherical mapping is illustrated in Fig. 6 and Fig. 7. In these examples sur�
faces are infinitely smooth and simple curve γ intersects line K = 0 hence its spherical image can be self�
intersecting.

5. SPHERICAL AND NORMAL IMAGE FOR POLYHEDRA

Let us consider two�dimensional polyhedral surface in �
3
. For polyhedra intrinsic curvature is located

at the vertices. For a vertex c shown in Fig. 8 it is equal to

,

where θi is an angle of the i�th flat face incident to the vertex c.
In order to define extrinsic curvature of a polyhedron one can use concept of generalized support plane.

Consider ball which touches polyhedral surface at the vertex c. Tangent plane to the ball at point c is called
support plane at c. Unit normal vector to this plane defines nonunique normal vector at the point c. If c is
the vertex of the convex cone K then directions of all normal vectors at c define dual cone K*. Intersection
of this dual cone with unit sphere centered at c defines convex spherical polygone Fs(c) which is called
spherical image of the point c (see [25]), while intersection of cone K* with the tangent plane to this sphere
at a certain internal point of Fs is planar convex polygone Fn which is called normal image of the point c.

Now consider the case of nonregular (or fan�like) vertex c. Consider simple contour γ around c shown
in Fig. 9a. One can roll the tangent ball along curve γ. Unit normal to the rolling sphere at the touching
point draw curve γc on the unit sphere which is called spherical image of the contour γ. Let us note that on
the planar faces rolling ball can switch from inside to outside positions and vice versa. Obviously γc does
not depend on the particular shape of curve γ as far as it intersects only faces incident to c.

In this example curve γc is self�intersecting. Extrinsic curvature of the vertex c is the sum of signed areas
of simple subdomains Q+ and Q–, while absolute extrinsic curvature at c is the sum of absolute values of

K c( ) 2π Σθi–=

1

2

γ

2

1

γs

1

2

γ

2
1 γs

Fig. 6. Multivalued spherical mapping near zero Gauss curvature line.

Fig. 7. Multivalued spherical mapping near zero Gauss curvature line.
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areas of Q+ and Q–. Let us consider a plane passing through edges e1 and e3 as shown in Fig. 9a. Reflecting
edge e2 relative to this plane, one can obtain convex cone shown in Fig. 9b. Obviously, such reflections do
not change intrinsic curvature as well as keep sum of signed areas of elementary domains in spherical
image intact.

6. EXTRINSIC DISCRETE CURVATURES BASED ON THE DUALITY PRINCIPLE

Consider 2D paraboloid

In the following we shall use upper index l to denote vectors from �
3
, while values without superscript l

will denote their orthogonal projections onto plane x3 = 0. Here “l” is abbreviation for “lifting” procedure,
described in Section 2. Hence we will use notations

It is convenient to write function u as u(p) = pтHp, where H is the shape operator matrix of the parab�

oloid P at the origin. It is assumed that symmetric matrix H is not singular.

P x3 = u x1 x2,( ) u x1 x2,( ) = 1
2
�� h11x1

2
2h12x1x2 h22x2

2
+ +( ),

⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

x
l

x1 x2 x3( )т
, x x1 x2( )т

.= =

1
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Fig. 8. Spherical image and normal image of the convex vertex.

Fig. 9. (a) Spherical image of the fan vertex, (b) reflections preserve intrinsic curvature and lead to simple spherical
image.



74

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 50  No. 1  2010

GARANZHA

Consider fragments of the convex polyhedral surfaces Ph and  being polar with respect to the paraboloid

P. Polarity relations mean in particular that each vertex ql of Ph is dual to face Q of , where the plane of
this face is defined by equality

.

Polarity relations should be fully symmetric hence one can exchange Ph and .

Figure 10a shows inscribed polyhedron Ph and superscribed polyhedron  which are particular cases
of polar polyhedra.

Suppose that i�th vertex of Ph is given by

.

Let us denote by �( ) the set of vertices of Ph belonging to edges, incident to , while notation �(G) is
used for the set of vertices of the face G.

Vertices  belonging to edges of Ph, incident to  are defined by relations

.

Values δj define deviation of the vertices of Ph from the surface of paraboloid.

The plane of the face, polar to the vertex  is defined by equality

(12)

while plane polar to  is given as

(13)

Consider face Qi of the polyhedron  polar to vertex . One can construct normal image of the vertex

, namely the convex polygon Fi on the plane x3 = 1 + δi. The vertices of this polygon are intersections

of rays passing through  and orthogonal to faces, incident to , with the plane x3 = 1 + δi. Polygons Qi

and Fi are shown in Fig. 10b.

Consider vertex  of the face Qi, polar to the face Gk which is incident to vertex . Vector  is inter�
section of the planes polar to the vertices of Gk, thus using Eqs. (12) and (13) one obtains
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Fig. 10. (a) Polyhedral surface inscribed into elliptic paraboloid; (b) dual face and normal image of the vertex.
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Now let us find vertex  of the polygon Fi. Its coordinate vector is the solution of the linear system

(14)

where vector nl is normal to face Qi, which can be assigned to vertex  as well, and  are vertices of a face

Gk ∈ star( ), i.e. incident to . In our case nl( ) = (0 0 1)т. From Eq. (14) it follows

and

Hence one obtains the following equality

(15)

Since matrix with vectors pj as a columns has full rank we get fk = –Hqk. As a result the following theorem
is proved.

Theorem 3. (see [28]). Polygons Fi and Qi are affine equivalent, i.e. Qi = (Fi) and jacobian matrix of

the affine map  coincides with –H, where H is the matrix of the shape operator of the paraboloid P at the
origin.

Let us note that deriving equality fk = –Hqk we did not use the fact that matrix H is positive definite.
Formally (15) holds for arbitrary matrix H. It is just required that matrix with vectors pj as columns has the
full rank. Thus duality principle for computation of curvature tensor can be applied in the case of hyper�
bolic paraboloid, shown in Fig. 11.

From the duality principle it follows that the face Gk of the polyhedron Ph, incident to , corresponds

to vertices  and . If faces Gm and Gk have common edge, then vertices  and  should be connected

by an edge as well. The same is true for vertices  and . These arguments can be applied in the case

when boundary of Fi and Qi is self�intersecting closed polyline. In this case vertex  can be called conical
or sharp vertex since polyhedron Ph provides poor local approximation to paraboloid P in the neighbor�

hood of .

6.1. Generalization to Multiple Dimensions 

One can easily check that the proof of Theorem 3 does not use the fact that the paraboloid P is two�dimen�

sional one. One can consider general case of d�dimensional paraboloid in �
d + 1

. In this case  = (xт  xd + 1),
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Fig. 11. (a) Polyhedral surface inscribed into hyperbolic paraboloid; (b) dual face and normal image of the vertex.
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x∈ �
d
,  = ( ( )d + 1). Face Qi, dual to vertex  and normal image Fi of  are d�dimensional poly�

hedra. Paraboloid P is defined by xd + 1 = xтHx. Polar plane for the vertex

looks like

If in the coordinate frame xi one assumes that  = (0 δi), then (d + 1)�th coordinate of the face Qi is
equal to –δi and equality (15) holds along with multidimensional counterpart of Theorem 3.

7. LOCAL POLARITY RELATIONS AND DISCRETE CURVATURES

Let us consider neighborhood of a regular point on two�dimensional DC surface M where second dif�
ferential and tangent paraboloid are defined. One can choose cartesian frame xi in such a way that surface
M can be locally written as x3 = f(x1, x3), and

which means that P is precisely the tangent paraboloid at certain point  of the surface M. We will use

notation f l for the function f l(xl) = x3 – f(x1, x2). Surface M is defined by equality f l(xl) = 0.

Consider again a pair of polyhedral surfaces Ph and . We assume that locally they are almost polar
with respect to P in the following sense: let

(16)

and

where j ∈ �(Gk), j ≠ i be indices of the vertices of the face Gk of Ph, incident to . Parameter h has the
meaning of local characteristic edge length and simultaneously the size of the neighborhood of the regular

point  on the surface M.

Relation (16) means that in the coordinate frame {x1, x2, x3} point  lies almost on the same vertical

line as the point  and tangent plane to M at  is horizontal.

The plane of the face Qi polar to  is given by

(17)

while plane of the face Qj, polar to , is given by

(18)

Relations (17), (18) make sense for |x | � O(h). In practice matrix H is not known hence in order to

approximately compute plane polar to point  one has to compute approximate orthogonal projection

point  ∈ M, such that there exists scalar value α satisfying
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which is illustrated in Fig. 12. Here ∇f l denotes directional gradient at . It is not unique, but difference
between gradients in any direction is within o(h).

Plane Πj polar to point  is defined by equality

(19)

Obviously it satisfies the polarity relation with respect to tangent paraboloid at the point . Let us show
that Πj satisfies polarity relation with respect to the paraboloid P, i.e. relation (18) hold.

In the following we consider neighborhood |x | � O(h) and assume that pj = O(h). Let us introduce vec�

tor  = (aт a3) parallel to the difference  –  and satisfying a3 = –1. Then a = O(h). Point  is the
solution of the following nonlinear equation

or

Assuming that δj cannot be larger than O(h) one obtains

. (20)

Substituting relation (20) into (19) one obtains

(21)

Obviously right hand side of relation (21) behaves like o(h2) thus it is shown that approximate polarity rela�
tion (18) holds. The case when Ph is inscribed polyhedron and  is the superscribed one is the particular
case of the above derivation.

Denote again by Fi normal image of the vertex . The vertex fk of the polygon Fi can be computed via
solution of linear system (14) resulting in equation

while vertex qk of the dual face Qi is approximate solution of the intersection problem of the plane of Qi

(17) with the planes of faces Qj defined by relations (18). As a result one obtains

and eventually

(22)

p̃j
l

pj
l

∇f
 l

p̃j
l( )

т
x

l
2p̃j

l
– pj

l
+( ) 0.=

p̃j
l

a
l( )

т
pj

l
p̃j

l
p̃j

l

f
 l

pj
l

ta
l

+( ) 0=

pj( )3 ta3
1
2
�� pj ta+( )т

H pj ta+( )– o h
2( )+ + 0.=

t δj o h
2( )+=

x3 pj
т
Hx– 1

2
��pj

т
Hpj δj+ + o h

2( ) ta
т
Hx– t

2
a

т
Ha.–=

Ph
*

pi
l

u pj( ) δj δi– pj
т
fk o h

2( )+ + + 0, j � Gk( ), i j≠∈=

u pj( ) δj δi–+ pj
т
Hqk o h

2( )+=

pj
т

Hqk fk–( ) o h
2( ).=

pj
l

pj
l~

Πj

M

a

δ

δ

pi
l pj

l M

Πj

pj
l~

aΠi

pi
l~

δi
δj

Δj

Δj

Fig. 12. Vertex and approximate polar plane.
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Before coming to interpretation of relation (22) let us introduce notion of regularity for dual polyhedra.

Definitions 5. The vertex  of polyhedral surface Ph is called regular if its dual polygon Qi and orthog�

onal projection of the normal image polygon Fi onto the plane of polygon Qi are simple polygons and con�

tain point  strictly inside. 

Thus, one can say that regular vertex is not conical one since at such vertex tangent plane is
uniquely defined. The same can be said about regular edge, i.e. the edge with both vertices being reg�
ular and both incident faces dual to regular vertices. We say that regular edge is not a sharp one since
one can assign tangent plane to this edge where tangent basis vectors are parallel to edge itself and its
dual edge.

On Fig. 13 there are shown fragments of triangulated polyhedral surfaces Ph inscribed into elliptic and

hyperbolic paraboloid and their projection on the plane x3 = 0. Dual polyhedral surfaces  and their pro�

jections are shown in Fig. 14. In the case of elliptic paraboloid all dual faces are convex polygons, while in
the hyperbolic case dual faces Qi are quadrilaterals with concave sides (edges), i.e. the turn of edges from
the side of Qi is nonpositive.

pi
l

pi
l

Ph
*

(a) (b)

Fig. 13. Triangulations of elliptic and hyperbolic paraboloids and their projections onto horizontal plane.

Fig. 14. Dual polyhedral surfaces and their projections.
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It should be noted that the dual polyhedral surface  in the case of elliptic paraboloid is precisely the
Voronoi generatrice and projection of its faces onto horizontal plane defines partitioning of a plane into
convex polygons being affine image of the Voronoi partitioning.

Obviously in the general case of DC surface dual face and corresponding normal image are no longer
affine equivalent. However relation (22) leads us to conclusion that they are almost affine equivalent. In
order to formalize this statement one has to introduce notion of shape regularity for faces of approximat�

ing polyhedra. We say that face Qi is shape regular if its dual vertex  is regular and there exists triangula�

tion of  of Qi where length l of any edge of triangulation satisfies inequality

Ch � l � h

for certain positive constant C, while the minimal angle of the triangulation is bounded from below by a

constant not depending on h. Thus one can construct piecewise affine mapping : Qi  Fi being linear

on each triangle. Denote by –  jacobian matrix of affine map of triangle  ∈  onto m�th triangle

of , i.e.

. (23)

Now we are in the position to formulate the following theorem.
Theorem 4. (About local approximation of DG surfaces by polyhedra) Consider neighborhood of the reg�

ular point c on the DC surface with the size O(h). Let regular vertex  of the polyhedral surface Ph and the
plane of dual face Qi be locally polar with respect to the tangent paraboloid P at point c. Suppose that regular

vertices  belonging to faces of Ph adjacent to  are locally polar with respect to P to faces Qj of . Suppose

that faces of Ph adjacent to  and face Qi of a  are shape regular. Then with h  0

where H is the curvature tensor at the point c.
Theorem 4 immediately follows from (22). It is important that formulation of this theorem is com�

pletely symmetric in a sense that one can exchange Ph and . Of course in practice Ph is triangulated sur�

face, while  has general polygonal faces which is illustrated in Fig. 14. Dual formulation of Theorem 4

in this case simply says that mapping φk : Gk  Bk of triangular face Gk of Ph dual to vertex  to normal

image Bk of vertex  is affine and its gradient converges to matrix H of tangent paraboloid at point .

Here  denotes approximate orthogonal projection of point  onto DC surface M.

Let us remark that matrices  in general are not symmetric. Hence in order to compute principal
curvatures one have to use singular values of these matrices instead of eigenvalues, and the singular value

decomposition (SVD) of  should be used for computation of approximate principal directions.

It is possible to prove local approximation Theorem 4 under relaxed shape regularity requirements for
faces of surfaces Ph and . To this end let us consider local frame {x1, x2, x3} where tangent paraboloid is

written as x3 =  and consider affine transformation

such that detU = 1 and matrix H' = UтHU is well conditioned in a sense that there exists constant C such
that eigenvalues of matrix H' satisfy the following inequality
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Since entries of the matrix H are bounded from above, entries of the matrix U–1 are bounded from above
as well. Then the following statement hold.

Remark. Suppose that the conditions of the local approximation Theorem 4 hold in transformed coor�
dinate frame yi. Then local approximation of curvature is attained in original coordinate frame xi as well. 

Geometric meaning of this remark is simple: when matrix H is anisotropic, say with one eigenvalue
being O(1) and another one being arbitrary small, then faces of the polyhedral approximations can be
sharply elongated along direction of minimal eigenvalue of matrix H. Parameter h here has the meaning
of the characteristic edge length in the transformed coordinates yi.

7.1. Curvature Deviation Measures 

In practice it may happen that only one polyhedral approximating surface Ph is available while surface

M is not known. In this case one have to reconstruct dual polyhedral surface  using certain apriori
information about surface M. Let us consider the case when Ph is inscribed polyhedron and M is twice con�

tinuously differentiable surface. Then faces of the dual surface  are defined by the planes passing

through vertices of Ph. Hence unknowns in the  recontruction problem are normal vectors at the verti�
ces of Ph defining approximate tangent planes. Of course one can use well known methods for computing
approximate normals to polyhedral surfaces which guarantee that deviation from exact surface normal is
within o(h). This condition along with regularity and shape regularity conditions guarantees convergence
of discrete curvatures to exact ones.

On the other hand one can attain the same objective via reformulating reconstruction of the dual sur�
face  as the optimization problem for a certain curvature deviation measure. Denote by φh and 

piecewise affine mappings coinciding with φk on Gk and with  on Qi, respectively. We will use notations

∇φh and ∇  for piecewise constant functions which coincide with jacobian matrices of mappings φh and

 where the jacobians are well defined.

The formulation of the optimization problem is very simple: surface Ph provides piecewise affine map�

ping φh, while surface  provides mapping . Since both mappings are supposed to approximate the

same spherical mapping φ, dual surface  providing minimal value for certain deviation measure

between φh and  guarantees that ∇φh and ∇  converge to ∇φ.

In order to compare mappings φh and  one have to introduce piecewise affine homeomorphism ωh

which maps Ph onto . Homeomorphism can be constructed face by face using projection and intersec�
tion of triangulations of general shape faces.

In the case of convex surface M construction of such a homeomorphism is especially simple.
On Fig. 15a it is shown fragment of polyhedral surface, with direction of view being orthogonal to the

plane of polygon Qi. Projection of the face Gk onto the plane of dual face Qi has nonempty intersection

with Qi, namely polygon D*, shown in Fig. 15b. If vertices of Ph adjacent to  and vertices of the face Qi

are regular then domain D* consists of two triangles from . Preimage of D* is the quadrilateral D

belonging to the face Gk also consisting of two triangles from . Thus mapping wh : D*  D is affine
for each triangle from these pairs.
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Fig. 15. Construction of piecewise�affine homeomorphism wh :   Ph.Ph*
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On Fig. 16 it is shown fragment of the saddle surface. In this case dual face Qi is nonconvex and it is too

restrictive to require that Qi is star�shaped with respect to  hence one should use intersection of general
triangulations.

As a result the curvature deviation measure can be introduced as follows

where p is a point lying on Ph, and function δ(p) is piecewise constant. Here ||· || means the Frobenius
matrix norm.

Theorem 5. Suppose that polyhedral surface Ph is inscribed into twice continuosly differentiable surface M

and H is the matrix of the tangent paraboloid at the vertex . Suppose that all vertices of faces of Ph incident

to  are regular and their dual faces are shape regular. Let faces of Ph incident to  be shape regular and

vertices of  dual to these faces be regular. If with h  0 relation

(24)

holds for all p ∈ star( ) (i.e. for all faces of Ph incident to vertex incident to vertex ) then

Proof. One can consider the paraboloid Pi and the set of paraboloids  corresponding to vertices 
of the face Qi. With each paraboloid one can associate coordinate frame. Suppose that Pi is defined as x3 =

u(x1, x2), while  is defined as y3 = vk(y1, y2). Face Qi and vertex  are locally polar with respect to Pi,

while vertex  and face Gk (incident to ) are locally polar with respect to . Relation (24) means that

(25)

where  is height function for paraboloid  in the coordinate frame xi. Thus face Gk and vertex  are

locally polar with respect to Pi. Since relation (24) holds for all p ∈ star( ) we obtain that (25) holds for

vertex  and its associated coordinate frame, hence Pi can be considered as tangent paraboloid at  and
Theorem 4 can be used to finalize the proof.

One can consider dual formulation of Theorem 5. Suppose that for the same surface M circumscribed
polyhedron  is given while the only available information about Ph is that its vertices belong to faces of

. If relation (24) holds for p ∈ star  then one can show that Ph is approximately inscribed polyhedron
and with h  0

where A( ) is curvature tensor of M at the point  being approximate orthogonal projection of  onto M.
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8. DISCRETE APPROXIMATIONS TO BENDING ENERGIES

Consider regular surface M and functional

(26)

where dσ is the surface area element, A ∈ �
2 × 2

 is the shape operator matrix or curvature tensor and g(A)
is certain curvature density measure. Functional Eg(M) is called bending energy of the surface. If energy
Eg(M) is bounded, then absolute Gauss curvature of the surface is bounded as well.

Well known example of bending energy is given by the mean total quadratic curvature measure

(27)

Absolute minimum of this functional is attained when a surface homeomorphic to sphere is precisely the
sphere. Bending energy (27) takes finite values for the surfaces of finite bending (see [26]). For disk�like

domain Ω on such a surface one can find local parameterization x(ξ) : Q  Ω, Q ⊂ �
2
 in the Sobolev

class (Q). On the other hand, mean quadratic curvature measure is not suitable for description of non�
regular surfaces since it is not defined for polyhedra. In other words it takes infinite value for polyhedral
surface.

If bending energy Eg majorates absolute curvature and remains bounded for refined sequence of poly�
hedra then one can expect that the limiting surface for this sequence will be surface of bounded curvature.
One can consider the following curvature measure which makes sense for polyhedra:

(28)

Discrete counterpart of the energy E1 can be easily constructed for convex surfaces replacing sharp edges
with strips of cylindrical surfaces with radius r and rounding conical vertices using ball with radius r. Going
to the limit r  0 one can obtain the following discrete counterpart of energy (28)

where le is the length of the edge e, φe is the angle between normals to faces adjacent to e, while ψ(ci)
denotes spherical image of the internal vertex ci of Ph and |area(ψ(ci))| essentially means total variation of
the are a of spherical mapping.

Duality�based discretization of the bending energy leads to quite different discrete counterparts of Eg,

Since in this case two polyhedral surfaces Ph and  are available, one can construct two discrete bending

energies: bending energy for dual polyhedron 

(29)

where

is gradient of piecewise�affine discrete approximation to spherical mapping on the face Qi, while

(30)

Eg M( ) g A( ) σ, g A( ) � detA ,d

M

∫=

E2 M( ) 1
2
�� tr A

т
A( ) σ.d

M

∫=

W2
2

E1 M( ) tr A
т
A( )[ ]

1/2
detA+{ } σ.d

M

∫=

E1 Ph( ) le φe area ψ ci( )( ) ,

i

∑+
e

∑=

Ph*

Ph*

Eg Ph*( ) g A( ) Qi
area Qi( ),

i

∑=

A Qi
∇φh* Qi

=

Eg Ph( ) g A( ) Gk
area Gk( ),

k

∑=
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where

is gradient of piecewise�affine discrete approximation to spherical mapping on the face Gk. When condi�

tions of the local approximation Theorem 4 hold for all vertices of Ph and , and surface M is regular
enough then both discrete energies converge to exact bending energy Eg(M).

Nice property of the duality based discretization is that it provides exact values of curvatures for polyhe�
dron, inscribed into sphere. Consider polyhedra inscribed and circumscribed around unit d�dimensional

sphere in �
d + 1

. On Fig. 17 it is shown simplest case of a unit circle (d = 1).

One can easily see that in the 1d case the face Qi, dual to the vertex  of the inscribed polyhedron Ph

is congruent to the normal image of vertex . Hence discrete shape operator matrix is equal to minus
identity matrix. It is also obvious that the same congruence property holds in the d�dimensional case as
well.

In 2004 A.I. Bobenko (see [27]) introduced discrete Willmore energy W(Ph) (called also conformal
energy) being invariant to 3D Mebius transforms. This discrete energy is supposed to approximate exact
Willmore energy

where ki are principal curvatures. In [27] it was proven that W(Ph) = 0 when Ph is convex polyhedron
inscribed into sphere.

The same property obviously holds for duality�based energy

(31)

since matrix A on each dual face Qi is equal to –I. Obviously equality E(Ph) = 0 holds as well since matrix
A on the face Gk is equal to unity matrix multiplied by scalar converging to 1 with h  +0.

Main differences with conformal energy are that the discrete duality�based energy properties are the

same for d�dimensional sphere in �
d + 1

, and terms in discrete Willmore energy (31) converge to, the same

terms in exact Willmore energy without any assumptions on polyhedra Ph and  beside those guarantee�
ing area convergence. This is not the case for conformal energy which converges only for special polyhe�
dra.
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Fig. 17. For unit sphere dual face and normal image are congruent.
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9. DUALITY BASED CURVATURES MEASURES FOR NONSMOOTH 
SURFACES AND DISCRETE CURVATURES

As it was mentioned above, the set of conical points Mc on DC surface M is at most countable. More�
over, the number of conical points with absolute extrinsic curvature above certain threshold ε (essential
conical points) is finite in every bounded domain on M. The set Me of sharp edges on DC surfaces consists
of at most countable set of rectifiable curves. Cutting off sharp edges where dihedral angle is larger than
π – ε leads to essential sharp edges made up of the finite set of curves with the bounded variation of turn.

Measure of the spherical image μ(ψ) for DC surface M is fully additive function of Borel sets with
bounded variation (see [24, 25]). In other words it is a nonpositive definite measure with bounded varia�
tion (charge distribution). Classical Lebesque decomposition (see, e.g., [21, 22])

(32)

says that μ(ψ(M)) can be decomposed into absolutely continuous part C(M), which takes zero value for
any Borel set of zero measure, singular part S(M) defined on the sets of zero measure, and discrete part
D(S) defined on the countable point set. Fortunately, for DC surfaces Lebesque decomposition can be
written explicitly. Namely, for any Borel set B ⊂ M

where ci denotes i�th conical vertex and area (ψ(ci)) is measure of its spherical image. Singular charges are
given by

where γi is i�th curve of the set of sharp edges and ψ(γ) is spherical image of the sharp edge γi.
Absolutely continuous measure C can be obtained from μ(ψ) by assigning zero measure to all sharp

edges and conical vertices, or equivalently, for any Borel set B one should exclude its intersection with the
Me and Mc, which is correct operation since Me and Mc are Borel sets as well. Radon–Nikodim differen�
tiation theorem for absolutely continuous measures allows to obtain the following representation for C

where K is measurable function and dσ is standard surface measure differential. Function K is nothing else
but the Gauss curvature of the DC surface M which as it was mentioned above is defined and finite almost
everywhere on M.

In the conventional approach spherical image for polyhedra is concentrated at the vertices. It means
that by definition area of the spherical image is discrete measure. Hence approximation of DC surfaces by
polyhedra implies approximation of general nonpositive measure with bounded variation by discrete mea�
sure. Of course such approximation is possible only in a weak sense. Precise formulation of weak conver�
gence results can be found in [15, 24, 25]. Essential drawback of weak convergence is that one cannot
expect pointwise convergence of curvature even for smooth enough surface M.

Thus natural formulation of the approximation problem should imply the construction of the sequence
of polyhedral surfaces Pk such that on each surface measure of spherical image μ(ψk) for Pk is defined in
such a way that

(33)

and with k  +∞
      D(M). (34)

Moreover

μ ψ M( )( ) C M( ) S M( ) D M( )+ +=

D B( ) area ψ ci( )( ),
ci B∈

∑=

S B( ) area ψ γi B∩( )( ),
γi B∩

∑=

C M( ) K σ,d

M

∫=

μ ψk Pk( )( ) Ck Pk( ) Sk Pk( ) Dk Pk( )+ +=

Ck Pk( ) C M( ), Sk Pk( ) S M( ), Dk Pk( )

Ck Pk( ) Kk σ,d

Pk

∫=
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where Kk has the meaning of Gauss curvature of polyhedral surface Pk and function Kk converges to K at
least in the sense of measure. Notion of convergence (34) requires clarification. Using the idea of duality,
one can formulate the following concept of regular convergence in the sense of (34). We consider a pair of
surfaces Pk and  which converge to DC surface M in a pointwise manner, and M lies between Pk and

. A pair of bilipschitz mappings βk : �
3
  �

3
 and  : �

3
  �

3
 exists such that

and equivalence constants of mappings βk,  converge to 1 when k  ∞. Moreover βk and  map

essential conical points on M onto conical points (vertices) on Pk and  while essential edges of M are

mapped onto sharp edges of Pk and . It is convenient to use 2d mappings

Images of any Borel set B ⊂ M under these mappings are Borel sets Bk ⊂ Pk and  ⊂ . Convergence
of absolutely continuous part means that

  

and

  

in the sense of measure. Positive and negative part of Kk and  should converge to positive and negative
part of K as well. Convergence of the discrete part means that areas of spherical images of sharp vertices in
Bk and  converge to areas of spherical images of their preimages in B. Positive and negative part of these
areas should converge separately. And at last, area of spherical image of an arbitrary Borel fragment of the
essential edge curve on M should be approximated by areas of its images on Pk and . In order to ensure

existence of mappings βk,  one should require strengthened condition of local almost isometry of
DC surface to tangent cone compared to the original Alexandrov formulation.

Precise statement of the approximation theorem and rigorous proof is beyond the scope of this paper.
Here we just illustrate the concept of such “regular” convergence considering DC surface M glued from
finite set of elementary patches Mi, where Mi is either regular convex surface or saddle surface, or devel�
opable surface. It is assumed that tangent paraboloid exists for each internal point of Mi and for boundary
points as well meaning existence of directional second differential. The boundary curve ∂Mi should be reg�
ular enough. In order to construct polyhedral approximations one should glue polyhedral surfaces Pk and

 from elementary patches cut from a) convex polyhedral surface, b) simple saddle polyhedral surface,
or c) polyhedral developable surface.

Figure 18 shows developable surface glued from elementary cylindrical and conical patches.
In this case elementary patches can be chosen in such a way that they lay on convex surfaces. Figure 19

shows spherical mapping for the simple case of the side surface of the cone. Spherical image of the cone
consists of the image of the summit which in this case is circle on the sphere, while image of the side sur�
face is nothing else but the boundary of this circle.
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Fig. 18. Developable surface glued from elementary patches.
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In the case of conical surface instead of polarity relation “point–plane” one should consider polarity
relation “plane–straight line,” both of them passing through the summit of the cone. For cylinder the
summit of the cone should be set infinitely far on the axis. The counterpart of tangent paraboloid in this
case in a tangent circular cone. Thus local polarity relation can be introduced in the vicinity of the straight
line being the contact line for the tangent cone. Curvature at the contact line is deduced from total angle
at the vertex of the tangent cone. Figure 19 shows simplest case of the dual approximants � just inscribed
and superscribed piecewise�linear cones Ph and , Spherical image of the edge e of  is the edge Bs of
the convex spherical polygone inscribed into circle on the sphere. Normal image of the edge e is the
straight segment Bn as shown in Fig. 19c. Thus discrete spherical mapping φh maps face of Ph dual to e onto
Bn. Spherical image of the edge e1 of Ph is the edge Fs of the convex spherical polygon superscribed around

circle. Normal image of e1 is straight segment Fn shown in Fig. 19d. Again, discrete spherical mapping 

maps face of  dual to e1 onto Fn. Of course, in both cases area of spherical image is equal to zero which
is natural for developable surfaces. Spherical image of the sharp vertex of Ph converges to spherical image

of the cone summit. The same is true for .

The most complicated case of developable surface is the torse surface shown in Fig. 20.

Torse surface is generated by straight lines which are tangent to a spatial curve with nonzero torsion.
For torse surface one can define tangent cone as well. In order to define dual polyhedra one should con�
struct a pair of approximately polar polylines for spatial curve which allows to approximate its curvature
and torsion. Details of such an approximation are beyond the scope of the paper. Each of the pair gener�
ates polyhedral torse surface as shown in Fig. 20.

Let us consider now gluing of the elementary patches. Simplest case is a curve on smooth surface M
which separates convex and saddle subdomains as shown in Fig. 21 and Fig. 22. In this case primal poly�
hedron Pk is split into subdomains and every full face of Pk belongs to the certain subdomain. Image of
separating line is present in Pk as a set of full edges.

Gauss curvature at the separating line is equal to zero. Behavior of spherical mapping for neighborhood
of the point lying on the separating line was illustrated in Fig. 6 and Fig. 7. This behavior is reproduced in
polyhedral case as well. Face Q of the dual polyhedron  is split by separating line into subdomains Q+

and Q–. Discrete spherical mapping maps Q± onto F±, where normal image F+ has positive area, while F–

has negative area. One can easily show that

area(F±)/area(Q±)  0 when k  ∞.
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e Bs
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Fig. 19. Dual polyhedral approximation for side surface of the circular cone.

Fig. 20. Developable torse surface.
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Similar property holds for face Gm of Pk adjacent to separating line. If Bm is its normal image, then

area(Bm)/area(Gm)  0 when k  ∞.

On the other hand, discrete spherical mappings  : Q±  F± and φh : Gm  Bm allow to approximate
principal curvatures and principal directions near separating line. In the more general case when several
separating lines intersect in the same point, dual face Q for this vertex should be split into subdomains,
while full faces of Pk belong to subdomains. Similar analysis can be applied in the case when gluing results
in the smooth surface but second derivatives across separating line are not available.

More complicated case arises when separating line is a sharp edge as shown in Fig. 23.

Here full faces of approximant Pk belong to regular subdomains of Pk, while “dual face” of the vertex
of Pk lying on separating line is glued from several subfaces with different normals. In the example shown
in Fig. 23 cylinder is glued to a spherical cap. Hence image of subface Q1 is just a straight segment F1, while
image of subface Q2 under discrete spherical mapping is convex polygone F2. This consruction allows to
approximate one�sided limits of principal curvatures and principal directions at both sides of the sharp
edge.

Construction of spherical image for sharp edges is illustrated in Fig. 24.

Spherical image of the sharp edge e of the polyhedron Pk is convex spherical quadrilateral Fe shown in

Fig. 24a. Vertices of this quadrilateral are defined by normals to four subfaces of dual polyhedron 

which are adjacent to two vertices of the edge e. Spherical image of sharp edge e* of  is convex spherical

quadrilateral  shown in Fig. 24b. As before, vertices of this quadrilateral are defined by normals to four

φh*
±
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Pk*
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Q−

F−F+
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F1

F2
Q2

Q1

Fig. 21. Dual face and normal image for vertex on separating line for bell�like surface.

Fig. 22. Dual face and normal image for vertex on separating line for torus.

Fig. 23. Dual face and normal image for vertex lying on separating line being sharp edge.
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faces of polyhedron Pk which are adjacent to two vertices of the edge e. Thus singular component of the

area of spherical image is defined both for Pk and . Both Sk(Pk) and Sk( ) converge to S(M).

10. OPTIMIZATION OF POLYHEDRAL SURFACES

Polyhedral surface inscribed into regular convex or simple saddle surface can contain nonregular ver�
tices even in the case when face normals converge to exact normals of the surface with refinement of the
polyhedral surface. An example of nonregular triangulation Ph inscribed into elliptic paraboloid P

is shown in Fig. 25. One can see from Fig. 25a that certain “faces” of the dual surface  are selfintersect�
ing, while triangulation Ph consists of well shaped triangles.

Projections of surface triangulation Ph and dual surface  onto the plane x3 = 0 are shown in Fig. 25b.
Here direction of maximal curvature of P is horizontal. It is clear that non�convex edges of Ph lead to dual
edges with wrong orientation and hence to self�intersection for boundaries of faces dual to vertices of these
primal edges. In order to eliminate “non�convex” edges in Ph, one can apply “edge flip” operation which
considers a pair of adjacent triangle as a single quadrilateral, deletes existing diagonal, and creates another
one. As applied to above example, edge flip operation can completely eliminate incoming edges and self�
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x3 2x1
2 1

5
��x2

2
,+=

Ph*

Ph*

e*
Fe

*Fe
e

(a) (b)

Fig. 24. Spherical image for sharp edges of polyhedra.
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(b)

Fig. 25. (a) Dual polyhedron with errors, (b) projection of surface triangulation and dual surface.
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intersecting faces in  and make all vertices of Ph regular, even though it may lead to triangles with small
angles.

Thus one naturally comes to the optimization problem for approximating polyhedra. Let us note that
a number of canonical optimization problems for polyhedra can be posed. In [30] it is considered mini�
mization of Hausdorff distance from convex dual polyhedral surface Pk and  to convex surface M as well
as optimization of convex polyhedral surfaces with respect to other error measures. It should be noted that
construction of polyhedral approximations which guarantee componentwise convergence for Lebesque
decomposition of the area of spherical image is closely related to construction of best approximants in the
sense of Hausdoff distance.

Here we consider optimization problem for construction of “least jagged” polyhedral approximations.
Intuitively, the idea of optimization is very simple: polyhedral surfaces should not contain excessive wrin�
kles. Mathematical formalization of this idea can be formulated as the following principle: total variation
of the area of spherical image of polyhedral surface should be minimal. Similar formulation of the same opti�
mization principle is that the difference between absolute extrinsic curvature and absolute intrinsic discrete
curvature should be minimal. In order to obtain optimization problems in the closed form, one can, for
example, fix the vertices of triangulated polyhedral surface Pk and optimization procedure will be reduced
to edge flips.

Figure 26 shows the so�called Schwarz lantern, namely, the polyhedron inscribed into circular cylin�
der. This lantern can be constructed by subdividing the side surface of the cylinder using planes orthogonal
to its axis into m equal parts. Regular n�sided polygon should be inscribed into each circular cross section.
This polygon is rotated by π/n when passing to the next cross�section. As a result the side surface of the
discretized cylinder consists of isosceles triangles. When m, n  ∞ this triangulation converges to the

surface of cylinder pointwisely, but the limit of the sum of the triangle areas is 2πR H2 + , where

κ is the limit of the ratio n/m2 when n  ∞, provided that it exists (see [29]). Here R, H denote radius
and height of the cylinder, respectively. Obviously, absolute extrinsic curvature of the lantern is unbounded
in the refinement limit. Applying edge flips which minimize difference between absolute exrinsic curva�
ture and absolute intrinsic discrete curvature of the side surface inevitably leads to developable surface.

One can consider important particular case: optimization of the cone.
The neighborhood of nonregular vertex p of a surface triangulation can be described as a “fan,” i.e. as

a cone K+ with wrinkles. Normal image Σ+ of the side surface of this fan is self�intersecting contour, which
is shown in Fig. 27a. Normal image of the vertex of the cone is multivalued one. If cone K+ belongs to a
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2
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Fig. 26. Schwarz lantern: triangulation of the cylindrical surface.
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certain half�space, then one can construct its convex envelope – cone . Normal image of the convex

cone  is convex polygon  drawn in Fig. 27a by bold lines. We will call  by principal component of
the normal image. Principal component can be constructed for saddle point as well, which is shown in
Fig. 27b.

In order to construct principal component one need to eliminate edges from K– until one obtains

canonical saddle  with a normal image being quadrilateral with the sides of nonpositive turn.

Let us note that the principal component in the convex case is unique since it is defined by unique con�
vex envelope cone. In the case of the saddle cone in order to choose principal component one have to con�
sider the set of the cone edges which leads to simple saddle cone with minimal area of spherical image.

Generic cone with undefined normal image is shown in Fig. 27c. Neighborhood of the vertex of this
cone is not DC surface.

When normal image Fi is self�intersecting, its boundary can be decomposed into simple closed arcs
bounding simple polygons Fik with different orientations. Then the area of the normal image of pi is
given by

where sk ∈ {–1, 1} is orientation of the i�th contour. Total variation of the normal image area is given by

Target function for optimization of polyhedral surface Pk is just the sum of differences

(35)

When normal image is a simple polygon, obviously Vi = |Ni |, otherwise Vi > |Ni | thus absolute minimum
of the function δ(Pk) is attained when all vertices of Pk are either summits of convex cones or summits of
simple saddle cones. Such a solution can be attained when, for example, Pk is boundary of convex poly�
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Fig. 27. Filtering of edges and principal component of normal image.
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hedron. To some extent above optimality principle means minimization of absolute extrinsic curvature but
unlike [31], this minimization is applied only at the nomregular vertices of polyhedron.

It should be noted that a certain degree of ambiguity is present in the definition of normal image since
one has to assume that normal vector at the vertex pi is known. Of course this ambiguity can be eliminated

using spherical image  instead of normal image Fi when deriving δa. However formulation with the nor�
mal image does make sense since in this case one can optimize both primal polyhedron Pk and dual poly�

hedron , minimizing for both surfaces difference between absolute extrinsic and absolute intrinsic cur�

vature and simultaneously minimizing certain curvature deviation measure between Pk and .

Two basic operations of optimization procedure are edge flips and edge filtering around vertices in
order to extract principal component of the normal image.

11. CONCLUSIONS

One can conclude that duality principle allows to construct polyhedral approximations to surfaces rep�
resentable as a difference of convex functions (Alexandrov surfaces) in such a way that discrete curvatures
converge to curvature of the surface. This method can be applied in the general case of d�dimensional sur�

face in �
d + 1

.
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