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Maximum norm optimization of quasi-isometric mappings

V. A. Garanzha∗;†

Computing Center of Russian Academy of Sciences; Vavilova 40; Moscow 117967; Russia

SUMMARY

A reliable method for maximum norm optimization of spatial mappings is suggested. It is applied to
the problem of optimal �attening of surfaces and to precisely controlled surface morphing. Robustness
and grid independence of the method are demonstrated on real-life tests. Copyright ? 2002 John Wiley
& Sons, Ltd.

KEY WORDS: surface grid generation; quasi-isometric mappings; optimization of mappings; surface
�attening; graph drawing; morphing; grid sensitivity

1. INTRODUCTION

Variational methods for grid generation and for construction of spatial mappings with pre-
scribed properties [1–7] have become important tools in many real-life applications. Despite
considerable progress in this area, lots of unsolved problems still exist.
Since the introduction of de Boor equidistribution principle [8], it became clear that the

ability to construct spatial mappings which provide best maximum norm solutions to various
interpolation, approximation and adaptive simulation problems should be one of the basic
tools in the numerical analysis.
However, it was not clear how equidistribution principle can be generalized to many spatial

dimensions.
The idea that optimal spatial mappings should be sought in the class of quasi-isometric

mappings was suggested by Godunov [9]. Mapping with minimal deviation from isometry in
fact is the natural de�nition of the equidistribution principle in multidimensional case.
One of the aims of this paper is to show how the control over properties of local mappings

in the �nite element method based on the metric tensors allows one to minimize the deviation
of size, shape and orientation of grid cells from the prescribed values in the maximum norm.
The potential applications of the optimality principle include grid adaptation to �ow fea-

tures, grid orthogonality near boundary, surface grid generation, quasi-isometric projections
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494 V. A. GARANZHA

of complicated surfaces, shape optimization and various structural optimization problems with
most advantages in the case of large deformations.
There is also a separate class of 2.5-D applications where this principle plays a crucial role:

construction of surfaces from wireframes, morphing, optimization of surface triangulations,
repair of CAD data such as elimination of wrinkles and many other.
Moreover, applications from other �elds such as straight-line planar graph drawing with

good angular resolution can be tackled by the presented methods as well, along with 3-D
generalizations of this graph-theoretical problem.
This optimality principle is implemented via the minimization of the functional which is

elliptic and in the discrete case has an in�nite barrier on the boundary of the feasible set
consisting of grids with quasi-isometric local mappings [10]. This feasible set is contracted
using the continuation technique which forces the global lower and upper spectral bounds
of metric tensors of local mappings in the �nite element grid to increase and to decrease,
respectively.
The particular topic of interest in this paper is the construction of quasi-isometric �attenings

of complicated surfaces. This problem is very important for many applications in mechanics,
computational geometry and in surface grid generation [11, 7]. Moreover, it can be used
as a building block in the construction of globally optimal adaptive grids and as a tool
for sharply decreasing the sensitivity of grids and solutions on these grids with respect to
variations of control parameters, which is extremely important in applications coupling �uid
�ow simulations with optimization=optimal control.
The important issue related to construction of quasi-isometric �attening of surfaces is that

initial guesses are generally infeasible, hence the method should handle the following prob-
lems: (1) creation of non-degenerate local mappings or in other words grid untangling; (2)
stabilization and untangling of free boundaries in the small; usual pattern when creating the
non-degenerate mapping from infeasible initial guess is the creation of knots and spiral-like
structures on the free boundaries such that the resulting mapping is non-degenerate but mul-
tivalued; such behaviour must be prohibited; (3) global non-overlapping of free boundaries.
The simple solution of the above problems presented in this work was found to be quite
reliable and due to existence of some rigorous foundations has been successfully tested on
hard industrial problems.
Numerical results related to surface grid generation, construction of surface �attenings and

morphing are presented.

2. OPTIMALITY PRINCIPLE FOR SPATIAL MAPPINGS

We will use here a simple and intuitive concept of optimality. The spatial mapping is called
optimal if it is smooth enough and is as close as possible to a uniform mapping. The uni-
formity means that the distance between any two su�ciently close points is the same as the
distance between their images. In fact this is the de�nition of isometric mapping. The map-
ping resembles the uniform one when the distance function is not much distorted under this
mapping, meaning that the ratio of the distance between any two close enough points and the
distance between their images has uniform lower and upper bounds. This is essentially the
de�nition of the quasi-isometric mapping.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510



OPTIMIZATION OF MAPPINGS 495

Figure 1. Composition of mappings. y(x) and �(�) are prescribed mappings, −1 means inverse mapping.

It is convenient to use the following invariant de�nition of quasi-uniformity. Let the map-
ping of interest be y(�) :Rn→Rn. Denote by ∇�y the gradient of the mapping (the Jacobi
matrix) with the entries @yi=@�j. The mapping y(�) is quasi-uniform when

�v1=n
1
�
6�i(∇�y)6��v1=n (1)

where �i is any singular value of matrix ∇�y and �¿1 is the constant. The value �v is just the
constant volume scaling factor. If the co-ordinates are properly prescaled, then it is possible
to set �v=1. Now we can de�ne an optimal mapping as the one having minimal possible value
� provided that this mapping also satis�es certain additional constraints, such as boundary
conditions, smoothness, etc. Obviously each quasi-uniform mapping is also quasi-isometric.
In practice quasi-uniformity is just not enough. If it is necessary to construct computational

grids with full control over size, shape and orientation of elements it is necessary to have
means of such control.
The mapping properties can be controlled via composition of mappings which is illustrated

on Figure 1.
The mapping y(�) is represented as a composition of mappings �(�);x(�) and y(x). The

mappings y(x) and �(�) are speci�ed while the function x(�) is the new unknown solution.
We assume again that y(x) and �(�) are quasi-isometric mappings, but possibly with large
constants �. Using the notations

H=∇��; S=∇�x; W =∇xy; T=∇�y; J=det T

we get

T=WSH−1; J=
detW det S
detH

; d�=detH d�

Inequalities (1) can be rewritten as follows:

�v2=n
1
�2

I6T TT6�v2=n�2I

or

�v2=n
1
�2

H̃6STGS6�v2=n�2H̃ (2)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510



496 V. A. GARANZHA

where

H̃ (�)=∇��T∇��; G(x)=∇xyT∇xy

are symmetric positive metric tensors which de�ne the distance in � and x co-ordinates re-
spectively. Formulation (2) is quite general since now it is based just on metric tensors related
to prescribed mappings. However the metric tensors can be speci�ed directly as it happens in
many methods for adaptive grid generation. Note di�erent nature of controls imposed by H̃ (�)
and G(x), since latter depends on the unknown solution x(�). Suppose that x(�) is computed
via some iterative method. Then on each iteration G(x) should be recomputed. This process
can be considered as adaptation in ‘Eulerian’ co-ordinates. On the other hand, H̃ (�) is �xed
once and for all. It looks like a priori control, control in ‘Lagrangian’ co-ordinates. Using
mechanical analogy, during the iterative solution H̃ (�) is ‘frozen’ into each material point
and ‘accompanies’ it.
The idea of using composition of mappings in order to control the properties of the com-

putational grid was suggested in Reference [1].
Now we are in a position to formulate the �nal optimality principle: the spatial mapping

x=x(�1; : : : ; �m); x=(x1; : : : ; xn)T; n¿m (3)

is optimal if it preserves orientation and is quasi-isometric with respect to prescribed control
metrics, i.e.

1
�2
�v2=nHTH6STe GSe6�2 �v2=nHTH (4)

with minimal possible �. Here G=GT¿0; G=G(x)∈Rn×n is the metrics in the ‘physical’
co-ordinates xi; H=H (�)∈Rn×n; detH¿0 and HTH is the ‘accompanying’ metrics de�ned
in the logical co-ordinates �1; : : : ; �m, while �v is the constant volumetric factor. The square
matrix Se is de�ned as follows:

Se=(S;Q); S=(g1; : : : ; gm); Q=(q1; : : : ; qn−m); gi=
@x
@�i

(5)

Here S=∇�x is the Jacobi matrix of mapping (3). If n=m then Se=S, otherwise some given
n − m vectors qi=qi(�1; : : : ; �m) are used to complement the Jacobi matrix of (3) to square
matrix. It is assumed that rank(q1; : : : ; qn−m)=n − m. De�nition (5) means that when m¡n
the set of auxiliary vector �elds is added to the local tangential basis on the m-dimensional
hypersurface in order to form a complete basis in the n-dimensional space.
This optimality principle is more complicated compared to (2) since it allows to take into

account the orientation of the tangent basis vectors of the mapping.
Using the notation

A=H−TSTe ; A=(a1; : : : ; an); aij=(ai)j or A=A(�;∇�x) (6)

one can rewrite (4) as follows:

det A¿0;
1
�2
�v2=nI¡AGAT¡�2 �v2=nI; �¿1 (7)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510
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Mapping (3) which satis�es (7) with minimal possible � can be considered as the maximum
norm solution to the problem of �nding best approximation to an isometric mapping where

AGAT= �v2=nI (8)

Formulation (7) is mathematically elegant but it is extremely di�cult to use in practical
optimization algorithms since the condition number �2 as a function of the entries of the
matrix A has some unfavourable algebraic properties (cf. Reference [12]).
So this inequality is in turn approximated by the following optimality principle [10] which

is �nally adopted in this work:

det A¿t��(A); 0¡t61 (9)

where

��(A)=�
((1=n) tr(GATA))n=2

(detG)1=2
+ (1− �)

(
�v

(detG)1=2
+
(detG)1=2

�v
(det A)2

)
(10)

and 0¡�¡1 is some constant. The optimization in this case just reduces to the maximization
of parameter t in inequality (9). When �=1; m=n inequality (9) is exactly the de�nition
of a class of mappings with bounded distortion introduced by Reshetnyak [13] immediately
providing rigorous mathematical grounds for the problem formulation, in terms of regularity of
mappings, constraints on domains and boundary conditions, see for details References [13, 14].
Choosing 0¡�¡1 means that the subclass of quasi-isometric mappings is selected from the
mappings with bounded distortion. In Reference [10] it was shown that (7) follows from (9)
with

�6(c1 +
√

c21 − 1)1=n(c2 +
√

c22 − 1)(n−1)=n; c1=
1− �t
(1− �)t

; c2=
1− (1− �)t

�t
(11)

Estimates (11) become tighter when t increases hence (9) also can be considered as the
approximate solution to (8) in the maximum norm.
For practical applications it is useful to employ also slightly di�erent optimality principle,

namely

det A¿tq(�) (H)��(A) (12)

where 06q(�1; : : : ; �m)61 and  (H)¿0 are piecewise-smooth functions. This modi�cation
can be used to allow larger distortions in some subdomains of the computational domains and
enforce more strict control on other parts of the domains. In the most practically important
case of q(�) taking only two values—0 and 1, the mapping is optimized only in a part of
the domain and the non-degeneracy in the rest of the domain serves as the constraint. Later
it will be demonstrated that this ability is crucial for the problems with free boundaries.

3. VARIATIONAL PRINCIPLE

The variational principle implementing optimality principle (9) is written as follows: given
the domain D in co-ordinates �1; : : : ; �m, �nd a mapping x(�) as the extremal of the following

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510
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functional: ∫
D

f(A) d� (13)

where A=A(�;∇�x) is de�ned in (6) and

f(A)=


(1− t) detH

��(A)
det A− t��(A)

; det A− t��(A)¿0

+∞ otherwise
(14)

For the modi�ed optimality principle (12), a slightly di�erent functional is suggested, namely

f(A)=f2(A)=


(1− q(�)t)

 (H)��(A)
det A− tq(�) (H)��(A)

; det A− tq(�) (H)��(A)¿0

+∞ otherwise
(15)

We will use the same notation for f(A) and for f(�;∇�x)=f(A(�;∇�x)).
When the volume of the image of D under mapping (3) is known, the volumetric factor

is computed as follows

�v=
∫
D

(detG)1=2 det S d�
/∫

D

detH d�

otherwise it is prescribed a priori.
Let us summarize the properties of the functional (13), (14)

3.1. The stationary point of f(A) is given by (8);
3.2. f(A) tends to +∞ when feasible A tends to the boundary of the feasible set;
3.3. f is polyconvex function of ∇�x provided that A(�;∇�x) satis�es the feasible set

inequality (9);
3.4. f satis�es the strong Legendre–Hadamard condition (is strongly rank one convex)

inside the feasible set meaning that the functional possesses the strong ellipticity
property.

Property 3.1 was proven in Reference [10].
The barrier property 3.2 follows from the fact that the numerator in f(A) is bounded from

below by a positive constant. So when denominator tends to +0; f tends to +∞.
The polyconvexity property 3.3 is a crucial notion in non-linear calculus of variations [15].

The function f(A) is called polyconvex if it can be expressed as a convex function of minors
of A. Let us de�ne the function f̃(A; J ) as follows:

f̃(A; J )=



(1− t) detH

�̃�(A; J )

J − t�̃�(A; J )
; J − t�̃�(A)¿0

+∞ otherwise

where

�̃�(A; J )=�
((1=n) tr(GATA))3=2

(detG)1=2
+ (1− �)

(
�v

(detG)1=2
+
(detG)1=2

�v
J 2
)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510
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When J=det A;f and f̃ coincide. So in order to show the polyconvexity of f(A) it is enough
to demonstrate the convexity of f̃(A; J ).
Since A is a linear function of ∇�x; det A can be expressed as a linear combination of

minors of ∇�x and convexity of f̃ leads to polyconvexity of f(·;∇�x).
The �rst step is to prove the following auxiliary statement: the function �̃�(A; J )=J is convex

on Rn×n × R+.
The function �̃�(A; J )=J can be written as the sum of two terms

�̃�(A; J )
J

=�
((1=n) tr(GATA))n=2

J (detG)1=2
+ (1− �)

(
�v

J (detG)1=2
+
(detG)1=2

�v
J
)

The second term is obviously convex provided that J¿0. It remains only to prove the con-
vexity of the �rst term. Keeping in mind that the function xn=2 is convex, to this end it is
enough to show the convexity of the function g(A; J )=((1=n) tr(ATA))n=2=J . Matrix G does
not change the convexity since it can be eliminated by an a�ne transformation of A. Let us
consider the second derivatives of the function g(A; J ):

@2g
@aij@ak‘

= �ik�j‘
1

nJ 2=n

@2g
@J@aij

=− 4
n2

aijJ−((2+n)=n)

@2g
@J 2

=
2(2 + n)

n3
n∑

i; j=1
a2ijJ

−((2+2n)=n)

If we establish that the Hessian matrix of g(A; J ) is non-negative de�nite on the convex set
Rn×n × R+, it will guarantee the convexity of g(A; J ).
Let us write the Hessian matrix of g(A; J ) using a block partitioning corresponding to A

and J

H=

[
H11 H12

H21 H22

]
=

[
(2=nJ 2=n)I −(4=n2)J−((2+n)=n)A

−(4=n2)J−((2+n)=n)AT (2(2 + n)=n3) tr ATA(J−(2+2n)=n)

]

where A is the vector of all entries of the matrix A. Obviously ATA=tr(ATA). The diagonal
blocks of matrix H are non-negative de�nite and in order to show that H is non-negative
de�nite it is enough to demonstrate that the Schur complement S22=H22 − H21H

−1
11 H12 is

non-negative de�nite. Since

S22=
2(n− 2)

n3
tr ATA(J−(2+2n)=n)¿0

the proof is complete.
The next step is the following: let m∈Rn and ’(m) be a convex function in Rn, then the

function ’(m)=(1 − ’(m)) is a convex function on the subset of Rn de�ned by inequality

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510



500 V. A. GARANZHA

1− ’(m)¿0. This statement is well known [16]. Choosing ’ in the above statement as

t
�̃�(A; J )

J

and using the fact that the set

J − t�̃�(A; J )¿0

is convex we see that f̃(A; J ) is the convex function everywhere which in turn means that f
is polyconvex function of ∇�x everywhere.
The Legendre–Hadamard condition 3.4 for f can be written as follows:

m∑
i; j=1

n∑
k; l=1

@2f
@sik@sj‘

pipjzlzk¿0 (16)

where z∈Rn; p∈Rm are arbitrary non-zero vectors and sij are entries of S=∇�x.
Inequality (16) in the case m=n was proved in Reference [17].
The strong rank one convexity means that

f(�Q1 + (1− �)Q2)¡�f(Q1) + (1− �)f(Q2) (17)

for every 0¡�¡1, Q1; Q2∈Rn×m with rank(Q1−Q2)=1. When f(A) is smooth enough prop-
erties (16) and (17) are equivalent. Since any polyconvex function is rank one convex [15],
we see that (16) is valid in the case m¡n as well.
The properties of the function f2(A) are similar.
A similar set of properties was used to prove the existence of minimizers for the variational

problems in hyperelasticity [15]. However, the formulations of the existence theorems by
Ball [15] cannot be directly applied to problem (13).

4. GEOMETRIC INTERPRETATION OF THE OPTIMALITY PRINCIPLE

Let us consider mapping (3) in the case n=m=2 in a small neighbourhood of the point x0 in
physical co-ordinates. The size of the neighbourhood is small enough to consider the mapping
to be a�ne and metrics G(x0) to be constant. The local properties of the metrics G can be
described by the ellipse e1

(x − x0)TG(x − x0)=�

which is shown in Figure 2 (left). The orientation of this ellipse is given by the eigenvectors
of G(x0), while its aspect ratio is equal to the square root of the condition number of G(x0).
Let us introduce an a�ne mapping y=y(x), such that the image of the ellipse e1 in

co-ordinates y1; y2 is a circle with a speci�ed radius. In transformed co-ordinates we can
consider a cell of any given shape, say a triangle or a quadrilateral. The exact shape of this
cell is de�ned by the matrix H (�1; �2) in such a way that the Jacobi matrix of the mapping
of some ideal cell in co-ordinates �1; �2, say of the unit square or unilateral triangle onto
the cell in co-ordinates y1; y2 coincides with H . If this cell can be identi�ed only up to
an arbitrary translation and rotation, and G(x0) is ill-conditioned or ‘anisotropic’ then the
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Figure 2.

Figure 3.

Figure 4.

inverse mapping x=x(y) can produce drastically di�erent shapes from the same cell in y1; y2
co-ordinates depending on its orientation, which is illustrated in Figure 3.
The cells shown in Figure 3 on the left are preferable to those on the right according to

numerous well-established criteria, �rst of all in terms of orthogonality and alignment.
This simple example clearly demonstrates that the control of the cell shape alone is not

enough to obtain high-quality adaptive grids and it should be complemented by the cell
alignment control.
It also provides the motivation to use the suggested optimality principle in the case m¡n

with the basic goal being the simultaneous shape and orientation control. In what follows
we will concentrate on the shape and orientation control via a shape control matrix H and
auxiliary vectors qi, and assume that G=I .
Figure 4 illustrates three important particular cases of the optimality principle as applied to

triangles. For simplicity here we will assume that the mapping (3) is a�ne, i.e. it is just a
linear mapping of one triangle onto another.
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The covariant basis vectors gi of this a�ne mapping can be computed as follows. Let
the vectors v1; v2; v3 be the triangle vertices, while l1; l2; l3∈R2 are the vertices of an ideal
plane triangle. Using barycentric co-ordinates inside each triangle and assuming that these
co-ordinates are the same for both triangles we obtain the (n+ 1)× 3 auxiliary matrix

S̃=

(
1 1 1
v1 v2 v3

)(
1 1 1
l1 l2 l3

)−1
(18)

such that

gTi =(S̃2; i+1 S̃3; i+1 · · · S̃n+1; i+1)

Hence the n-dimensional vectors g1; g2 represent a local tangential (or covariant) basis for the
triangle in the n-dimensional space.
In Figure 4 (left) m=n=2 and optimality in the sense of (9) is obviously insensitive to

triangle orientation. In the centre is shown the case m=2; n=3 with additional constraint
x3=0. In this case the covariant basis vectors of the mapping (3) g1; g2 are the usual 2-D
covariant basis vectors of the mapping of an ideal triangle in logical co-ordinates onto the
true triangle with zero x3 components. The matrix H is speci�ed as follows:

H=(h1; h2; q1)

where h1, h2 are the 2-D covariant basis vectors with zero x3 components of the mapping
of an ideal triangle in logical co-ordinates onto the target triangle and q1 is a given 3-D
vector with prescribed length such that detH¿0; qT1h1¿0; q

T
1h2=0. Since vector q1 is not

orthogonal to the plane x3=0 then for the optimal triangle

Se=H (19)

so not only the target shape is recovered but also the triangle is aligned in such a way that
qT1g1¿0; q

T
1g2=0.

In Figure 4 (right) the case where m=2; n=3 is illustrated, where g1; g2 are now the
tangent basis vectors on the triangle, h1; h2 are the target tangent basis vectors and q1 is the
target normal to the plane of the triangle. In this case (19) does not necessarily hold for the
optimal triangle since it is de�ned up to rotation around the q1 axis. However this optimal
triangle should be orthogonal to the target normal vector q1.

5. DISCRETIZATION AND PROPERTIES OF THE DISCRETE FUNCTIONAL

We consider only the case when the domain D is covered by the simplicial grid, in particular
in the 2-D case the triangular grid in D is already present. Then the mapping (3) in each
simplex is replaced by the a�ne mapping and the vectors qi, if present, are constant on each
triangle. Let us denote by R the vector of all co-ordinates of all grid vertices. In this case
the discrete counterpart of the functional (13) is simply written as the following sum:

Ih(R)=
Ne∑
k=1

f(Ak) (20)
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where Ak is the matrix A computed on the kth simplex and is a linear function of these
simplex co-ordinates, while Ne is the total number of elements in the grid. f(A) is given
by (14).
The following auxiliary functional is used as well:

Ih
� (R)=

∑
k
f�(Ak) (21)

where

f�(A)=det (H)
��(A) + C� tr(AAT)

	�(det A)
; 	�(q)=

q
2
+
1
2

√
�2 + q2

where C is a positive constant when n¿3 and C=0 when n=2.
The properties of the discrete functionals can be summarized as follows:

(1) Ih(R) tends to +∞ when the feasible grid R tends to the boundary of the feasible set
or when |R|→∞.

(2) In the case t=0 when no boundary conditions are imposed, the norm of the gradient
@Ih(R)=@R tends to ∞ when the feasible grid tends to the boundary of the feasible
set.

(3) When the grid R consists of one simplex without any boundary conditions then Ih(R)
has a stationary point which is unique up to the rigid body degrees of freedom.

(4) Suppose that in the grid R all nodes but one are �xed, then Ih is the convex function
of the co-ordinates of this node.

(5) In the case t=0 when no boundary conditions are imposed and the feasible set is not
empty, then for su�ciently small � all stationary points of the regularized functional
(21) are feasible.

Property (1) is obvious, while the proof of statements (2) and (5) is more complicated.
They are based on the analysis of scalar values


(A)=
n∑

i=1
aTi

@f(A)
@ai

; 
�(A)=
n∑

i=1
aTi

@f�(A)
@ai

and the fact that when no boundary conditions are imposed

RT
@Ih(R)

@R
=

Ne∑
k=1


(Ak); RT
@Ih

� (R)
@R

=
Ne∑
k=1


�(Ak) (22)

When t=0 and det A→+0 then


(A)=−(1− �) �v
detH

det A(detG)1=2
+ bounded terms

for f(A) de�ned by (14) which in turn means that the inner product (22) cannot be bounded.
When t=0 then inequality 
�(A)¿0 is valid for any A. Moreover, when det A60 then

lim
�→+0


�(A)= +∞

so the functional (21) cannot have limiting stationary points outside the feasible set.
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In fact (2) is not yet proved for the more general case when some of the boundary nodes
are �xed. Moreover, statement (5) is not necessarily true for problems where some grid nodes
are �xed.

6. PRACTICAL NON-LINEAR SOLVER FOR THE VARIATIONAL PROBLEM

The non-linear solver includes two main phases. The �rst one is the continuation technique
for functional (21) in order to construct feasible solutions [18], when it is necessary.
The second phase is the contraction of the feasible set in order to create an optimal grid

also based on the continuation technique.
The minimization method is the implicit gradient-type method based on the reduced Hessian

matrix of the functional. The positive de�nite part of the Hessian is created analytically using
the ellipticity of the target functional. The sparse linear systems are solved using robust
preconditioned CG method [19]. The solution technique is described in more details in [20].

7. DEFORMATION OF TRIANGULATIONS

Since in the discrete model mapping (3) is replaced by the piecewise-a�ne mapping, we
need to investigate the problems related to the deformations of triangular planar grids. Each
valid plane triangulation (i.e. triangulation without self-intersections and non-positive areas
of the triangles) with given connectivity of triangles de�nes the connected set consisting of
all triangulations which can be obtained from the initial one via node movement, i.e. via
continuous deformation such that all intermediate triangulations arc valid as well. Since any
triangulation with a correct planar connectivity is a particular case of a planar graph with
a prescribed order of edges around each vertex, each triangulation can be made valid, i.e.
it can be drawn on the plane without self-intersections [21, 22]. In other words, the feasible
set in this case is not empty. However it is not clear whether such a feasible set is globally
connected.
When some nodes of the triangulation are �xed, counterexamples can be constructed since

for multiply connected plane domains it is easy to construct such boundary polylines that
di�erent triangulations with the same connectivity inside the domain cannot be morphed into
each other.
Our main problems of interest are (1) construction of a valid triangulation from the tangled

one via node movement and (2) morphing of a valid triangulation into an optimal one, subject
to target shape and size speci�cation.
The de�nition of a feasible set via local properties of triangles is not enough to guarantee

that the solution of the minimization problem will not have self-intersections. In the plane
case at least two basic pathologies occur. The �rst one is the locking on the boundary of
triangulation shown in Figure 5 (left).
In this case the local minimum of the discrete functional is the grid with multivalued

behaviour around some boundary vertex and it can be present even for very regular con-
nectivity patterns of triangulations. And the gradient method cannot ‘jump away’ from this
parasite solution.
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Figure 5. Locking phenomenon on the boundary (left) and globally overlapping triangulation (right).

Figure 6. Sample planar graph (left) and scaled triangulated planar graph with
original graph inside (right).

The global overlap is more natural phenomena since it can provide global optimal triangu-
lation where triangles are as close to target shapes and sizes as possible.
There is no way to control both phenomena locally. However, these problems can be solved

quite easily using the fact that any planar graph can be triangulated, i.e. edges can be added
in such a way that all faces, including the external one, become triangles (Figure 6).
For such a triangulation when all signed areas of triangles are positive any internal self-

intersections are impossible since at least one such triangulation without self-intersections al-
ways exists and the current triangulation can be represented as the image of valid triangulation
under one-to-one mapping.
Moreover, for such triangulations the feasible set is simply connected. The proof is based

on results from Reference [23]. The nodes of any valid triangulation of any convex domain
on the plane can be found as the unique solution of a linear system with a square non-singular
M -matrix. Consider two di�erent triangulations T1 and T2 such that the external boundary
in each case is a single triangle and the connectivity and numbering of vertices is the same,
only the vectors of the co-ordinates of the triangulation nodes R1, R2 are di�erent. Without
loss of generality we can assume that the boundary triangles are the same, since an a�ne
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mapping can be applied to one triangulation to make the boundaries coincide. Hence we get
the problem from Reference [23]—morphing of triangulations with �xed boundary nodes lying
on closed convex polyline.
Then R1, R2 are the solutions of linear systems

S1R1=F1; S2R2=F2 (23)

where the right-hand side is due to the presence of �xed boundary nodes.
The details on how to construct such linear systems can be found in Reference [11]. The

solution to the linear system

StRt=Ft; St= tS1 + (1− t)S2; Ft= tF1 + (1− t)F2

also exists and is unique since St is a non-singular M -matrix as well. The vector Rt makes
up the nodes of the valid triangulation for any 06t61 which means that the deformation
path connecting two triangulations always exists. Moreover, if for two triangulations T1 and
T2 one is able to construct two di�erent deformation paths de�ned by parametric matrices St

and S̃ t then the linear combination �St + (1 − �)S̃ t also de�nes a valid triangulation for any
06�61, which means that any deformation path can be morphed into another path and the
feasible set is simply connected. In fact the results from Reference [23] are more general and
can be applied to a mixed grid consisting of triangles and quadrilaterals.
Also method [11] by itself was developed in order to compute one-to-one projections of

triangulated surfaces on the plane. The main advantage of this method is its simplicity and low
computational complexity. It allows to compute non-degenerate projections very fast provided
that a robust linear solver is available. However our goal is the construction of quasi-isometric
mappings hence the non-degenerate projection of a surface triangulation is only an initial guess
to other morphing procedure.
The modi�ed optimality principle (12) is applied in this case with q=1 for all triangles

present in the original triangulation and q=0 for all newly added triangles. After untangling
phase, all self-intersections are eliminated so during the contraction of the feasible set the
global upper bound on the distortion measure is minimized only for the original triangulation,
while the auxiliary one only prevents reappearance of global overlaps.
This solution was found to be extremely reliable and survived extensive testing on hard

industrial problems.
It was found that initial non-degenerate triangulation computed using the method [11] gen-

erally proved to be a poor initial guess for the mapping optimization technique. It is well
known that the sti�ness of the non-linear minimization problem may depend on the current
guess for the solution. In this case the problem was extremely sti� during the initial steps
of the solution. On the other hand, the non-degenerate triangulation computed via the con-
tinuation technique for the functional (21), while taking more time, generally provides much
better guess to the quasi-isometric mapping and as a result the non-linear minimization prob-
lem is not so sti�. So the total computation time was generally more favourable when using
untangling technique based on continuation.
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8. NUMERICAL EXPERIMENTS

The presented numerical experiments cover only two applications: projections of triangulated
surfaces and morphing based on rotation of surface triangles.
In the �rst test case, the surface is modi�ed via minimization of the functional (13) with

n=3, m=2. For each triangle vector q1 is prescribed in the following way:

q1=



n when n3=

√
n21 + n22 ¿ c

b=|b|; b=(n1; n2; c
√

n21 + n22)
T when n3=

√
n21 + n22¡c

where c=1 and n is the unit normal vector to the initial triangle plane.
The surface before morphing is shown in Figure 7 (left), while the result of minimization

is shown on the right. It can be seen that such a morphing respects small local features on
the surface despite large displacements and deformations. The total number of triangles in
this surface is about 30 000 and only small fragment is shown.
The same surface was developed on the plane without any additional triangulation and

using a planar graph triangulation approach.
In the �rst case shown in Figure 8 (left) the projection is self-intersecting, while with

additional constraints there are no overlaps which is shown on the right.
The robustness of the projection method is illustrated in another example shown in Figure 9.
Here the surface is described by two di�erent triangulations. The �rst one is based on the

repair of the surface initially consisting of unconnected facets and has triangles with extremely
low quality. The ratio of maximal-to-minimal edge lengths exceeds 105. The second one has
a high quality.
The non-linear solver handled this extremely sti� problem and computed the quasi-isometric

projection. In both cases the �nal global condition number of the mappings was of the order of
unity and was almost insensitive to the surface triangulation quality. Meanwhile the projection
technique from Reference [11] generally resulted in global condition numbers of mappings
in the range 104–109 for low-quality surface triangulations. The reason for such a behaviour
is that the method from Reference [11] is close in spirit to the methods based on harmonic

Figure 7. Fragment of the initial surface (left) and the surface after morphing (right).
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Figure 8. Developed surface without self-intersection control (left) and with self-intersection
control based on planar graph triangulation (right).

Figure 9. An initial surface with extremely low-quality triangulation (upper left), a surface
with quality triangulation (lower left) and �attened surfaces (right).

maps which may lead to very large global condition numbers. Detailed direct comparison of
methods based on harmonic and quasi-isometric mapping which was done in Reference [17]
in the case of structured grids led exactly to the same conclusions. A heuristic method for
decreasing metric distortion of �attening suggested in Reference [7] allows for smaller dis-
tortions; however, it still creates large condition numbers for bad surface triangulations and
does not provide bounded condition numbers when the grid is re�ned.
The application of surface morphing to these surfaces is shown in Figure 10.
The numerical results demonstrate that the projection and morphing tool are able to provide

grid-independent results and can be applied in the case of extremely ill-conditioned triangu-
lations. In fact, all quality grids shown above were constructed via projection of initial bad
triangulation on the plane, by meshing the resulting plane domains and by mapping resulting
triangulations back onto real surfaces.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:493–510

https://www.researchgate.net/publication/2632689_Barrier_Variational_Generation_Of_Quasi-Isometric_Grids?el=1_x_8&enrichId=rgreq-d151f224f2533c0a891110397689202d-XXX&enrichSource=Y292ZXJQYWdlOzIyNzgwMDA0OTtBUzoyNDYzOTg5MjY5NzkwNzVAMTQzNTc1NzQ5MDcxNw==


OPTIMIZATION OF MAPPINGS 509

Figure 10. Morphing of the surface with two di�erent triangulations.

9. CONCLUSIONS

The mapping optimality principle (7) can be considered as a general principle applicable
to most grid generation=adaptation problems and to many optimization problems based on
spatial mappings. The presented method is the �rst consistent and reliable implementation
of this optimality principle. Industrial-level robustness is achieved by the method. Numerical
evidence suggests that semi-discrete mappings created by the method tend to be smooth, when
this notion makes sense, and grid convergence is observed when increasing the number of
grid cells. A rigorous analysis of the method requires, however, further research.
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