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Abstract

Parameterization of surface is defined by a one-to-one mapping from a planar domain to the surface. Well estab-
lished methods based on harmonic, conformal and quasi-conformal mappings may create parameterizations with
singularities. Singularity-free parameterization technique is suggested based on the concept of quasi-isometric
mappings. Well-posed variational formulations for quasi-isometric parameterizations are discussed based on ex-
istence theory for hyperelasticity. Distortion minimization, invariance and mesh independence are discussed with
numerical examples.

0 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Requirementsfor surface parameterizations

In order to find good solution to optimal surface parameterization problem one should formulate basic
requirements for parameterizations.

e Parameterization should be defined by one-to-one mapping.

e Thedistortion of parameterization should be minimal or bounded in a certain sense. Parameteriza-
tion should not contain singularities.

e Mapping defining parameterization should be smooth when it is allowed by problem data.

e Parameterization should be constructed as unique and stable solution of a well-posed variational
problem.

e Parameterization should depend on invariant properties of surfaces.
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e Parameterization for smooth and non-smooth surfaces should be constructed in unified way.

e The curvature measure of parameterization should be minimal or bounded in a certain sense.

o Discrete parameterization should be one-to-one, non-singular and should converge with mesh refine-
ment to target parameterization.

These requirements are discussed in detail in [12].

2. Distortion of parameterization

Let us consider bounded disk-like surface. For simplicity in what follows we will not strictly adhere to
precise mathematical definitions and statements. Several rigorous statements are included in Appendix A
Suppose that this surface is defined via parametric representation

y(x1, x2) = (y2(x1, x2), y2(x1, x2), y3(x1, Xz))T-
Hencey(x) maps a certain domaif?, € R? onto M and this mapping is one-to-one.

The notion of distortion is clear from intuitive point of view. One can draw any geometric figures
inside$2,, such as circles, triangles, squares, map these figures onto suffacd quantify the changes
in shape, size and area of these figures. We consider only such a distortion which changes the distanc
measured along the surface. The parameterization problem is in fact a prolilgninsic geometry.

In order to introduce various notions related to distortion let us consider simpler case of planar map-

ping x(§)

x = (v1(61. &), x2(E1.62)) "

If not stated otherwise we will assume that mappings are smooth, all necessary derivatives make sens
in a classical sense and domain boundaries are regular enough. Supposé timaapss2: onto £2,.
Consider the Jacobian matrixof mapping (1)

dx 0

The distortion can now be described via algebraic properties of métrbet us denote by; the
singular values of matri¥ which are the square roots of eigenvalues of matrix STS = |g;;|. Matrix
function G (¢) is called metric tensor of deformatiafié) due to relation

dI? = gr1d&1dEy + g12dE1 dEy + §21dE1dEr + 8a2dEr dEn

between arc lengths inand their images in coordinates.

The change of area under mappin@) is defined by def = 0,0,. Wheno,0, = 1 the mapping is
calledequiareal or incompressible and it does not change areas of any geometric figures.

Whenoy = o, = o the mapping is calledonformal. For any conformal mapping tens6r= o21. Any
conformal mapping is locally shape preserving in a sense that it preserves intersection angle between an
arcs.

The shape distortion is bounded when inequality

1
= <2<y, (2)
Ly o
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holds for any¢ € £2:, whereLo > 1 is a constant. The dimensionless shape distortion measure

Bi(S) = omax(S) /omin(S) (3)

is calledlinear dilatation of the mapping. Planar mapping satisfying (2) is caljedsi-conformal, and
in the case of multiple dimensions it is calle@pping with bounded distortion [22].
Both incompressible and conformal mappings admit singularities. For incompressible mappings it is
possible tha; (S) — oo, while for conformal and quasi-conformal mappings situationsSdet O or
detS — oo are possible.
When mapping is both conformal and incompressible it is caleetric. In this caseG = I so
mapping is length preserving.
The length distortion induced by the mapping is bounded when inequality
1
Ly
holds for any¢ € £2; and constanL; > 1. In this case the mapping is callgdasi-isometric, while L,

is sometimes called the quasi-isometry constant.
The above inequality can be written in the equivalent matrix form

N\

X 0; < Ll (4)

Li%|d|2 <d"Vex"Vexd < L2|d|?, (5)
whered is arbitrary vector.

Obviously (4) implies (2), wherdo = L2. The reverse is not true. However if the shape distortion
is bounded andle < detS < L, then (4) holds with constant; = +/LoL,. Thus control of length
distortion can be achieved via shape and area distortion control.

Now we come to conclusion that distortion is minimal when mappi( satisfies (4) with minimal
possible quasi-isometry constant.

2.1. Distortion versus curvature

Another intuitive visual requirement for minimally distorting mappings is that any straight line seg-
ment should be mapped on straight line segment. In this sense any affine mapping is optimal. However
the length distortion introduced above is in fact the distortion measure of affine mapping being local
approximation of smooth mapping. Thus curvature distortion is effect of smaller order of magnitude
compared to length distortion. But it does not make curvature distortion less important. Tentatively one
can formulate the curvature minimization criteria in the following way: among the mappings satisfying
(4) with the same constaidt;, the optimal one is that which maps any straight segment onto arc having
curvature measure minimal in a certain sense, or its deviation from straight segment is minimal.

This notion can be clarified using simple example when unit square is mapped onto quadrilateral
with straight edges. For this problem obviously the length distortion bdundannot be better than
max(o, %), whereo is any singular value in the corner, and maximum is taken over all corners. Hence
there are lots of mappings which have the same distortion bounds.

One well-known example isilinear mapping (see Fig. 1)

xi = x20(1 — &) (1 — &) + xXM (L — E0)E2 + x[%1(1 — &) + x} 616, (6)
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@ (b)

(b)

Fig. 2. Examples of bad behaviour of projective mapping.

wherexijk are coordinates of the corners. This mapping maps segriieatsonst ands, = const onto
straight segments, but segments which are not vertical or horizontal are mapped onto curved arc segment
Another solution to the same problem is providedobgjective mapping [14]

a11&1 + a12ér + axs ax &1 + axtr + ass )
= , 2= .
az181 + azxbs + azs az181 + azxbs + aszs

The layout of this mapping is illustrated in Fig. 1(b). Basic advantage of projective mapping is that it maps
any straight segment on straight segment. Moreover, inverse projective mapping is in turn projective.
Unfortunately projective mappings tend to contain boundary and internal layers so linearity preservation
is attained at the expense of quasi-isometry constants. Simple examples of bad conditioning of projective
mappings are presented below.

Projective mappings for quadrilaterals shown in Fig. 2 are defined by following relations

X1

X = L&
(a) (1-L)(E1+E2)+2L -1
y = L&
(1-L)(E1+&2)+2L -1
7 &8 7
ra+l-1’
(b) Fa+1-1)&
Te+1-1
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In the case (a) for bilinear mapping the global condition numbetr max. o/ min; o behaves as @),
while for projective mapping, = O(L?). In the case (b) wheh = 1/¢ and! = (1 — ¢)L the global con-
dition number of bilinear mapping is@/<?), while for projective mapping the asymptotics ig1Q¢*).

When length of one side of quadrilateral tends to zero it is possible that mapping with the same length
distortion bounds as bilinear mapping has coordinates lines in the shape of bubbles, shown in Fig. 1(c).
Genesis of this bubbling phenomenon is very simple: for bilinear mapping shape distortion measure
is good and relatively uniformly distributed, while determinant of Jacobian matrix varies very sharply.
Requiring that determinant variations are smoothed out at the expense of shape distortion distribution,
one can obtain exactly this bubbling effect.

These examples lead to the following idea for construction of optimal quasi-isometric parameteriza-
tion of curvilinear quadrilateral [14]. Namely, optimal parameterization, i.e. mapping from curvilinear
gquadrangle onto unit square should be constructed as composition of two mappings. First one maps ini-
tial domain onto quadrilateral with straight edges, and second mapping is the projective (or bilinear)
mapping. This approach can sharply diminish bubbling phenomena.

3. Mapping smoothnesscriteria

The smoothness of mappings was one of the natural requirements in construction of curvilinear grids
since smoothness of coordinate transformation directly affects the accuracy of finite difference approxi-
mations of governing equations in transformed coordinates. Similar experience is observed in geometric
modeling, when, for example, “sleek” high quality illumination of surfaces requires smooth and non-
distorted parameterizations.

Common solution for smoothness problem is to construct mappings using PDEs satisfying ellipticity
conditions. The simplest example is the system of Laplace equations

82 82
A= 962 + 962 (8)

It is well known that solution of system (8) possesses infinite number of derivatives in a classical sense.
The mapping satisfying equations (8) is calleHaamonic mapping. Any conformal mapping also sat-
isfies (8). The difference is in boundary conditions. Harmonic mapping can be constructed when on
all boundary of$2; the deformation is prescribed, while for conformal mapping according to Riemann
theorem correspondence between only 3 point8@pandds2, can be prescribed.

Egs. (8) are in fact Euler—Lagrange equations for the Dirichlet functional

/ %tr(VngVgx) d?;:, (9)

82

—Ax1 =0, —Axy =0,

where tr denote trace of square matrix—the sum of diagonal elements.

4. Variational methods

Variational methods are widely used for grid generation and surface parameterization [24,7,15,20,21,
18,14,16].
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There are at least two basic advantages of variational methods over PDE solutions for construction
of mappings. The first one is purely mathematical. Quite standard situation for mapping construction
problems is that variational problem for minimization of certain functional can be well-posed, while for
Euler—Lagrange equations of this functional well-posedness cannot be proved [4,5]. Another considera-
tion is related to construction of efficient iterative methods. Experience of author allows to conclude that
methods based only on Euler-Lagrange equations of functional which do not use functional values are
not robust for highly non-linear stiff problems.

We start formulation of variational principle for mapping construction using three basic ideas:

(a) variational problem should be well-posed,
(b) length distortion of minimizing mapping should be bounded in the sense of (4), and
(c) minimizing mappings should be one-to-one.

Harmonic and conformal mappings can satisfy these requirements only for special sets of boundary
conditions. A conformal mapping is one-to-one but in order to guarantee quasi-isometry one have to
impose quite restrictive compatibility conditions éh and$2, [14]. Harmonic mapping is one-to-one
wheng2, is convex domain due to Rado theorem. However the mapping can contain various singularities
when a corner is mapped onto smooth fragment of boundary (or vice versa). This phenomenon is callec
in mechanics stress concentration.

Let us show that conditions (a)—(c) essentially do not allow much freedom in constructing variational
functionals.

Variational principle is restricted to the following

[ revenas, (10)

£2¢

where f(Vgx) is a certain distortion measure. Since distortion minimization problem is formulated as
direction-invariant problem, we have to sefkS), S = Vex as a function of def and t(S'S) which are
orthogonal invariants of matri§™S. Another natural requirement is that functigitS) is smooth. The
simplest shape distortion measure is given by
1 T
sy = 0TS
ets
This distortion measure is essentially the integrand of Winslow functional [24] which can be derived
by exchanging dependent and independent variables in Dirichlet functionaf; (6n be understood
as a mean arithmetic to mean geometric ratio in terms of eigenvalugsSofind as such is naturally
generalized to multiple directions. Functigh is dimensionless so its inverse defines a shape quality
measure which ifair when applied to triangular elements.
On the other handf; (S) is related to the condition number 8fin Frobenius norm

(11)

ISIF|S7Y, = \/tr(STS) tr(S=TS-1) = 2£,(9).

It is possible to use other matrix conditions humbers but (11) remains the simplest one. The idea of
shape distortion via condition number naturally generalizes for multiple dimensions. Below it will be
shown why it is not so good idea for construction of mappings.
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The choices for area distortion measures are essentially not very rich. Area variations are uniformly
bounded when, for example, function ngd&tS/v, v/ detS) is uniformly founded from above. Here
constanty > 0 is “target” value of def. One can seb = 1 using global scaling. Keeping in mind
smoothness constraint we get

f(S)—} detS+ v
O A detS /)’

When £, (S) is bounded from above then d&tov is uniformly bounded from below and from above. The
idea of such area (volume) distortion measures is not new. It is known in hyperelasticity at least from
1970s [4].

Now for any functionf (S) = fo(f;(S), f.(S)), wherefyis increasing in both variables arfg(1, 1) =
1 the inequalityf (S) < C will imply (4).

(12)

4.1. Polyconvexity and barrier property

The particular choice of (S) should be based qgoolyconvexity criteria [4] which was suggested as
one of the sufficient conditions of well-posedness of variational problems (10).

Matrix function is called polyconvex when it can be written as a convex function of matrix minors
(subdeterminants). In the planar case the funcfios)) : R>*2 — R is called polyconvex iff there exists
convex functiong : R%*? x R — R such that

f(8) = g(S, detS).
Both f,(S) and f,(S) are polyconvex, hence linear combination
f1(8) =1 —-0)f;(S) +0f.(S), 0<0O<1 (13)

is polyconvex as well. This is generally not true for product of shape and area measures! The matrix
condition numbers in 3-D generally are not polyconvex as well [19].

The theory of well-posed variational problems in hyperelasticity is based on the conceptsef the
of admissible deformations which essentially includes mapping regularity condition in terms of Sobolev
spaces along witlpointwise polyconvex constraint. Generic polyconvex constraint can be written as
follows [4,8]

L(S, detS) <0, (14)

where functionL(-, -) is convex.
Let us rewrite the sefi(S) = (1 —0) £;(S) + 0£.(S) <  in the following way

(detS)2

1
detS>t(1—9)étr(STS)+ 92( +v), 0<r<1 (15)

The boundary of this set in 5-D space with coordinates being elemeftamd detS is ellipsoid . Thus
constraint (15) defines polyconvex bounded sef. 3 1, then any mapping satisfying (15) will satisfy
also (4) with constant [10]

—t 1—1¢
L? = ,/ ,/ l =1 =1 .
1= C2+ C1+ C1 + 07 , €2 + 1—0)
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We can define now integrang of functional (10) as

[ £u(S). if detS >0,
FS) = i+oo, otherwise

We see that integrand has anfinite barrier on the boundary of the set of orientation-preserving map-
pings in a sense that(S) — +o0o when detS — +0. This is another important ingredient in existence
theory [4]. As a result minimum can be obtained only in the class of orientation-preserving mappings.
The idea of barrier functionals was introduced into grid generation community in [18].

Numerical evidences suggest that in many practical cases the above functional allows to obtain sat-
isfactory results. However it is still not satisfactory from the theoretical point of view. First of all the
growth conditions for f1(S) are not strong enough for Ball existence theory to be applicable. It means
that situations are possible when minimizing mapping either do not exist or is not continuous [3]. Another
problem is that minimum can be attained on singular mapping. In this £&ecan become infinite at
some points, but total value of functional attains minimum. This fact is overlooked in many papers on
grid generation and geometric modeling, when the title of the method is unfounded from the theoretical
point of view [16].

4.2. Functional for construction of quasi-isometric mappings

In order to resolve these problems constraint (15) is directly incorporated into integrand as follows

_ _ @280 if detS — ¢ (S, detS) > 0,

f(S)_fZ(S)_{+oo, LTI ey otherwise, (16)

where
_ 1 o7 1(J7

&(S, J)_<1—9)§tr(s S)+0§<7+v).

Obviously
J1(S)
SH=1—t)——"—.
f2(8) = ( t)l_tfl(s)

The polyconvexity off>(S) was proven in [11]. It can be easily seen thiatS) by itself is dimensionless
length distortion measure and its inverse is fair quality measure. The facfAt®tis dimensionless
is very important since it allows to solve minimization problem for (10), (16) with different boundary
conditions. It is possible to find positions of free boundaries as a result of functional minimization.

5. Surface parameterization

As preliminary step for derivation of functionals in the case of mapping between surfaces the compo-
sition of mappings is considered.
For convenience of notations let us rewrite functional (10) as follows:

/ F(V,y)dn. (17)
22

n
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The mapping () is represented as a composition of mappih@g, x (&) andy(x), or asy(x(£(n))).
The invertible mappingg(x) andn (&) are specified while the function&) is the new unknown solution.

We assume thag(x) andn (&) are quasi-isometric mappings, but possibly with large constants
Using the notations

H =V, S = Vex, 0=V.,y, T =V,y, J =detT,
we get
detQ detS
T=QSH™, J="—""" dn=detH d&,
Q detH L d
and the functional (17) is simply rewritten as
/ f(OVexH ') detH de, (18)
2

wheren(£2,) = £2;. Functionf>(T) depends only on the orthogonal invariants of the magrif . Using
equalities

T'"T =H "S"GSH™, Gx)=0"0, HE)=H"H,

and the fact that {4 B) = tr(BA), we get thatf, can be written via the orthogonal invariants of the
matrix

W=STGSH!
as follows
d(W) . 1 1<detW )
W)= (1- N W)y=@1-60)=tr(W)+6=( — . 19
falW) = (A=) s SN =(A=0)500) +05( == +7 (19)

So finally the functional (18), (19) can be written in the following way

/ f2(W)(detH) 2 dg. (20)

¢

This functional constructs quasi-isometric mapping between manifolds with mﬁt@:}a and G(x)
respectively.

In [10] it was suggested special procedure for maximization tfwas found also that best results in
terms of length distortion are obtained whes: 4/5.

The inequality (5) for such mappings takes the following form

1 -~ ~
—d"Hd <d"Vex"GVixd < L3d"Hd, (21)
L2 & & 1
1
whered is arbitrary vector.

5.1. Surface flattening as variational problem
Let us show that surface flattening can be formulated as variational problem (20). Suppose that a

surface is defined in 3D coordinatesia parameterized representatipfg ). This essentially means that
initial flattening is already available (see Fig. 3).
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Fig. 3. Optimization of surface flattening.

J<2

y(x) ¥(&)

Py /ey

Fig. 4. Optimization of surface parameterization.

Optimal quasi-isometric flattening is defined by mapping frpto x coordinates on the plane. Thus
one have to compute the mappin¢) which defines the deformation of initial flattening into optimal
one. SinceV,n = V:nV:x 1, it is obvious that optimality condition for(¢) is given by (21) withG = 1
andﬁ(s) = Ven' V. Optimal mapping can be constructed via minimization of (20).

5.2. Construction of parameterization as variational problem

Similar reasoning can be applied to construction of optimal surface parameterization. Suppose that
initial parameterization is given by(x) while optimal parameterization is defined g ). Again planar
deformationx (&) should be found (see Fig. 4). _

SinceV:y = V,yV:x, itis also obvious that optimality condition fex¢) is given by (21) withH = 1
andG(x) = V,y V,y.

The above derivation suggests that general formulation when®athd H are present corresponds
to the mapping of one surface onto another.

5.3. Invariant functionals

One can introduce invariant functionals in many ways. It was already mentioned abodigettan-
invariance (isotropy) principle leads to integrands being the functions of orthogonal invariants of metric
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tensor of deformation. One can impose requirement that functiocahfsrmally invariant, i.e. it is in-
variant with respect to conformal transformation of either the surface it maps onto, or of mapped surface.
Another natural requirement for functionals is that they sudace invariants themselves, mean-
ing that functional does not depend on particular surface parameterization. As a result Euler—Lagrange
equations of the functional will also be invariant with respect to surface parameterization. Well-known
examples of surface invariants are harmonic functional and Beltrami equations.
Let us show that functional (19), (20) is surface invariant. Consider first the optimal parameterization
problem. Suppose that besigiéx) we have another parameterization of the same surface. Then
G' = V,y'Vyy. SinceV,x 1V.x = V;x’ we get

W =Vex'TG'Vex' = Vex 'Vox TG'Vux IVex = Vex |GVex = W,
which proves the invariance.
Let us consider now optimal flattening problem. Suppose that two initial flattenings are gigen:
andn(¢). ThenH' = Ven"Ven = V& THVeE, Ve = VenVe& andVex = VexVex. As a result

(detd)"?

de = (detH") Y2 d&’
and
W =Vex "VexH =V "WV 67T,

Since trtW’ = tr W and det¥’ = detW the invariance is proved.

The important implication of such invariance is that one does not need global initial flattening. Instead
as itis common in the theory of manifolds one can define a chart: finite set of overlapping subdomains on
the surface and for each subdomain separate one-to-one quasi-isometric flat projection. It is assumed tha
when these subdomains overlap there is one-to-one quasi-isometric transformation rule between local
coordinates. Then optimization problem is invariant with respect to the choice of this chart.

Is the above invariance property an absolute requirement for any variational method in geometric
modeling and grid generation? The answer is definitely no. Let us consider the following functionals:

J _/ 1tr(H "VexTVex H™Y)
) 2 det(VexHY

detH dg, (22)
2
1tr(H "VexVix H™Y)
”:fé det(Vix H1)

dE. (23)

2

Functional (22) was essentially suggested in [15]. Whgn) is smooth one-to-one mapping without sin-
gularities, then functional (22) is harmonic functional with respeé&ti9 [9], thus bearing all advantages
and drawbacks of harmonic mapping technique.

Functional (23) was suggested for flattening of triangulated surfaces in [16], and for grid orthogo-
nalization near boundaries in [17,10]. For discrete flattening problem n¥dttocally can be Jacobian
matrix of the mapping of equilateral planar triangle onto surface triangle isometrically projected on the
plane, whileV;x is the Jacobian matrix of the mapping of equilateral triangle onto triangle of optimized
triangular grid of flat projection. Functional (23) is not invariant with respect to surface parameteriza-
tion! Does it mean that distortion estimates of flattening will deteriorate? Not necessarily. In the case
of triangulated surface discrete functional is a sum of contributions from triangles. For small triangles
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detH is relatively small value. It means that compared to “reference” functional (22), the contributions
to functional (23) from small triangles are multiplied by large weightlétH . Thus shape distortion for

small triangles is less likely to happen compared to large triangles on the same surface. As a result over
all distortion is triangulation dependent. Major drawback of non-invariant formulation is that different
triangulations may lead to different flattening even with grid refinement. Suppose that the same surface is
approximated by two converging sequences of triangulations. Then flat projections can converge to dif-
ferent geometric figures or convergence can be absent. This drawback is alleviated by the fact that bott
functionals attain absolute minimum on isometric mapping when developable surfaces are considered
For invariant functional one can expect convergence with grid refinement.

Another non-trivial example is related to grid orthogonalization near boundary. From above arguments
it follows that when one constructs structured grids with condensation near boundaries via composition
with given one-dimensional mapping then functional (22) will simply result in one-dimensional redis-
tribution of coordinate lines in resulting curvilinear grid. Whereas using functional (23) will result in
orthogonal grid near boundary since shape distortion is less for smaller cells [17,10]. Thus the result of
lack of invariance ighe change of curvature of coordinate lines!

We can conclude that invariant functionals are generally preferable for grid generation and geometric
modeling. However compatibility of invariant functionals with local orthogonality or local alignment
control is questionable.

5.4. Minimal curvature parameterization

Similar to the planar case one can define optimal mapping as the one having minimal capstant
in (21) and simultaneously minimizing certain curvature measure. Parameterization is curvature-free
when it maps any straight line segment on the plane onto segment of shortest arc (geodesic segmen
on the surface. Such parameterization exists for surfaces of constant curvature, such as sphere ar
Lobachevski plane. ThiSchur parameterization was used in [14] for construction of quasi-isometric
mappings. The idea of the method suggested by S.K. Godunov is to map conformally a curvilinear
guadrilateral on the surface onto (unknown!) quadrilateral on the surface of constant curvature with sides
being geodesic segments. This quadrilateral is mapped onto plane using inverse Schur mapping. Th
resulting quadrilateral with straight sides is parameterized using projective mapping. The final parame-
terization is constructed as composition of 3 mappings. Under certain restrictions this technique allows
to construct quasi-isometric parameterizations [14]. Unfortunately as was mentioned above its quasi-
isometry constant is far from optimal, but in some sense this is an attempt to construct parameterization
with minimal curvature.

This deep and fruitful idea in principle admits another realization. One can replace conformal mapping
technique by variational method described above which can be applied for much wider class of surfaces
and domains. The additional mapping onto surface of constant curvature and Schur parameterization ca
serve as a means for decreasing curvature of parameterization.

6. Numerical examples

First numerical example illustrates behaviour of various functionals for domain with non-smooth
boundaries. 4k 41 structured mesh is constructed. Case (a) in Fig. 5 corresponds to functional (22).
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Fig. 6. Hat-like surface and different meshes.

Matrix H (¢) is introduced here via additional one-dimensional mapping in order to provide grid conden-
sation near left and right boundaries. Global condition numpéor case (a) is equal to.2- 10°, which
corresponds to the presence of singularities. In the case (b) functional (20) iscused,3. Case (c)
corresponds to functional (23), herg= 21 and grid is orthogonal near boundary. Case (d) is constructed
using (20), where is replaced byp/ detH . Herex, = 16.

It should be noted that cases (c) and (d) are comparable in quality, but mesh step near boundary for
case (c) is 3 times larger than expected, while quasi-isometric technique provides target mesh step along
with orthogonality.

Another test case is related to flattening procedure for “double hat” surface shown in Fig. 6. Bad
quality mesh (Fig. 6 (left)) and a sequence of high quality triangulations ranging from 2526 to 150471
triangles are considered (Fig. 6 (right)).

It was found that invariant quasi-isometric projection based on functional (20) is mesh-independent
starting from very coarse bad quality meshes, which is shown in Fig. 7(a). Here mif.5,
maxo = 2.3. Invariant functional (22) is more sensitive to mesh quality and size of cells which is shown
Fig. 7(b). In this case on the average mig- 0.12, maxo = 2.3. Area distortion under this flattening is
very large. Non-invariant functional (23) leads to the loss of symmetry of projection, which is shown in
Fig. 7(c), even though distortion is somewhat smaller compared to that for (22).

Mesh convergence is illustrated in Fig. 8, where outer contours of flat projections for all meshes
are drawn. In the case (a), corresponding to functional (20), convergence is quite fast. In the case (b)
(functional (22)) differences between finest meshes are still visible, and the projection becomes self-
overlapping for finest meshes. Technique which protects against overlapping [11] was not applied here.
In the case (c) (functional (23)) results for fine grids are identical to case (b), since surface triangles areas
are almost constant.


https://www.researchgate.net/publication/227800049_Maximum_norm_optimization_of_quasi-isometric_mappings?el=1_x_8&enrichId=rgreq-41b1c7baef67b553404e64e778b8c1e0-XXX&enrichSource=Y292ZXJQYWdlOzIyMjgxMTQ3NDtBUzozNjA5MzUxNTI3MzQyMDlAMTQ2MzA2NTA1NDcyNQ==

308 V.A. Garanzha / Applied Numerical Mathematics 55 (2005) 295-311

Fig. 7. Flat projections. Mesh independence test.
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Fig. 8. Boundary of flat projection. Mesh refinement results.

7. Conclusions

Quasi-isometric mapping technique allows to construct surface parameterizations with very small
length distortion. Mesh independence study results are most favorable for suggested functional.

Appendix A

Let 2 ¢ R" be bounded connected strongly Lipschitz domain.:k@f) : 2 — R” be a spatial map-
ping. 5
The functionu(x) belongs to feasible set when
u(x) e WH(2;R"),  p>n, (A1)
w(VuH ') =de{VuH ) — t¢(VuH ', def{(VuH 1)) > 0 (A.2)
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almost everywhere i2. Here W'? denotes standard Sobolev space consisting of functions belonging
to L?(£2) along with their gradients angl: R"*" x R — R is given by

1 . n/2 1 B 1 5
o(S, 1) =9(;tr(5 S)) + 50~ 0)<v +=n ) (A.3)

and 0< 6 <1,0<t <1, v> 0 are given constants. Functid(x) : 2 — R"*" belongs toL*(£2),
detH (x) > 0 almost everywhere if2, and singular values aoff (x) are a.e. uniformly bounded from
below and from above.

Mappingu(x) is sought as the minimizer of the function&lu):

J(u) = f fo(x, Vu)dx, (A.4)
2
where
fo(x, Vu) = f(VuH *(x)) detH (x) (A.5)
and f :R"™" — [0, oo] is given by
£(S) = { (1— 1) g 1T detS —1¢(S, dets) > O, (A.6)
400 otherwise.

The set of admissible deformations is augmented by boundary conditions. Three sets of boundary
conditions are considered. L& = I U I, andu (1) = uo(11), Wwhereug is given continuous function.
We consider the following cases: (&) = 352, (b) I'1 is open subset ais2 with positive measure and
(c) I =@. In the case (c) the admissible set is augmented by constraint

/udx:e,

2

wheree € R” is constant vector.
The following theorems are formulated below without proof.

Theorem A.1. Suppose there exist v € A such that J (v) < 400, then there exist ii € A such that
J (i) = inf J (v).

veA

Proof of this theorem follows the idea of the proof of Theorem 7.14 from [4].

For the optimal flattening problem existence of elemert A providing finite value of functional,
or in other words existence of initial quasi-isometric flattening can be proved for non-smooth surfaces
which are essentially manifolds of bounded curvature (MBC) [1,23] under certain constraints on negative
and positive parts of curvature [2,6].

Theorem A.2. Let ugp: 2 — R” be one-to-one continuous mapping and uq(£2) is bounded connected
strongly Lipschitzdomain. If u(0£2) = u(9£2) and other conditions of Theorem A.1 hold, then minimiz-
ing mapping is one-to-one bi-Lipschitz mapping.

This theorem is direct consequence of J. Ball inverse function theorem [5] and embedding theorems for
Sobolev spaces.
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Theorem A.3. Suppose that the set of admissible deformations A is defined by (A.1), (A.2) and inequality

/ detVudx <volu(£2),
2

where vol denotes volume of domain. If other conditions of Theorem A.1 hold, then minimizing mapping
exists and is one-to-one almost everywhere.

The proof of this theorem is similar to the proof of Theorem 7.9-1 from [8].
Detailed proofs of above theorems can be found in [13].
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