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Distortion measure of trilinear mapping. Application to 3-D
grid generation

L. V. Branets and V. A. Garanzha∗;†

Computing Center of Russian Academy of Sciences; Vavilova 40; Moscow 117967; Russia

SUMMARY

Distortion measures for polylinear mappings are investigated. It is shown that certain distortion measures
satisfy the maximum principle which allows us to obtain upper bounds on the distortion measures for
hexahedral cells and other types of elements widely used in the �nite element method. These estimates
allow to apply a maximum-norm optimization technique for spatial mappings in the case of �nite
element grids consisting of hexahedra. A global hexahedral grid untangling procedure suggested earlier
was tested on hard 3-D examples demonstrating its ability to work in a black box mode and its high
level of robustness. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: trilinear mapping; distortion measures; hexahedral grid generation; grid untangling;
shape recovery

1. DISTORTION MEASURES AND GLOBAL CONDITION NUMBER

It is generally agreed that a grid cell in the �nite element method can be described as an
image of the mapping of some ‘ideal’ domain. It is generally agreed as well that this mapping
should be non-degenerate. However, more re�ned estimates require analysis of the properties
of these local mappings. There exist many methods for the evaluation of the mapping quality
based on the so-called geometric quality measures, the best known one being the minimal
angle criteria for triangular �nite elements in 2-D.
In the present work, we consider the characterization of the local mappings based on the

analysis of algebraic properties of the corresponding Jacobi matrices.
The basic requirements for the quality measures can be formulated as follows:

(1) ability to quantify the deviation of a �nite element cell from some ‘ideal’ cell (say
cube or equilateral simplex) in terms of shape and size;

(2) constructivity, i.e. the possibility of practical creation of �nite element grids satisfying
the quality criteria;
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512 L. V. BRANETS AND V. A. GARANZHA

(3) simplicity;
(4) maximum principle.

The last property means that satisfying the quality criteria in a �nite set of ‘measurement
points’ or ‘quadrature nodes’ for special classes of mappings common in �nite element analysis
should be enough to obtain uniform quality estimates of the mapping. In fact property (4)
provides the relationship between the cell quality measure, which is a discrete characteristics,
and the mapping quality measure, which is a continuous characteristic.
It is convenient to de�ne the quality measure as a dimensionless function in the sense that

it is equal to 0 for a degenerate cell and is equal to 1 for a cell with a given volume and
shape. In what follows, the inverse of this measure, obviously belonging to the range [1;∞)
will be called the distortion measure.
Let us consider a spatial non-degenerate mapping de�ned by

r= r(�1; : : : ; �n); r=(x1; : : : ; xn)T (1)

which maps an ‘ideal’ domain D, say the unit hypercube, in logical co-ordinates {�1; : : : ; �n}
onto a domain � in physical co-ordinates.
In order to describe the above mapping, we will use the following notations:

S=(g1; : : : ; gn); gi=
@r
@�i

where S is the Jacobi matrix of mapping (1) and gi are the covariant basis vectors. Let us
introduce the matrix H =H (�); detH¿0, quite arbitrary at this point, such that HTH has
the meaning of an ‘accompanying’ metrics de�ned in the logical space and let

A=H−TST

Let us introduce the following scalar functions of matrices

�(A)=
1
2

(
det A
v

+
v

det A

)
; �(A)=

(1=n tr(AAT))n=2

det A
(2)

where �(A) is the volumetric distortion measure of mapping (1), �(A) is the shape distortion
measure of mapping (1) and v is the constant volumetric factor. The function �1=n is actually
the shape distortion measure introduced by Reshetnyak [1] in the context of the theory of
mappings with a bounded distortion.
Using the above functions it is possible to de�ne the overall distortion measure as fol-

lows [2]:

E�(A)= ��(A) + (1− �)�(A) (3)

where � is a parameter, 0¡�¡1. An important property of the function E�(A) is that it is
possible to obtain the following minimax bounds on the eigenvalues of the matrix AAT when
the distortion measure E� is bounded from above [2]:

�2v2=nI¡AAT¡�2v2=nI; �=
1
�
; �¿0 (4)

which is a crucial property of mappings in grid generation [3].
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DISTORTION MEASURE OF TRILINEAR MAPPING 513

And vice versa, uniform eigenvalue bounds for the matrix AAT allow to obtain a uniform
upper bound of the distortion measure E�. It is also important that in the limit case of an
ideal mapping when E�(A)=1 we get �=1; �=1.
We will refer to the value �=� as the isometric condition number or the global condition

number which underlines the fact that bounds (4) are valid for all admissible values of �i.
Among all mappings (1) the most interesting are those which minimize the ratio �=�, while

satisfying speci�ed boundary conditions or other constraints.
The distortion measure E� satis�es criteria (1)–(3) formulated above. We will show that it

also satis�es the maximum principle in the above sense when low-order isoparametric �nite
elements are considered.

2. THE ALGEBRAIC PROPERTIES OF THE DISTORTION MEASURE

Let us introduce the following de�nitions:
(1) Let us de�ne the so-called ‘boolean’ partition of the unity matrix into k parts the

set of matrices I �1 ; : : : ; I
�
k with the following properties: every matrix I

�
j is a diagonal matrix

with only zero and unit elements and the sum of these matrices is equal to the unity matrix∑k
j=1 I

�
j = I . The subindex for the matrix I

�
j shows its position in the set, the superindex

shows the partition number. There are kn di�erent ‘boolean’ partitions of the unity n× n
matrix into k parts (number of words with length n from the alphabet with length k), hence
�∈{1; 2; : : : ; kn}.
(2) Let us denote by the k-ary composition of matrices S1; : : : ; Sk the matrix

S̃ �=
k∑
j=1
Sj I �j

which corresponds to some ‘boolean’ partition �, i.e. S̃ � is the matrix with ith column being
the ith column of any matrix from the set S1; : : : ; Sk . The number of such ‘composite’ matrices
is equal to kn as well.
Using these de�nitions we can formulate the following theorem.

Theorem 1
Let for any m-ary composition S̃�=

∑m
j=1 Sj I

�
j of n× n matrices S1; : : : ; Sm the following in-

equalities hold:

E�(S̃�)6C; det S̃�¿0

Let

S=
m∑
j=1
Sj�j;

k∑
j=1
�j= I; �j¿0 (5)

where �j are the diagonal matrices, then

det S¿0 and E�(S)6C (6)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526



514 L. V. BRANETS AND V. A. GARANZHA

Moreover, there exist coe�cients a�¿0,
∑mn

�=1a�=1, such that

E�(S)6
mn∑
�=1
a�E�(S̃�) (7)

Proof
The positiveness of the determinant of S follows directly from the formula of the determinant
decomposition with respect to column sums.
For any feasible S the distortion measure E�(S) satis�es the following Legendre–Hadamard

(strong ellipticity) condition [4]

n∑
i; j; k;m=1

@2E�(S)
@sik @sjm

titjpkpm¿0

where sij are entries of the matrix S and ti; pi are non-zero real numbers. Since E� is a
smooth function of S, the ellipticity condition is equivalent to the following rank one convexity
condition

E�(�1S1 + �2S2)¡�1E�(S1) + �2E�(S2); �i¿0; �1 + �2 = 1; rank(S1 − S2)=1 (8)

Obviously, this convexity condition is valid in the case of a matrix sum with multiple terms
provided that the di�erence between any two matrices has rank less or equal to 1, say

E�

(
P∑
i=1
�iSi

)
6

P∑
i=1
�iE�(Si); �i¿0;

P∑
i=1
�i=1; Si=(U; si ; V ) (9)

where U∈Rn×(p−1), V∈Rn×(n−p) and si∈Rn. The matrix S=
∑m

j=1 Sj�j can be written as
follows:

S=
m∑
j=1
Sj�j=

m∑
j=1
�pj �

p
j ; �pj =(�j)pp;

m∑
j=1
�pj =1; �pj¿0

�pj =(�rst p− 1 columns of S; (Sj)p; last n− p columns of S)

where (Sj)p denotes pth column of the matrix Sj.
Applying the above expansion to the matrix S with p=1 we obtain a convex sum, where

for each term E�(�1j ) the second column can be used in order to generate a representation (9)
which in turn allows to represent E�(�1j ) via the convex sum of simpler terms. Repeating this
procedure n−1 times we arrive at elementary terms which do not allow further decomposition
and these terms are precisely those de�ned in the k-ary composition of the matrix S. Since a
composition of convex sums with the sum of coe�cients equal to 1 is again a convex sum
with unit sum of coe�cients, the theorem is proved.

This theorem has the following important implications. If the Jacobi matrix of a mapping
can be presented in form (5), then the m-ary composition provides the set of ‘composite
bases’ or ‘quadrature points’ where the distortion measure should be bounded from above to
guarantee uniform mapping distortion bounds which is essentially the maximum principle (4).

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526



DISTORTION MEASURE OF TRILINEAR MAPPING 515

3. VARIATIONAL PRINCIPLE FOR MAXIMUM-NORM MINIMIZATION
OF DISTORTION MEASURE

In Reference [2] it was suggested to introduce the parametrized feasible set F(t), consisting
of mappings with a quality above a threshold value t via inequalities

det A¿0; E�(A)¡1=t (10)

Then F(0) denotes the set of non-degenerate mappings and F(1) is the isometric mapping.
The practical implementation strategy for the minimization of E�(A) is to construct such a
functional which after discretization has an in�nite barrier on the boundary of the feasible set
@F(t) and then to ‘contract’ this set which means to �nd the grid with maximum possible
quality measure t= tmax.
Let us consider the following minimization problem [2]

arg min
r(�)

∫
D

f(A) d� (11)

where

f(A)= (1− t) detH �(A)
det A− t�(A) (12)

�(A)= (1− �)
(
1
n
tr(AAT)

)n=2
+
�
2

(
v+

(det A)2

v

)
; 0¡�¡1

Volumetric factor is given by

v=
∫
D

det S d�
/∫

D

detH d�

when the volume of the domain � is known, otherwise v is speci�ed a priori.
The minimization problem (11), (12) makes sense inside the feasible set (provided that

this feasible set is not empty) de�ned by the inequality

det A− t�(A)¿0 (13)

4. DISCRETIZATION OF THE FUNCTIONAL IN THE 3-D CASE

In order to discretize functional (11) a conventional �nite element procedure is applied where
the local mapping in each cell is assumed to be linear or polylinear.
We consider only the 3-D case when n=3. Suppose that the valid connectivity structure

of the grid is de�ned by Nc grid cells. In the cell number c, let us denote the vector of all
cell vertices by

RTc =(X
1
c
T
;X2c

T
;X3c

T
); Xic∈RNcv

where Ncv is the number of vertices in the single grid cell.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526



516 L. V. BRANETS AND V. A. GARANZHA

If the cell Dc is de�ned by the ordered set of Ncv integer numbers v1(c); : : : ; vNcv(c), which
are the pointers to the cell vertices in the total list of the grid nodes, then the following
equality holds

Xic=RcXi ; Rc= {rij}; rij=
{
1; j= vi(c)
0; j �= vi(c) Rc∈RNcv×Nv

Using the above notations the discrete counterpart of problem (11) can be formulated as
follows: �nd the vector R as the solution to the following minimization problem:

R= arg min
R

Ih; Ih=
Nc∑
c=1

Nq∑
q(c)=1

f(A)|q(c)	q(c) (14)

A=(a1; a2; a3); ai|q(c) =H−T
q(c)Qq(c)RcXi :

Here subscript q(c) denotes qth ‘quadrature node’ for the integral over the cell Dc, Nq
matrices Qq(c) actually describe the discretization of functional (11) on each element and∑Nq

q(c)=1	q(c) = 1; 	q(c)¿0.
The feasible set Fh(t) is de�ned by NcNq non-linear inequalities

det A− t�(A)|q(c)¿0 (15)

The volumetric factor v is speci�ed a priori or is de�ned by

v=
Nc∑
c=1

∫
Dc

det S d�
/

Nc∑
c=1

∫
Dc

detH d�

when the volume of computational domain is known.
In order to take into account the boundary conditions we seek R as follows: R=

(I − B)Rb + BRin, where B∈RNv ×Nv is a diagonal matrix with entries bij, such that bii=1,
if the ith node of the grid is the internal one, i.e. its co-ordinates are unknown, and bii=0,
when ith grid node lies on the boundary and is �xed. Rin; Rb are the unknown vector and
the given vector satisfying the boundary conditions, respectively.

4.1. Tetrahedral cells

The mapping of the ‘ideal’ tetrahedron with vertices l1; l2; l3; l4 in logical co-ordinates onto the
tetrahedron with vertices v1; v2; v3; v4 in physical co-ordinates is linear and can be written via
the natural co-ordinates [5] resulting in the following equality:


1

x1
x2
x3


=

(
1 1 1 1

v1 v2 v3 v4

)(
1 1 1 1

l1 l2 l3 l4

)−1



1

�1
�2
�3


 (16)

The basis vectors of such a mapping are constant and, consequently, the function E� is
constant. If E� satis�es (10), the local estimates on �; � for this mapping are obviously true.
However, if 1=t is a uniform upper bound for the distortion E� of every tetrahedra present in
the grid then �; � represent the global condition number of the grid.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526
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DISTORTION MEASURE OF TRILINEAR MAPPING 517

Figure 1. Equilateral tetrahedron and rectangular tetrahedron inscribed in unit cube.
Covariant basis vectors are shown in bold.

For example, if we consider equilateral tetrahedron in a logical space as the ideal one (see
Figure 1(left)), then the covariant basis vectors of mapping (1) are written as

g1 = 1
2(v2 + v3 − v1 − v4); g2 = 1

2(v2 + v4 − v1 − v3); g3 = 1
2(v3 + v4 − v1 − v2)

The quadrature rule in this case looks as follows:

Q=
1
2




−1 1 1 −1
−1 1 −1 1

−1 −1 1 1


 ; Nq=1; 	i=1 (17)

For a rectangular corner tetrahedron (see Figure 1(right)) we get

g1 = v2 − v1; g2 = v3 − v1; g3 = v4 − v1

Q=




−1 1 0 0

−1 0 1 0

−1 0 0 1


 ; Nq=1; 	i=1 (18)

If the target shape of the tetrahedron is not one of the above basic types, then we should
introduce the matrix H as the Jacobi matrix for the mapping of the ideal tetrahedron onto a
target tetrahedron (Figure 2). This mapping is again de�ned by equality (16) so H is written
as follows:

H =


( 1 1 1 1

w1 w2 w3 w4

)(
1 1 1 1

l1 l2 l3 l4

)−1
2:4

i.e., H is obtained from a 4× 4 matrix by eliminating its �rst row and �rst column. Here
w1; : : : ;w4 are the Cartesian co-ordinates of the vertices of the target tetrahedron. When the
target shape is speci�ed, the discrete functional does not depend on the choice of the ideal
tetrahedron in logical space and the simplest expressions for the functional are obtained when

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526



518 L. V. BRANETS AND V. A. GARANZHA

SH −1

SH

Figure 2. Prescription of target shape for tetrahedra via composition of mappings.

the rectangular corner tetrahedron is chosen as the ideal one. Then the matrix H is de�ned
simply as

H =(w2 − w1 w3 − w1 w4 − w1)
So, when, for example, the equilateral tetrahedron is the target shape we get

H =



1 1 0

1 0 1

0 1 1


; H−T =

1
2




1 1 −1
−1 1 1

1 −1 1




4.2. Hexahedral cell

The trilinear mapping of a unit cube on the hexahedral cell with straight edges can be written
as follows:

r(�1; �2; �3)=
1∑

i; j; k=0
(1− �1)1−i�i1(1− �2)1−j� j2(1− �3)1−k�k3 r(i; j; k) (19)

where r(i; j; k) denotes the vectors of the co-ordinates of the cell vertices in the lexicographic
numbering and 06�i61.
It can be shown that the Jacobi matrix of the trilinear mapping can be written as follows:

S=
∑


S
�
; �
¿0;

∑


�
=1

where every �
 is a diagonal matrix and the sum contains 4 di�erent terms. The above
equality is simply the matrix formulation of the well-known fact that each basis vector gi
of the trilinear mapping is constant on the edges �i=0 or �i=1 and is a linear convex
combination of the edge basis vectors of the same family in any point inside the trilinear cell.
In order to apply Theorem 1 and thus to evaluate the distortion measure of the trilinear

mapping it is su�cient to evaluate the E�(S) on 64 di�erent composite matrices S̃�=
∑


 S
I
�

 .

The vectors constituting the columns of the composite matrices are shown in bold in Figure 3.
The remaining 60 triples can be obtained from the above ones by rotation and re�ection in

logical co-ordinates (when re�ecting the orientation should be changed to retain right basis).

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526



DISTORTION MEASURE OF TRILINEAR MAPPING 519

Figure 3. Construction of composite matrices for trilinear mapping.

The exact expressions for matrices Q for approximation, based upon Nq=64, can be easily
obtained from (19). For example the columns of the composite matrix S̃0 are given by (see
Figure 3,I)

g̃1 = r1 − r0
g̃2 = r2 − r0
g̃3 = r4 − r0

; Q=
1
27




−1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

−1 0 0 0 1 0 0 0




Here it is assumed that the numbering of the cell vertices in Figure 3 is related to triple
indexing in (19) via

r4i+2j+k = r(i; j; k)

The composite matrices shown in the �gure above constitute a quadrature rule with the
following weights:

	I =
1
27
; 	II =

1
2 · 27 ; 	III =

1
4 · 27 ; 	IV =

1
8 · 27

which guarantees the patch test property for the resulting approximation.
The target shape speci�cation for a hexahedron is more complicated compared to tetrahedra.

It can be done as well via composition of mappings and matrix H (Figure 4). However, for
the sake of compatibility H by itself should be the Jacobi matrix of a trilinear mapping so
its entries are the functions of �1; �2; �3.
The most natural way for a hexahedron shape prescription is to construct the same set of

elementary composite matrices H̃� for H and to consider the distortion measures of the matrices
H̃−1
� S̃� as the distortion measure of deviation from the target shape given by E�(H (�)−1S(�)).
There is a hypothesis which is not proved yet, this research is under way, that Theorem 1
can be generalized to cover the presence of the matrix H (�). Obviously, Theorem 1 is true
when H is constant on the cell; however, in this case the target cell shape is just an a�ne
cell which severely restricts the class of allowable deformations.
In order to reduce computational costs one should use a simpli�ed approximation of a cell

distortion based on some set of quadrature rules. For example, one can use an approximation
based on 8 quadrature points in the hexahedron vertices and one central node, or even the
simplest approximation consisting of 4 tetrahedra per trilinear cell, which is barely enough to
�x the target shape of the hexahedral cell.
The same reasoning can be directly applied to the general case of polylinear mappings

covering quadrilateral cells, prisms and various low-order �nite elements in higher dimensions.
The Jacobi matrix for all these mappings can be shown to take form (5).
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Figure 4. Prescription of target shape for hexahedra via composition of trilinear mappings.

The important consequence of Theorem 1 for the distortion measure E� is that the recursive
subdivision of the hexahedron into smaller ones, induced by uniform subdivision of a cube
into smaller cubes, cannot increase the upper bound on the distortion provided that coe�cient
v is changed in a consistent manner.
Thus with uniform cell re�nement the global upper bound for distortion measures of all

grid cells cannot increase, which in turn means that the global condition number remains
bounded.

5. SOLUTION TECHNIQUE

In order to solve the discrete minimization problem (14) we use a preconditioned gradient
method coupled with a line search technique. The key ingredient of this algorithm is the choice
of a non-linear preconditioning and the solution technique for the linear systems arising in
the resulting implicit method. To this end we use an approach suggested in Reference [6],
where a symmetric positive de�nite approximation of the Hessian matrix of functional (14)
was constructed analytically and an e�cient and robust iterative linear solver from Kaporin
[8] was used.
Let us de�ne the following matrices:

Pii=
@2f
@aTi @ai

Since the target functional possesses the strong ellipticity property, we get Pii=PTii ¿0. The
reduced Hessian matrix of (14) is assembled as follows:

H̃=




H̃11 0 0

0 H̃22 0

0 0 H̃33


 (20)

H̃ii= I − B+
Nc∑
c=1

Nq∑
q(c)=1

	q(c)BRT
c Q

T
q(c)PiiQq(c)RcB (21)

It is obvious that H̃= H̃T¿0 is inside the feasible set. If at least one vertex is �xed (i.e.
there exist bii=0) then H̃¿0 on any feasible grid.
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5.1. Procedure for grid untangling

In order to construct a feasible solution we suggest to use a penalty formulation, which is
based on the technique [6], and can be written as follows:
Find the solution of the following minimization problem

R= lim
�→�l; �¿�l

arg min
R

Ih
�

Ih
� =

Nc∑
c=1

Nq∑
q(c)=1

f�(A)|q(c); 	q(c); f�(A)=detH
(
�(A) + b � tr (AAT)

��(det A)

)
(22)

ai|q(c) =H−T
q(c)Qq(c)X

i
c; Xic=RcXi

��(q)=
q
2
+
1
2

√
�2 + q2; q=det A (23)

and �l¿0 is su�ciently small.
Here b¿0 is the constant. The additional term is introduced in order to avoid the situation

when the reduced Hessian of the functional H̃ has zero rows and columns. This term was
not necessary in the plane case.
The iterative solution scheme for this problem looks as follows:
Choose an initial guess R0,

for k =0; 1; 2; : : :

�k+1 = �(�b;Rk)

�nd minimization direction P k =−H̃−1
� ∇Ih

�k

solve approximately 
k = arg min



Ih
�k (R

k + 
P k)

Rk+1 =Rk + 
kP k

if qmin(Rk)¿0; then �k+1 = �b; stop (24)

Here qmin(R) is the minimal value of q=det A over all quadrature nodes of all grid cells R,
�b=10−9, function � is de�ned as follows:

�(�;R)=
√
�2b + 0:04(min(qmin(R); 0))2

The minimization problem for the function of single variable (24) can be solved using the
�nite choice from the set 
 ∈ {1; 2−1; : : : ; 2−N
}, where N
=32.
The reduced Hessian matrix H̃−1

� is de�ned by equality (20), where in the expression for
H̃ii the matrix Pii is replaced by P�ii de�ned below:

P�ii =
@2f�
@aTi @ai

+
�′′�
�2�
detH�aiaiT

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:511–526

https://www.researchgate.net/publication/279583364_Regularization_of_the_barrier_variational_grid_generation_method?el=1_x_8&enrichId=rgreq-65749971ad8bff3724203a61f5032e27-XXX&enrichSource=Y292ZXJQYWdlOzIyNzg3MTAzMTtBUzoyNDYzOTg2MjQ5ODkxODlAMTQzNTc1NzQxOTA0Ng==


522 L. V. BRANETS AND V. A. GARANZHA

The matrix H̃� has the same properties as H̃ but still is positive de�nite (or semide�nite) for
any infeasible, i.e. ‘tangled’ grid. The validations of this untangling procedure are considered
in References [6, 7].

5.2. Procedure for contracting the feasible set

Let us consider the solution of the following minimization problem

R= arg min
R

Ih(t)

Ih(t)=
Nc∑
c=1

Nq∑
q(c)=1

f(A)|q(c)	q(c); f(A)=f2 = (1− t) detH �(A)
det A− t�(A) (25)

ai|q(c) =H−T
q(c)Qq(c)X

i
c; Xic=RcXi

As an initial guess we choose a non-degenerate grid from F(0) and we set t0 = 0.
In order to contract the feasible set F(t) the following iterative solution scheme is sug-

gested:

for k =0; 1; 2; : : :

�nd minimization direction Pk =−H̃−1∇Ih(tk)

solve approximately 
k = arg min



Ih(tk)(Rk + 
Pk); (26)

Rk+1 =Rk + 
kPk ; tk+1 = (1− dt)tmin(Rk)

Here

tmin = min
q(c)

det A
�(A)

∣∣∣∣
q(c)

The value of dt is de�ned using the norm of the gradient of the functional Ih(tk).

6. NUMERICAL EXPERIMENTS

6.1. The domain shape recovery for given deformation �eld

Suppose that the mapping of a rectangular domain in logical co-ordinates onto the target
domain is given by the equality

w(�1; �2; �3)=



(R+ �3) cos

(
L− �1
R

sin’
)

�2 + (L− �1) cos’

(R+ �3) sin
(
L− �1
R

sin’
)


 (27)
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Figure 5. Stages of exact shape recovery (from left to right).

Figure 6. Exact shape recovery vs piecewise-constant deformation �eld.

Then the pointwise deformation is given by the shape control matrix H =(@w=@�1; @w=@�2;
@w=@�3).
Suppose that the initial guess is the uniform grid in the rectangular domain 06x16L; 06x2;

x361, while the target domain described by the above mapping has a spiral shape. We chose
R=1; ’=�=3; L=4�R= sin’ for the spiral with two turns. The idea of this test is to
reproduce the shape of the domain using distributed deformation �eld.
Using the simplest approximation of the functional based only on 4 tetrahedra for a hexahe-

dral cell and prescribing the target shape for each of these tetrahedra via the exact tetrahedra
shapes computed from (27) we achieve the exact shape recovery (Figure 5).
However, when the deformation is de�ned by a constant matrix H on each hexahedral cell

the �nal domain had a shape of a spiral with only one and a half turns (Figure 6).
Here relatively small local errors in description of cell shapes lead to the numerical solution

with �nal error comparable to the solution norm.
This simple example illustrates the importance of a proper target shape de�nition for hex-

ahedra which also plays a key role in the solution of such problems of mechanics as shape
recovery from stressed state and springback.

6.2. Grid untangling test

We consider a construction of a non-degenerate grid in a domain with a cubic cavity inside.
The structured hexahedral grid in this example is the mapping of the unit cube with a

uniform grid in logical co-ordinates onto the cube of the same size when a smaller cubic
cavity inside is rotated around x3 axis with an angle of rotation 
. The points inside the
smaller cube are �xed. All nodes on the external and internal cubes are �xed and represent
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Figure 7. 
=�=2.

Figure 8. 
=� with zero initial guess.

the surface grids with square cells. By “zero initial guess” below we mean the badly folded
grid with zero values of the internal vertices and correct boundary values.
The untangling procedure works �ne for the con�guration shown in Figure 7 where 
=�=2.

In the left �gure we show the co-ordinate surface �3 = const passing through the cube centre
and the grid on the cube boundary. The right �gure shows the “beam” made from the chain
of the hexahedral cells. The trilinear mapping inside each grid cell is non-degenerate.
In the case 
=� when started from zero initial guess the untangling procedure was locked

in the situation showed in Figure 8. Note that the grid is badly folded. In this example
the feasible set is the union of disjoint connected subsets. Moreover, if the grid is re�ned,
the number of such disjoint subsets increases. In this case the untangling procedure was not
able to “choose” between clockwise- and counterclockwise rotated solutions. This example
requires further investigation but it seems to indicate that we have the stationary point of
discrete functional (22) outside the feasible set.
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Figure 9. 
=� with non-zero initial guess.

However, if we take as an initial guess the feasible solution of the same problem with
�=2¡
¡�, which is still infeasible for 
=� then the untangling procedure successfully builds
a non-degenerate grid.
Note the presence of severely distorted hexahedra in the grid shown in Figure 9. The

trilinear mapping in all grid cells is non-degenerate; however, if one splits some cells into
tetrahedra using standard splittings into 5 or 6 tetrahedra, then the signed volume of some
tetrahedra will be negative. This is true in particular for very thin hexahedra shown in Figure 9
(right). Using quadrature rules may lead to another pathology when the grid spills out beyond
the domain boundaries while the Jacobian of the local mapping in each cell is strictly positive
in the quadrature nodes.
The suggested test case is very simple but it can be made extremely sti� and present a

negative example where the simpli�ed approximation methods for hexahedral cells based on
simpli�ed quadrature rules or splitting into tetrahedra fail, especially on coarse grids. Only
the slowest method based on 64 composite bases was consistent and reliable.

7. CONCLUSIONS

A maximum-norm optimization technique for spatial mappings was used to control the proper-
ties of the local mappings in the �nite element method, in particular in the case of hexahedral
cells.
The global grid untangling procedure was tested on di�cult 3-D examples demonstrating

its ability to work in a black box mode and its high level of robustness.
Further research is necessary in order to develop approximation methods for hexahedral

cells which are simple enough while still allowing to obtain guaranteed bounds on the trilinear
mapping distortion measures.
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