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Abstract

We describe discrete well models for 2-D non-Darcy fluid flow in
anisotropic porous media. Attention is mostly paid to the well models
and simplified calibration procedures for the control volume mixed fi-
nite element methods, including the case of highly distorted grids.

KEYWORDS: well models, non-Darcy flows, anisotropy, distorted grids

1 Introduction

Flow around high production rate gas wells deviates from Darcy’s law. This
phenomenon has been successfully modeled by the two-term Forchheimer
law [7].

In reservoir simulation, the discrete well model is a relation between the
production/injection rate of the well, the well-block pressure and the bottom-
hole pressure. This relation is specific to the basic approximation scheme
used for discretizing the governing equations. Such well models are well un-
derstood in the case of Darcy flow and are mostly based on various generaliza-
tions of the effective radius concept [1, 10]. In the case of Forchheimer flow in
isotropic media, we find the effective radius as a function of the dimensionless
Forchheimer number using the invariant behavior of discrete solutions near
the well blocks. Such invariant properties are analyzed in [6] and are assessed
numerically by solving a set of auxiliary problems which reproduce the known
analytical solutions around a single isolated well in an infinite domain. Our
numerical experiments show that this calibration procedure is very accurate
and can also be applied on non-uniform and highly distorted grids.

In the general case of anisotropic media, there is no consensus on a spe-
cific formulation of Forchheimer’s law that is backed by experiments or from

Z. Chen, R.E. Ewing, and Z.-C. Shi (Eds.): Proceedings 1999, LNP 552, pp. 156–169, 2000.
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first principles. In this work, we derive well models only for the simplest for-
mulation [9], which provides reasonably good fit to pore network simulation
results such as those obtained by Thauvin and Mohanty [14].

In this case direct numerical simulation becomes a critical tool for esti-
mating the validity of a specific well model. Such verification requires much
higher accuracy compared to conventional reservoir simulation techniques
and imposes strict requirements on the quality of the approximation scheme.
To this end we have developed a modification of the control volume mixed fi-
nite element (CVMFE) scheme [4] based on quadrilateral grids in 2-D and on
hexahedral grids in 3-D. This scheme is conservative, nearly optimal among
second order schemes, and naturally incorporates harmonic averaging of re-
servoir properties. Moreover it allows us to obtain reliable results on highly
distorted grids and even on grids that are “degenerate” in the conventional
finite element sense (for example on grids with non-convex cells in the plane.)

Numerical experiments in the 2-D case show that very fine grids are ne-
cessary in order to obtain grid independent results using direct simulation.
Such grids may be impractical in the 3-D case, especially in the case of devia-
ted wells. Hence there is a need for high order methods suitable for accurate
resolution of the flow in the near-well region using coarse grids.

2 Problem Formulation
and Governing Equations

The governing equations that describe steady-state, single-component, single
phase, isothermal flow in porous media are

∇ · (ρu) = f, µK−1u + ρβ|u|u + ∇p = 0, (2.1)

where ρ denotes the fluid density, u the velocity vector, µ the dynamic visco-
sity and p the pressure. The porous medium is characterized by the permea-
bility tensor K, the porosity φ and the Forchheimer coefficient β, which can
be a tensor in some formulations. The right hand side f is associated with
the presence of wells-localized mass inflows or outflows in the reservoir.

Different Forchheimer law formulations are available for the anisotropic
case. Thauvin and Mohanty, [14], require that β = {bij} in order to fit their
network simulation results. Knupp and Lage [9] have suggested an anisotropic
formulation using a variational approach. Their formulation can be written
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as follows

µK−1u + βρ
(u ·K−1u)

1
2

(detK−1)
3
2n

K−1u + ∇p = 0, n = 2, 3, β is scalar, (2.2)

where n = 2, 3 is the space dimension. This model has fewer degrees of
freedom as compared to (2.1). Nevertheless, it provides a good fit to the
data from [14]. However, these data are still not enough in order to choose a
particular tensorial model.

3 CVMFE on Distorted Quadrilateral Grids

In order to describe the discrete approximation to system (2.1) on quadrilate-
ral grids for each element we introduce the mapping r = r(ξ1, ξ2) which maps
the unit square on the quadrilateral in physical coordinates r = (x1, x2)T and
associated metric entities

gi =
∂r
∂ξi

, S = {sij}, sij =
∂xi

∂ξj
, J = detS, gT

j gi = Jδij ,

where gi,gi are the covariant and scaled contravariant basis vectors and J is
the Jacobian of the mapping. Using above notations the governing equations
can be written as follows:

n∑
i=1

∂

∂ξi
ρV i = Jf, (3.1)

n∑
j=1

1
J

gT
i

(
µI + βρ

(u ·K−1u)
1
2

(detK−1)
3
2n

)
K−1gjV

j +
∂

∂ξi
p = 0 (3.2)

V i = uT gi, u =
1
J

n∑
i=1

giV
i (Piola mapping).
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Figure 1: Support for the edge-centered flux base φφe (left) and for the flux test

function ψψe (right).
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The Control Volume Mixed Finite Element methods (CVMFE) as intro-
duced in [4] are based on the lowest order Raviart-Thomas (RT0) flux basis
functions and cell-based pressures. Equation (3.1) is integrated over the grid
cell in the parametric space with mid-point quadrature rules for the contour
integrals. The Forchheimer law (3.2) is integrated over the edge-centered con-
trol volumes in the parametric space and mid-point rules are used for pressure
contour integrals. This derivation is equivalent to using the Raviart-Thomas
flux-pressure bases, piecewise-constant pressure test functions and flux test
functions ψψe defined by (3.3), which is illustrated on Fig. 1 for the cases when
the edge e locally coincides with the vector g2.

φφe =




(1 − ξ1) 1
J g1 in cright(e)

ξ1
1
J g1 in cleft(e)

0 elsewhere
ψψe =




1
J g1 in cright(e)
1
J g1 in cleft(e)

0 elsewhere
(3.3)

��
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MFE

 1/4 1/4

1/4

1/4

CVMFE

1/4

1/8

1/8

Figure 2: Equivalent first order quadrature rules and distorted grid cells.

In [4] the value 1
J is in fact approximated by a constant in each half-cell

which allows the integrals over cells to be computed exactly. The basic advan-
tage of CVMFE is the observed O(h2) convergence [4] in terms of pressure
and fluxes on highly nonuniform grids and in the presence of strong coeffi-
cient jumps. Moreover it possesses optimal spectral resolution properties in
a whole range of the discrete harmonics and provides accurate solutions on
mildly distorted grids. The main drawbacks of CVMFE are the lack of the
Linear Preservation (LP) property and nonsymmetric discrete metric tensor.

It is possible to derive CVMFE alternatively as a “low order” approxi-
mation to conventional mixed finite element (MFE) method [12]. Thorough
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analysis of relations between finite volume and finite element methods with
different quadrature rules can be found in [2] where it was shown that most
FE methods in primal and dual formulations can be written in the “factori-
zed” form, or as a flux differences in terms of finite volume methods.

In [8] it was shown that there exist quadrature rules for the MFE integrals
with first order algebraic accuracy which result in partial error cancellation
property, namely they result in the discrete system which is identical to that
resulting from RT0 bases and flux test functions defined by (3.3) with certain
first order quadrature rules, which are shown on Fig. 2.

The resulting discrete system coincides with CVMFE [4] on grids with
affine cells, the discrete metric tensor is symmetric positive definite on ad-
missible cells. Moreover the scheme is Linearity Preserving and is more ac-
curate than the original CVMFE on distorted grids. The set of admissible
grids is wider for this scheme as compared to conventional finite elements in
the following sense: the necessary condition for the convergence of discrete
solutions in the case β = 0 in fully discrete norms is that the Jacobian of the
local mapping in the cell edge centers is bounded from below by a positive
constant (see Fig. 2). The convergence proof is similar to that in [13] and the
invertibility of local mapping for each element is not required, i.e., the cell
shown on Fig. 2 (center), is admissible and the local discrete metric tensor is
positive definite and has condition number of the order of unity in this case.
An example of degenerate cell is shown on Fig. 2 (right).

Similar conclusions are valid in the primal formulation, i.e., for the bilinear
finite element method and control volume finite element method.

4 Analytical Estimates for the Equivalent Well-
Block Radius r0 in Isotropic Darcy Flow

In the case of infinite uniform grid with square cells and isotropic Darcy flow
the generic dimensionless discrete system which comprises several well known
approximation schemes can be written as follows:

−(2 + 2w)Pij + w(Pi−1 j + Pi+1 j + Pi j−1 + Pi j+1)

+ 1−w
2 (Pi−1 j−1 + Pi+1 j−1 + Pi−1 j+1 + Pi+1 j+1) =

sQij + (1 − s)
( 36

64Qij + 6
64 (Qi−1 j +Qi+1 j +Qi j−1 +Qi j+1)

+ 1
64 (Qi−1 j−1 +Qi+1 j−1 +Qi−1 j+1 +Qi+1 j+1)

)
,

(4.1)

where i, j are the grid node(cell) indices.
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We seek the solution Pij to (4.1) in the infinite computational domain
−∞ ≤ i, j ≤ +∞ with the following right hand side Q

Q00 = 1, Qij = 0, i2 + j2 > 0. (4.2)

The problem (4.1),(4.2) is closed with the following condition

P00 = 0, lim
r→∞

Pij

r
= 0, r = ∆x

√
i2 + j2, (4.3)

where ∆x is the side of the square grid cell.
The solution to problem (4.1)–(4.3) exists and is unique [1]. Similar to [1]

our objective is to find the value r0 such that the following equality is valid

lim
r→∞(Pij − 1

2π
ln
r0
r

) = 0, r = ∆x
√
i2 + j2. (4.4)

Equation (4.1) leads to some popular schemes, in particular the values s =
1, w = 1 correspond to conventional finite difference scheme (FD), s = 0, w =
1
3 is the bilinear finite element (BFE) scheme, while s = 0, w = 1

2 correspond
to the control volume finite element method (CVFE) and the control volume
mixed finite element method (CVMFE). In the latter case equation (4.1)
is deduced from the extended system by elimination of flux variables. In
order to underline the difference between the single-cell production term and
multiple-cell production term we include the schemes CVFE’ and BFE’ which
are defined by the parameters s = 1, w = 1

2 and s = 1, w = 1
3 , respectively.

Andreev [1] derived the asymptotic expansion for the case s = 1. It can
be generalized for the general case s 6= 1 by adding a constant c,

Pij = c+
1
2π

(ln
∆x
r

− 3
2

ln 2 − γ +
1
2

lnw) +O

(
∆x2

r2

)
, r = ∆x

√
i2 + j2,

where γ = 0.57722156649 . . . is the Euler constant. The value of c for several
approximation schemes was computed in [8] using the analytical solutions
from [1] and superposition principle. Comparing the above equality with
(4.4) we obtain that

r0
∆x

= e−γ− 3
2 ln 2+ 1

2 ln w+2πc,

A simple approximate solution approach for finding r0 was suggested in [10]
using the observation that discrete solution in the near well cells is close to
the analytical solution. Omitting the derivation details we obtain

r0
∆x

= e− π
1+w (s+(1−s) 9

16 )+ 1−w
2(1+w) ln 2.

All results are summarized in Table 1.
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Scheme r0
∆x , exact value exact value r0

∆x , Peaceman error %

BFE (2+
√

3)
5

√
3

16 e−γ+ 3π
32

2
√

6
0.313833 21/4 e−27π/64 0.68

BFE’ e−γ

2
√

6
0.114607 21/4 e−3π/4 1.65

FD e−γ

2
√

2
0.198506 e−π/2 4.72

CVMFE 1
4 e

1
8 (4−8γ+π) 0.3427305 21/6 e−3π/8 0.83

CVFE’ e−γ

4 0.140365 21/6 e−2π/3 1.52

Table 1. Equivalent radius for different numerical schemes and Darcy flow.

5 Calibration Procedure Based
on the Solution of Auxiliary Problem

The equivalent radius does depend on the discrete representation of point
sources/sinks. The most natural discrete approximation to the δ-function is
by the piecewise-constant hat function, which is illustrated in Fig. 3. Rigorous
analysis and convergence proofs for such approximations as applied to the
Darcy law case can be found in [5]. We write the contribution to the right
hand side f in (2.1) from a single well as follows

f =
Q

H
φ(r − r0),

φ(r) =

{
(λ1+λ2)2

4d2λ1λ2
, r ∈ Ωh(K)

0, r /∈ Ωh(K)
, Ωh(K) = {r : |ai · r| < dλi

λ1 + λ2
}.

Here r0 is the well location, H is the height of the perforated zone (fully
penetrating vertical wells are assumed), Q is the mass rate of the well, ai, λi

are the unit eigenvector and eigenvalue of K in the vicinity of the well,
respectively, or

K = AΛAT , A = (a1,a2), Λ = diag(λi), ATA = I,

while d is chosen such that the well block can be placed inside Ωh(K), e.g.,
on square grid d = ∆x.

The reason for this choice of hat function is that it is non-zero in the
square in the transformed coordinates

r′ = Λ− 1
2AT r. (5.1)

This typically results in multiple-cell production terms for a single well and
the estimates for r0 differ from those in [1] and [11] since the superposition
principle should be used for its computation in the linear case.
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Figure 3: Discrete approximation to the production terms.

The basic motivation for this model of discrete sources and sinks is that
numerical solutions in the vicinity of the well are more accurate compared
to single-cell production term (typically by factor 4 to 7 on the grid with 1:3
aspect ratio shown on Fig. 3.

The well models in the case of isotropic Forchheimer flow are based on
the analytical solution for radial flow around isolated well [3]

p(r) = pR +
µ

kρ

Q

2πH
ln
( r
R

)
+

βQ|Q|
ρ(2πH)2

(
1
R

− 1
r
), (5.2)

Using the assumption that the finite difference solution in the cells near the
well block is close to the analytical solution (5.2), it was shown in [6] that
the local behavior of the discrete solution is described by the dimensionless
Forchheimer number of the well block defined as Fo = βk|Q|

4∆xµH . The equivalent
radius α = r0/δx was found as a solution to the nonlinear equation

π

2
(1 + Fo) = ln(

1
α

) +
2
π
Fo(

1
α

− 1),

In [6] the well model was derived also for the bilinear finite element approxi-
mations, or BFE′ in our notations since single-cell production term was used.
The result looks as follows

p0 = pw +
µ

kρ

Q

2πH
ln
(

rw
α1∆x

)
+

βQ|Q|
ρ(2πH)2

(
1

α2∆x
− 1
rw

),

where p0, pw are the well block pressure and flowing well pressure, respec-
tively, α1 = 2

1
4 e

−3π
4 (see the same value in Table 1), α2 = 8(Γ+

√
2)

4(Γ+
√

2)(1+ 1√
2
)+9π2 ,

and Γ ≈ 1.35 is the empirical calibration constant. The above results have
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provided insight into the problem, however they cannot be used in the case
of irregular and distorted grids. To this end we suggest to find r0 via solution
of small auxiliary system using the following procedure:

WINDOW

BOUNDARY
CONDITIONS

Figure 4.

(a) choose a window around the well block; (b) write
discrete approximation to governing equations in this
window; (c) specify Dirichlet boundary conditions
using the analytical solution (5.2); (d) solve discrete
system, find the pressure in the well block p0 and
find r0 via r0

R = e(p0−pR) 2πHkρ
µQ

Choosing the window size to be 3 × 3 cells results in accuracy which is
comparable to that of the Peaceman method while using well block plus 2
cells in each direction typically allows to obtain 3 to 4 correct digits in r0.

An attractive feature of this simple calibration procedure is that it can
be used in the case of anisotropic permeability using the following analytical
solution to (2.1) and (2.2)

p(r̃) = pR +
µ

(detK)
1
2 ρ

Q

2πH
ln
(
r̃

R

)
+

βQ|Q|
ρ(2πH)2

(
1
R

− 1
r̃
), r̃ =

(rTK−1r)
1
2

(detK−1)
1
4
.

(5.3)
This analytical solution is derived from (5.2) using the transformation of
space variables (5.1). In this case the well model can be written as follows

pw = p0 +
µ

(detK)
1
2 ρ

Q

2πH
ln
(
r̃w
r̃0

)
+

βQ|Q|
ρ(2πH)2

(
1
r̃0

− 1
r̃w

),

where r̃w is the mean well radius computed according to [11].

r̃w =
1
2

(
cond(K)

1
4 + cond(K)− 1

4

)
rw =

rw
2π

2π∫
0

(
(zTK−1z)
(detK−1)

1
2

) 1
2

dφ,

where zT = (cos(φ), sin(φ)). Now the calibration procedure is modified as
follows: (a) fix constants R and pR; (b) solve discretized equations in a “win-
dow” around the well with Dirichlet BC specified by (5.3); (c) find pressure
p0 in the well block and find r̃0 as a solution to nonlinear system (5.3) using
the equality p(r̃0) = p0. It is important that the physical properties for the
calibration procedure should be the same as for the reservoir simulation, i.e.,
the Forchheimer number or its generalizations should be the same in both
cases.
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6 Numerical Experiments

Typical well model validation scenario requires the following stages: a) deri-
vation of the well model; b) numerical experiments with flow around isola-
ted well; c) numerical simulation of 5-spot flow on Cartesian/distorted grids
using well models; d) validation using direct simulation of the 5-spot flow on
extremely refined radial grids near wells. Table 2 shows the comparison of
computed data on 201×201 grid with analytical solutions which clearly shows
that the multiple-cell production terms result in more accurate solutions.

Scheme ||ph − p||L1

||p||L1

, %
||ph − p||L2

||p||L2

, %
||ph − p||C

||p||C , %

BFE 0.0049 0.039 0.41
BFE’ 0.0074 0.164 2.31
FD 0.0060 0.079 0.93

CVFE’ 0.0032 0.054 0.74
CVMFE 0.0026 0.018 0.23

Table 2. Discrete norms of errors for different schemes. (201 × 201 cells)

Injection rate 0.05 mmscf/day
Number of injection wells 4
Injection well coordinates (ft) (0, 0) (200, 0) (0, 200) (200, 200)
Number of production wells 1
Production rate 4×0.05 mmscf
Production well coordinates (ft) (100, 100)
Well radius 0.35ft
Reservoir dimensions 200 ft× 200 ft× 1 ft
Initial pressure, pI 5000 psia
Fluid density 1.783926 ×10−1 g/cm3

Fluid density
at 1atm, 60oF 6.76361 · 10−4 g/cm3

Fluid viscosity 2.5574794 × 10−2 cp
k11, k22(mD) 10,10 or 10,100
k12 = k21 0
Forchheimer coefficient β [ft−1] 0, 1.71 · 1010, 1.71 · 1011

Boundary conditions No-flow at all boundaries

Table 3. Simulation conditions.

Two different sample coarse grid configurations for the same 5-spot flow
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are shown in Fig. 5
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Figure 5: Different grids for 5-spot well configuration.

All data for this problem are presented in Table 3.

The well model validation results in the isotropic case for the CVMFE
scheme are presented in Table 4. Production terms and well model are used
on the 11 × 11 Cartesian grid while in direct simulation fluxes through well
boundaries are specified. In this case the bottom-hole pressure pw is the
well model quality indicator. Very fine grids were used for direct simulation,
typical cell size near well was about rw/50.

β p0 − pI r0/∆x pw − pI

pw − pI ,
direct
simulation

err %

0 -121.683 0.342926 -262.149 -262.602 0.17
1.71 · 1010 -132.067 0.35065 -490.176 -490.694 0.11
1.71 · 1011 -225.451 0.37137 -2542.4 -2543.5 0.04
1.71 · 1011 -2560 [6]

Table 4. Comparison of simulation results.

b β p0 − pI r0/∆x pw − pI

pw − pI , di-
rect
simulation

err %

0 1.71 · 1011 -387.46 0.376743 -2543.1 -2543.5 0.01
0.43 1.71 · 1011 -402.745 0.358036 -2543.1 -2543.5 0.01

Table 5. Results for the distorted grid simulations.

The numerical results illustrating the influence of the grid distortion on
the accuracy of the calibration procedure in the isotropic case are presented
in Table 5. Here b∆x is the value of the quasi-random displacement for the
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grid nodes. The initial 23×23 Cartesian grid and the resulting distorted grid
are shown on Fig. 5.

Both grids along with discrete pressure and pressure errors are presented
on Fig. 6. The pressure errors for the 5-spot flow are computed via compa-
rison with very fine grid results.
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Figure 6: Pressure contour maps and error maps for regular and distorted grid

simulations.

The pressure errors are only 3 times larger as compared to the results on
square-cell grids. This is quite good, given that the distorted grid contains a
lot of poorly shaped and non-convex cells.

The well model validation in the anisotropic case is more difficult since
the normal flux distribution through the well boundary is not known. Hence
in direct simulation pw from the well model is specified while the predicted Q
becomes the quality measure. Another observation is that as a rule of thumb
the window around the well in the calibration procedure should be much
larger as compared to the isotropic case for the same well model accuracy.
The preliminary results of simulation on the 47 × 47 grid with square cells
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are presented in Table 6.

β r0/∆x pw − pI exact Q predicted Q err %
1.71 · 1011 0.46 -2072 0.2 0.20015 0.076

Table 6. Validation results for k11 = 10, k22 = 100.

7 Conclusions

Asymptotic methods and the superposition principle allow the derivation
of exact expressions for the equivalent radius r0 for various approximation
schemes on Cartesian grids.

An inexpensive black-box calibration procedure allows r0 to be computed
in general grid configurations for non-Darcy flows, including anisotropic cases.

The CVMFE approximation scheme provides optimal resolution for near-
well flow, including the case of distorted grids. The derivation of CVMFE
via low-order “cancellation” quadrature rules for MFE integrals can improve
accuracy on highly distorted grids and can make the admissible set of grids
in 2-D and 3-D much wider.

Direct simulation of Forchheimer flows is very expensive with high order
approximation schemes being desirable.
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