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Abstract

We consider an algorithm for construction of thick prismatic mesh layers which works as follows. A triangular surface mesh is
specified as input. Then, thin initial layer of highly compressed hyperelastic material glued to the surface is constructed using
robust algorithm for computation of discrete normals. This pre-stressed material expands, possibly with self-penetration and
extrusion to exterior of computational domain. Special preconditioned relaxation procedure is proposed based on the solution
of stationary springback problem. It is shown that preconditioner can handle very stiff problems related to construction of very
thick one-cell-wide layers for rather fine surface meshes. Once an offset prismatic mesh is constructed self-intersections are then
eliminated using iterative prism cutting procedure. Next, variational advancing front procedure is applied for refinement and precise
orthogonalization of prismatic layer near boundaries. It is guaranteed that the resulting mesh is free from inverted prisms.
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Introduction1

High quality simulation of viscous flows imposes rather strict requirements on computational meshes near solid2

boundaries. It it very important to construct meshes which provide orthogonality near boundary and precise control3

over mesh element size in the direction orthogonal to boundary irrespectively of the size and shape of surface mesh4

elements. Variational methods make this precise control possible [1]. Prismatic mesh layers consisting of triangular5

prisms, hexahedra or general polygonal prisms are flexible enough to be incorporated into automatic mesh generators6

while providing high quality mesh near boundaries. We consider semi-structured layers with the same mesh connec-7

tivity on each sublayer. In literature, sometimes more general case is considered where topology changes are admitted8

for mesh quality improvement [2]. However, we do not consider this case. Prismatic mesh layer is considered to be9

“thick” when its transverse size is comparable to the characteristic size of the geometric model. One can also call10

prismatic layer thick when its height is considerably larger compared to mesh element size on the surface.11
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1. Variational principle for construction of prismatic layers12

Let ξ1, ξ2, ξ3 denote the Lagrangian coordinates associated with elastic material, and x1, x2, x3 denote the Eulerian13

coordinates of a material point. Spatial mapping x(ξ) : R3 → R3 defines a stationary elastic deformation. The14

Jacobian matrix of the mapping x(ξ) is denoted by C, where ci j = ∂xi/∂ξ j.15

We look for the elastic deformation x(ξ) that minimizes the following weighted stored energy functional [4]16

F(x) =
∫

Ωξ

w(ξ)W(C) dξ, (1)17

where W(C) is polyconvex elastic potential (internal energy) which is a weighted sum of shape destortion measure18

and volume distortion measure [8]:19

W(C) = (1 − θ)
(

1
3 tr(CT C)

)3/2

det C
+

1
2
θ(

1
det C

+ det C) (2)20

In most cases we set θ = 4/5.21

Since distortion measure (2) is minimized on the average, locally it can be quite large. In theory it can be infinite22

on the set of zero measure. In practice it means that with mesh refinement quality of mesh cell can locally deteriorate.23

In practice, one can control the spatial distribution of distortion measure without actual contraction of the set of24

feasible mappings. Experience suggests that large values of distortion appear near boundaries and surfaces of material25

discontinuity Hence it is possible to introduce a weight function w(·) in the Lagrangian or Eulerian coordinates which26

takes large values in critical regions and is close to unity elsewhere.27

In the process of minimization, elements with a larger weight tend to have a smaller value of distortion function28

W(C). Hence, their shapes and sizes are very close to the target ones. This simple approach proved to be very efficient29

for mesh orthogonalization near the boundary [8]. A proper choice of the weight allows us to satisfy the no-slip30

boundary conditions and to approximate boundary orthogonality conditions and prescribed mesh element size in the31

normal direction very accurately.32

Theoretical arguments suggest that in order to eliminate the local singularities of the distortion function the weight33

distribution should be singular. However, this singularity is only reached in the limit of mesh refinement and for any34

given finite mesh weight distribution is bounded. One cannot prove that resulting deformation is quasi-isometric as in35

[8], [4] but numerical evidences suggest independence of the global mesh distortion bounds from the mesh size.36

Suppose that domain Ωξ can be partitioned into convex polyhedra Uk. Then stored energy functional (1) can be37

approximated by the following semi-discrete functional:38

F(xh(ξ)) =
∑

k

∫

Uk

w(ξ)W(∇xh(ξ)) dξ (3)39

where xh(ξ) is continuous piecewise-smooth deformation.40

In order to approximate integral over a convex cell Uk one should use certain quadrature rules. As a result semi-41

discrete functional (3) is replaced by the discrete functional:42

F(xh(ξ)) ≈
∑

k

vol(Uk)
Nk∑

q=1

βqwqW(Cq) = Fh(xh(ξ))43

Here Nk is the number of quadrature nodes per cell Uk, Cq denotes the Jacobian matrix in q-th quadrature node of Uk,44

while βq are the quadrature weights and wq are values of weight function in the quadrature nodes.45

The following majorization property should hold46

F(xh(ξ)) ≤ Fh(xh(ξ)) (4)47

This property can be used to prove that all intermediate deformations xh(ξ) providing finite values of discrete func-48

tional are homeomorphisms [4].49
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Let Gξ(ξ) and Gx(x) denote the metric tensors defining linear elements and length of curves in Lagrangian and50

Eulerian coordinates in the domains Ωξ and Ωx, respectively. Then, x(ξ) is the mapping between metric manifolds Mξ51

and Mx. The distortion functional (1) for this mapping can be written as52

F(x) =
∫
Ωξ

w(ξ)W(Q∇ξxH−1) det Hd ξ, (5)53

where54

HT H = Gξ, det H > 0, QT Q = Gx, det Q > 055

are arbitrary matrix factorizations of metric tensors Gξ and Gx.56

The corresponding discrete functional can be written as follows57

Fh(xh(ξ)) =
∑

k

vol(Uk)
Nk∑

q=1

wqβqW(QqCqH−1
q )detHq58

Note, that in the presence of the control metrics exact majorization inequality can be violated and one should be59

careful with quadrature rules in order to guarantee certain relaxed formulation for majorization, say in the form60

F(xh(ξ)) ≤ CFh(xh(ξ)), (6)61

where C is a constant. This inequality should guarantee that every intermediate iteration of the mesh generation62

method has finite energy for mapping as a whole and not just for the finite set of quadrature nodes.63

Suppose that a thin layer of hyperelastic material is glued to the surface of the body. This material is highly64

compressed in the direction orthogonal to the surface. Now suppose that the surface of the layer opposite to the65

domain boundary is freed which results in classical springback problem for pre-stressed hyperelastic material. Static66

springback deformation can be found as a result of minimization of stored energy.67

Elastic material is modelled by the one-cell-wide layer P of triangular prisms. For each prism P ∈ P the target68

prism Pt from the known prismatic layer in certain parametric manifold is specified. In order to construct such a69

target prism we consider a triangle T which belongs to the oriented surface triangulation of the polyhedral surface70

S . We map this triangle isometrically onto the plane x3 = 0 in such a way that its normal is directed upwards and71

build on it rectangular triangular prism with the height H(T ) equal to the prescribed thickness of the layer. Consider72

piecewise-smooth deformation xh : Pt → P as a solution of minimization problem for (3) with free boundary. When73

equilibrium solution is attained the thickness of elastic material would approximate the prescribed one. Note that at74

the springback relaxation stage material self-contact is ignored hence global overlaps are allowed.75

Consider auxiliary prism Pε constructed on the same triangular base T with the vertices pi and pi+ενi, i = 1, . . . , 3.76

Here pi are vertices of T , ε is certain small constant and νi is the discrete unit normal to polyhedral surface S at the77

vertex pi. Elastic deformation xh : Pt → Pε is quite far from isometry since H(T ) generally is much larger compared78

to ε. The tensions inside elastic material would move free surface away from the body.79

Springback computation under strong compression is rather difficult. Hence we use the set of successive target80

states in order to relax the stiffness of the problem. The sequence of target prisms defining deformations xh : Ph
t → Ph

81

is constructed via gradual enlargement of the target height h from ε to H(T ).82

Initial height ε is chosen in such a way that prismatic layer Pε is admissible. If for a small ε the layer still contains83

inverted prisms then preliminary untangling problem is solved using technique from [4].84

(a) (b) (c) (d) (e) (f)

PP
ε ε

t

Fig. 1: (a) initial thin prism with h = ε, (b)-(d) height enlargement for target prisms, (e), (f) real prisms after springback
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Fig. 1 illustrates the springback technique: (a) thin initial prism Pε, (b) initial target prism Pεt , (c)-(d) the target85

prism growth, while (e)-(f) show how real equilibrium prisms near convex and convex surface fragments, respectively,86

look like. Note that the attainable prism thickness has a variable value. For example, an attempt to build thick layer87

inside a sphere may lead to real thickness which is much smaller compared to target one since quite strong compression88

of the upper part of thick prism prevents further growth of the layer.89

One can reformulate the above procedure in algebraic terms. For each prism we specify metric tensor Gξ in90

Lagrangian coordinates in such a way that after minimization of (5) thin layer is obtained. Since target shapes are91

orthogonal we set (Gξ)13 = (Gξ)23 = 0. Elements (Gξ)i j, i, j = 1, 2 are fixed while element (Gξ)33 is gradually enlarged92

from ε2 to H2(T ). After each enlargement step variational problem (5) is solved approximately. For largest value of93

(Gξ)33 more minimizations iterations are used.94

2. Choice of the quadrature rules95

In order to approximate integral (3) over the cell Uk one should use quadrature rules. In each prism elastic defor-96

mation is approximated by the bilinear mapping97

x(ξ) = (p0(1 − ξ1 − ξ2) + p1ξ1 + p2ξ2)(1 − ξ3) + (p3(1 − ξ1 − ξ2) + p4ξ1 + p5ξ2)ξ3 (7)98

Note that this function maps rectangular prism with half of unit square as a base onto triangular prism with 3d99

vertices p0− p5. The numbering scheme for vertices is shown in Fig. 2. In order to build mapping of target prism onto100

current cell one has to use composition of mappings x(ξ) ◦ η(ξ)−1 where function η(ξ) is similar to (7).101

The columns of the Jacobian matrix of mapping (7) can be written as102

∂x(ξ)
∂ξ1
= (p1 − p0)(1 − ξ3) + (p4 − p3)ξ3

∂x(ξ)
∂ξ2
= (p2 − p0)(1 − ξ3) + (p5 − p3)ξ3

∂x(ξ)
∂ξ3
= (p3 − p0)(1 − ξ1 − ξ2) + (p4 − p1)ξ1 + (p5 − p2)ξ2

103

Hence the Jacobian matrix admits representation104

∇ξx = C1Λ1(ξ) +C2Λ2(ξ) +C3Λ3(ξ),
3∑

j=1

Λ j = I, Λ j � 0105

Λ1 = diag(1 − ξ3, 1 − ξ3, ξ1), C1 = (p1 − p0 p2 − p0 p4 − p1)
Λ2 = diag(ξ3, ξ3, ξ2), C2 = (p4 − p3 p5 − p3 p5 − p2)
Λ3 = diag(0, 0, 1 − ξ1 − ξ2), C3 = (p1 − p0 p2 − p0 p3 − p0)

106

Thus the majorization principle for polyconvex distortion measures [4], [6] can be applied which means that for107

polyconvex function (2)108

W(∇ξx) �
12∑
ν=1

aν(ξ)W(C̃ν),109

where C̃ν ν = 1, . . . , 12 means 3 × 3 “compound matrix” where k-th column is arbitrary chosen as a k-th columns of110

any of the basis matrices Ci, i = 1 . . . 3.111

This inequality provides natural geometric quadratures for construction of discrete distortion measure for prism.112

To this end one has to consider all compound matrices C̃ν generated by the basis matrices C1,C2,C3. Note that total113

number of quadrature nodes is not equal to 33 = 27 as it was suggested in theorem from [4], [6]. Precise number is114

equal to 2× 2× 3 = 12 since first two columns of the matrix Λ3 are equal to zero. The presence of additional mapping115

η(ξ) does not prevent using theorem from [4], [6] since for orthogonal prisms mapping (7) is affine.116

The set of quadrature nodes can be split into two groups each consisting of 6 elements.117
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Fig. 2: (a) Quadrature node at the vertex, (b) quadrature node at the edge, (c) prism with positive Jacobian of mapping (7) at the vertices and
negative Jacobian at some edges

Compound matrix where both first and second column are simultaneously taken from either matrix C1 or from118

matrix C2 while third column is arbitrary taken from third columns of Ci corresponds to vertex-based quadrature119

node, see Fig. 2(a). When first two columns of C̃ν are chosen from different matrices C1 and C2 it corresponds to120

vertical edge-based quadrature node, see Fig. 2(b).121

To summarize, one should use 6 vertex-based nodes and 6 vertical edge-based nodes in order to discretize functional122

(3).123

For the sake of simplicity one can try to use 6-node vertex-based quadratures. Numerical experiments have shown124

that resulting discrete variational problems becomes much less stiff in a sense that number of iterations to reach125

prescribed prism thickness is reduced but resulting layer may contain considerable number of twisted prisms with126

degenerate mapping (7). In principle one can first construct thick vertex-based prismatic layer and then try to untangle127

it using 12-node quadrature approximation. We were not able to make this scheme work. Untangling problem turned128

out to be too stiff for solver from [4].129

Fig. 2 (c) shows the prism with positive vertex Jacobians and some negative edge Jacobians. If such a prism is130

encountered in the layer then an attempt to cut part of the layer by cutting off the same fraction of all transverse131

edges leads to self-overlaps on the resulting outer boundary of prismatic layer. One should also note that problem of132

intersection detection for twisted prisms is not correctly posed.133

(a) (b) (c) (d)

Fig. 3: (a) Twisted prism in the computed prismatic layer, (b) enlarged twisted prism viewed from the free boundary, (c) mesh fragment, (d)
correct prism

Figs. 3(a)-(b) show twisted prism in the prismatic layer build inward from the surface of the “camel” model from134

Stanford collection. Vertex quadratures are used. Prism is viewed from inside of the camel in order to make the twist135

visible.136

Fig. 3(c)-(d) shows the same prism for 12-node approximation. It is clear that this prism is not twisted.137

Fig. 4(a)-(b) shows surface mesh on the “camel” model and cross-section of the layer, and Fig. 4(c)-(d) visualize138

the outer surface of prismatic layer which behaves as a generalized skeleton of the 3d domain.139



	 V.A. Garanzha et al. / Procedia Engineering 203 (2017) 401–413� 405
4 V.A. Garanzha, L.N. Kudryavtseva / Procedia Engineering 00 (2017) 000–000

Fig. 1 illustrates the springback technique: (a) thin initial prism Pε, (b) initial target prism Pεt , (c)-(d) the target85

prism growth, while (e)-(f) show how real equilibrium prisms near convex and convex surface fragments, respectively,86

look like. Note that the attainable prism thickness has a variable value. For example, an attempt to build thick layer87

inside a sphere may lead to real thickness which is much smaller compared to target one since quite strong compression88

of the upper part of thick prism prevents further growth of the layer.89

One can reformulate the above procedure in algebraic terms. For each prism we specify metric tensor Gξ in90

Lagrangian coordinates in such a way that after minimization of (5) thin layer is obtained. Since target shapes are91

orthogonal we set (Gξ)13 = (Gξ)23 = 0. Elements (Gξ)i j, i, j = 1, 2 are fixed while element (Gξ)33 is gradually enlarged92

from ε2 to H2(T ). After each enlargement step variational problem (5) is solved approximately. For largest value of93

(Gξ)33 more minimizations iterations are used.94

2. Choice of the quadrature rules95

In order to approximate integral (3) over the cell Uk one should use quadrature rules. In each prism elastic defor-96

mation is approximated by the bilinear mapping97

x(ξ) = (p0(1 − ξ1 − ξ2) + p1ξ1 + p2ξ2)(1 − ξ3) + (p3(1 − ξ1 − ξ2) + p4ξ1 + p5ξ2)ξ3 (7)98

Note that this function maps rectangular prism with half of unit square as a base onto triangular prism with 3d99

vertices p0− p5. The numbering scheme for vertices is shown in Fig. 2. In order to build mapping of target prism onto100

current cell one has to use composition of mappings x(ξ) ◦ η(ξ)−1 where function η(ξ) is similar to (7).101

The columns of the Jacobian matrix of mapping (7) can be written as102

∂x(ξ)
∂ξ1
= (p1 − p0)(1 − ξ3) + (p4 − p3)ξ3

∂x(ξ)
∂ξ2
= (p2 − p0)(1 − ξ3) + (p5 − p3)ξ3

∂x(ξ)
∂ξ3
= (p3 − p0)(1 − ξ1 − ξ2) + (p4 − p1)ξ1 + (p5 − p2)ξ2

103

Hence the Jacobian matrix admits representation104

∇ξx = C1Λ1(ξ) +C2Λ2(ξ) +C3Λ3(ξ),
3∑

j=1

Λ j = I, Λ j � 0105

Λ1 = diag(1 − ξ3, 1 − ξ3, ξ1), C1 = (p1 − p0 p2 − p0 p4 − p1)
Λ2 = diag(ξ3, ξ3, ξ2), C2 = (p4 − p3 p5 − p3 p5 − p2)
Λ3 = diag(0, 0, 1 − ξ1 − ξ2), C3 = (p1 − p0 p2 − p0 p3 − p0)

106

Thus the majorization principle for polyconvex distortion measures [4], [6] can be applied which means that for107

polyconvex function (2)108

W(∇ξx) �
12∑
ν=1

aν(ξ)W(C̃ν),109

where C̃ν ν = 1, . . . , 12 means 3 × 3 “compound matrix” where k-th column is arbitrary chosen as a k-th columns of110

any of the basis matrices Ci, i = 1 . . . 3.111

This inequality provides natural geometric quadratures for construction of discrete distortion measure for prism.112

To this end one has to consider all compound matrices C̃ν generated by the basis matrices C1,C2,C3. Note that total113

number of quadrature nodes is not equal to 33 = 27 as it was suggested in theorem from [4], [6]. Precise number is114

equal to 2× 2× 3 = 12 since first two columns of the matrix Λ3 are equal to zero. The presence of additional mapping115

η(ξ) does not prevent using theorem from [4], [6] since for orthogonal prisms mapping (7) is affine.116

The set of quadrature nodes can be split into two groups each consisting of 6 elements.117
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Fig. 2: (a) Quadrature node at the vertex, (b) quadrature node at the edge, (c) prism with positive Jacobian of mapping (7) at the vertices and
negative Jacobian at some edges

Compound matrix where both first and second column are simultaneously taken from either matrix C1 or from118

matrix C2 while third column is arbitrary taken from third columns of Ci corresponds to vertex-based quadrature119

node, see Fig. 2(a). When first two columns of C̃ν are chosen from different matrices C1 and C2 it corresponds to120

vertical edge-based quadrature node, see Fig. 2(b).121

To summarize, one should use 6 vertex-based nodes and 6 vertical edge-based nodes in order to discretize functional122

(3).123

For the sake of simplicity one can try to use 6-node vertex-based quadratures. Numerical experiments have shown124

that resulting discrete variational problems becomes much less stiff in a sense that number of iterations to reach125

prescribed prism thickness is reduced but resulting layer may contain considerable number of twisted prisms with126

degenerate mapping (7). In principle one can first construct thick vertex-based prismatic layer and then try to untangle127

it using 12-node quadrature approximation. We were not able to make this scheme work. Untangling problem turned128

out to be too stiff for solver from [4].129

Fig. 2 (c) shows the prism with positive vertex Jacobians and some negative edge Jacobians. If such a prism is130

encountered in the layer then an attempt to cut part of the layer by cutting off the same fraction of all transverse131

edges leads to self-overlaps on the resulting outer boundary of prismatic layer. One should also note that problem of132

intersection detection for twisted prisms is not correctly posed.133

(a) (b) (c) (d)

Fig. 3: (a) Twisted prism in the computed prismatic layer, (b) enlarged twisted prism viewed from the free boundary, (c) mesh fragment, (d)
correct prism

Figs. 3(a)-(b) show twisted prism in the prismatic layer build inward from the surface of the “camel” model from134

Stanford collection. Vertex quadratures are used. Prism is viewed from inside of the camel in order to make the twist135

visible.136

Fig. 3(c)-(d) shows the same prism for 12-node approximation. It is clear that this prism is not twisted.137

Fig. 4(a)-(b) shows surface mesh on the “camel” model and cross-section of the layer, and Fig. 4(c)-(d) visualize138

the outer surface of prismatic layer which behaves as a generalized skeleton of the 3d domain.139
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(a) (b) (c) (d)

Fig. 4: (a) Initial surface mesh, (b) cross-section of prismatic layer, (c) model with its approximate skeleton, (d) approximate skeleton

Springback-based thick layer can be considered as an alternative solution to the problem of construction of medial140

surface. Varying weight function w(ξ) in the functional (5) one can control the deviation of the layer from orthogonal-141

ity and, in turn, its attainable thickness. The higher is the degree of orthogonality, the closer is the resulting layer to142

the medial axis-based one. Allowing larger nonorthogonality allows to diminish greatly influence of small but sharp143

disturbances on the surface and allows to construct rather thick layers.144

3. Elimination of self-intersections145

(a) (b) (c)

Fig. 5. (a) Surface mesh, (b) elimination of material in the exterior of the domain, (c) construction of the contact surface

We do not take into account self-contact of elastic material during springback. Instead we allow material to self-146

penetrate and freely intersect the boundary of domain. In order to eliminate self-intersection iterative cutting procedure147

is applied. First we cut offmaterial on each prism which goes out of the computational domain. After that we build the148

list of all prisms which intersect other prisms and apply to the prisms in the list thickness reduction by certain relative149

coefficient β slightly less then unity. This procedure is repeated until all intersections are eliminated. As a result in150

the self-penetration zones certain “contact surface“ is constructed. In the limiting case of opposite parallel planes at151

the distance D and with thicknesses of overlapping opposite layers equal to H1 and H2, where δH = H1 +H2 −D > 0,152

this procedure will create opposite layers with thicknesses close to153

H�1 =
H1

H1 + H2
D, H�2 =

H2

H1 + H2
D154

which means that in general found middle surface does not correspond to middle surface of overlap region.155

Additional one-sided smoothing procedure is applied to the outer surface of the layer which can only reduce the156

thickness thus avoiding possibility of reappearance of overlaps. This process is illustrated in Fig. 5.157
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Fig. 6: (a) Initial thin layer, (b) intermediate layer, (c) thick layer, (d) thick layer without self-intersections

Algorithm stages are illustrated in Fig. 6–8 for simplified airplane model. Initial thin layer is shown in Fig. 6(a).158

Intermediate springback solution is shown in Fig. 6(b). Finite prismatic layer is quite thick and does not contain159

degenerate prisms but may contain self-overlaps and boundary overlaps as shown in Fig. 6(c). Elimination of self-160

interections results in the mesh shown in Fig. 6(d).161

Additional smoothing is applied to the outer surface of layer. Its vertices are allowed to move along the transverse162

edges of prisms. Smoothing procedure is based on the Laplace-Beltrami smoothing iterations applied to approximate163

distance function computed along transverse edges of the prisms. Mean value discretization [7] is used to enforce164

maximum principle. Smoothed surface is shown in Fig. 8(a).165

4. Layer refinement and orthogonalization166

As soon as the offset surface along with the set of very long prismatic cells is constructed one has to split the layer167

according to prescribed mesh size distribution in the direction orthogonal to the boundary.168

Fig. 7(a) shows single prism of thick layer and imaginary mesh lines which are the images of the straight transverse169

edges of prism after refinement and orthogonalization. First layer is cut from the prism according to the prescribed170

mesh size distribution law (Fig. 7(b)), then, two-cell-wide layer is optimized (Fig. 7(c)). Here the weight w(ξ) in171

the lower cell is much larger than the one in the upper cell. As a result the lower cell is orthogonalized. Since upper172

boundary of layer is fixed this procedure eventually leads to transfer of non-orthogonality from solid boundary to outer173

boundary of layer. We can either dismiss certain outer fraction of layer or use the sequence of weights where difference174

of weights on two layers eventually diminishes and tends to unity. The ratio of weights is largest in approximately175

one-quarter or one-third of the total layer. One could also consider movement of vertices on the outer boundary during176

optimization but here we do not use such an algorithm.177

Successive splitting and orthogonalization are shown in Fig. 8(b)-(c). As one can see variational method is applied178

only to one-cell-wide or two-cell-wide layers, while total number of sublayers can be arbitrary large. Final layer179

which is orthogonal near boundary is shown in Fig. 8(d).180
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(a) (b) (c) (d)

Fig. 7. Successive steps of layer splitting and orthogonalization

(a) (b)

(c) (d)

Fig. 8: (a) Layer after Laplace-Beltrami smoothing, (b) splitting into two sublayers, (c) orthogonalization of internal sublayer, (d) final prismatic
layer

The above procedure guarantees the absence of degenerate elements that at each stage of the prismatic layer gen-181

eration algorithm.182

5. Double scaling for preconditioner183

Minimization of the discrete functional can be formulated as a problem of minimization of function F(Z) where184

argument is the vector Z such that ZT = (zT
1 zT

2 . . . zT
nv

) where zk ∈ R3, k = 1, . . . , nv are positions of mesh vertices.185

Hessian matrix H̃ of the function F is built of 3 × 3 blocks H̃i j =
∂2F
∂zi∂zT

j
. Here matrix H̃i j is placed on the intersection186

of i-th block row and j-th block column.187

The Newton method for finding stationary point of the function can be written as follows188

nv∑
j=1

H̃i j(Zl)δz j + ri(Zl) = 0 (8)189
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zl+1
k = zl

k + τlδzk, k = 1, . . . , nv (9)190

Here parameter τl is found as approximate solution of the following 1d problem191

τl = arg min
τ

F(Zl + τδZ)192

We use simple binary subdivision to find approximate minimum.193

The following simple iterative scheme was suggested in [5], [10] by setting H̃i j = 0 for i � j in equations (8).194

Hence each iteration reduces to independent solution of 3 × 3 linear system with matrix H̃ii in i-th mesh vertex. Note195

that it follows from the polyconvexity of the stored energy that it is rank-one convex which in turn leads to positive196

definiteness of the matrices H̃ii. Rank one convexity implicates that function F is convex as a function of three197

variables - the components of zi, when all other vertices are fixed.198

Unfortunately we have found that this small block Jacobi preconditioner would not allows us to attain target thick-199

ness of prismatic layer.200

In 2000 Garanzha [8] proposed an alternative preconditioner. Let us set all off-diagonal elements in the matrices201

H̃i j to zero. Then linear system (8) will be partitioned into three independent linear systems with respect to three202

vectors δZm defined by the following permutation (δZm)i = (δzi)m.203

The size of each linear system is equal to the number of vertices nv. Matrices of these linear systems are symmetric204

positive definite. It follows again from the rank one convexity, since function F is convex with respect to displacement205

of all vertices in the same direction.206

Hence these linear systems can be approximately solved using preconditioned conjugate gradients method (PCG).207

This algorithm was used with certain success for many years but eventually we have found that it cannot handle stiff208

springback problems when target thickness of layer is quite large compared to the mesh size on the surface. Again,209

for stiff cases we were just not able to attain target thickness of the layer.210

In order to resolve this difficulty we introduced new preconditioner which we call double scaling technique.211

Let BT
i Bi = H̃ii denote the factorization of 3 × 3 matrix H̃ii. We apply to Hessian matrix H̃ the following block212

scaling213

H̃B
i j = B−T

i H̃i jB−1
j214

This equality can be rewritten as H̃B = B−T H̃B−1.215

The next step is to apply permutation which allows to represent matrix H̃B as 3×3 block matrix with nv×nv blocks216

H̄ = PH̃BPT , H̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
H̄11 H̄12 H̄13
H̄21 H̄22 H̄23
H̄31 H̄32 H̄33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠217

Setting offdiagonal blocks in H̄ to zero, one obtains three independent linear systems with nv × nv matrices H̄ii.218

Preconditioned conjugate gradient technique is used for approximate solution with second order Cholesski factor-219

ization [9] as a preconditioner220

LiLT
i ≈ H̄ii221

It is well known that approximate PCG solution to linear system222

Ax = f223

starting from zero initial guess which was obtained with relative error � can be formally written as224

x� = R� f ,225

where R� is certain symmetric positive definite matrix which in some sense approximates matrix A−1
226

Hence we eventually replaced inverse of full Hessian matrix H̃ by the following matrix227

H� = B−1PT R�PB−T
228
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Thus increment vector which is used in (9) is defined by equality229

δZ = H�R(Zl), RT = (rT
1 rT

2 , . . . , r
T
nv

)230

Fig. 9. Example of stiff springback problem

Fig. 9 illustrates the case of extremely thick prismatic layer where the relative thickness, i.e. the ratio of height of231

the prism to its base reaches 103 due to highly nonuniform mesh on the surface.232

6. Construction of prismatic layers for polyhedral surfaces with non-Lipschitz vertices233

A number of algorithms was suggested in order to assign normal vectors to the vertices of the polyhedral surfaces.234

Denote such a vertex by p, then vector ni is the unit normal to the adjacent triangle Ti with vertices ppi pi+1. Normal235

vector in p is computed via236

ν =

∑
i

wini

|∑
i

wini| , wi > 0 (10)237

We use weights wi = θi, where θi is the angle of Ti at p. Note that well-known algorithms for computing vertex normals238

in general do not guarantee that discrete normal is really directed inward the domain, namely, that the following239

inequality holds240

nT
i ν > 0 (11)241

Numerical experiments show that violations of this inequality are quite rare and are associated with sharp feature242

lines and conical vertices with complex neighborhood structure. Constrained algorithms for computation of discrete243

normals play important role for prismatic layer generation [3].244

Assume that there exist a pair vertex p - adjacent triangle T with unit normal n, satisfying the following inequality245

nTν < β|ν| (12)246

It means that discrete normal is almost tangential to the surface. In practice we use coefficient β = 1 − cos(π/9). If247

such a pairs are present in the mesh, then for each “suspicious” vertex we suggest to apply the following algorithm.248

Consider at the vertex p a convex cone K defined as the intersection of the half-spaces (x − p)T ni ≥ 0 defined by249

adjacent faces. If this cone is empty then normal vector satisfying constraints (11) does not exist and one cannot find250

coordinate frame where vertex neighbourhood is presented as Lipschitz-continuous elevation function.251
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(a) (b) (c)

o

p

ν

ni

p

Fig. 10. (a) Ball inside convex cone, (b) ball touches the face of a cone, (c) construction of convex cone for mesh vertex

Let us try to place unit ball inside this cone such that the center o of the ball is as close to c as possible, as shown252

in Fig. 10 (a), while Fig. 10 (c) shows construction of convex cone for saddle-like polyhedral surface fragment.253

Denote normal vector by ν = o − p. Suppose that the ball touches the plane of the adjacent face with unit normal254

ni, as illustrated in Fig. 10 (b). Then |ν|2 − |ν−ninT
i ν|2 = 1, i.e. νT ni = 1. Hence the problem of optimal ball placement255

is reduced to standard quadratic programming (QP) problem.256

Find vector ν ∈ R3 via minimization of257

min
1
2
|ν|2, s. t. nT

i ν ≥ 1, i = 1, . . . ,m (13)258

where m is the number of adjacent faces for vertex p.259

It is geometrically evident that vector ν is fully defined by 2 or 3 active faces, despite the fact that it can touch260

larger number of planes.261

Since the number of suspicious vertices is small we use direct search method to solve QP problem instead of262

iterative technique. First we consider all pairs ni, n j, i � j and check that the solution263

ν =
ni + n j

1 + nT
i n j

264

satisfies all the remaining constraints (13). If such pair is not found, we seach for a triple of distinct normals ni, n j, nk265

being the solution of the linear system
(
ni n j nk

)T
ν = (1 1 1)T .266

If no admissible solution is found then exterior penalty solution of the overdetermined QP problem is used to267

find the acceptable direction. Then several faces should be found which are not acceptable for this direction. The268

remaining faces are marked as active for variational method.269

Simple “two cubes” model with non-Lipschitz vertices is shown in Fig. 11.270

At least one of the prisms adjacent to non-Lipschitz vertex p should be degenerate and the Jacobian of mapping (7)271

should attain zero or negative values. For such a prism another approximation scheme for variational method should272

be used. Consider prism P adjacent to p and based on “bad” face. We exclude from the set of 12 quadrature nodes273

those tetrahedra which contain at least two prism edges originating from vertex p. Remaining quadrature nodes serve274

to guarantee nondegeneracy of this prism as a generalized polyhedron.275

(a) (b)

Fig. 11: (a) Model with two non-Lipschitz vertices (bold), (b) prismatic layer
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Thus increment vector which is used in (9) is defined by equality229

δZ = H�R(Zl), RT = (rT
1 rT

2 , . . . , r
T
nv

)230

Fig. 9. Example of stiff springback problem

Fig. 9 illustrates the case of extremely thick prismatic layer where the relative thickness, i.e. the ratio of height of231

the prism to its base reaches 103 due to highly nonuniform mesh on the surface.232

6. Construction of prismatic layers for polyhedral surfaces with non-Lipschitz vertices233

A number of algorithms was suggested in order to assign normal vectors to the vertices of the polyhedral surfaces.234

Denote such a vertex by p, then vector ni is the unit normal to the adjacent triangle Ti with vertices ppi pi+1. Normal235

vector in p is computed via236

ν =

∑
i

wini

|∑
i

wini| , wi > 0 (10)237

We use weights wi = θi, where θi is the angle of Ti at p. Note that well-known algorithms for computing vertex normals238

in general do not guarantee that discrete normal is really directed inward the domain, namely, that the following239

inequality holds240

nT
i ν > 0 (11)241

Numerical experiments show that violations of this inequality are quite rare and are associated with sharp feature242

lines and conical vertices with complex neighborhood structure. Constrained algorithms for computation of discrete243

normals play important role for prismatic layer generation [3].244

Assume that there exist a pair vertex p - adjacent triangle T with unit normal n, satisfying the following inequality245

nTν < β|ν| (12)246

It means that discrete normal is almost tangential to the surface. In practice we use coefficient β = 1 − cos(π/9). If247

such a pairs are present in the mesh, then for each “suspicious” vertex we suggest to apply the following algorithm.248

Consider at the vertex p a convex cone K defined as the intersection of the half-spaces (x − p)T ni ≥ 0 defined by249

adjacent faces. If this cone is empty then normal vector satisfying constraints (11) does not exist and one cannot find250

coordinate frame where vertex neighbourhood is presented as Lipschitz-continuous elevation function.251
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Fig. 10. (a) Ball inside convex cone, (b) ball touches the face of a cone, (c) construction of convex cone for mesh vertex

Let us try to place unit ball inside this cone such that the center o of the ball is as close to c as possible, as shown252

in Fig. 10 (a), while Fig. 10 (c) shows construction of convex cone for saddle-like polyhedral surface fragment.253

Denote normal vector by ν = o − p. Suppose that the ball touches the plane of the adjacent face with unit normal254

ni, as illustrated in Fig. 10 (b). Then |ν|2 − |ν−ninT
i ν|2 = 1, i.e. νT ni = 1. Hence the problem of optimal ball placement255

is reduced to standard quadratic programming (QP) problem.256

Find vector ν ∈ R3 via minimization of257

min
1
2
|ν|2, s. t. nT

i ν ≥ 1, i = 1, . . . ,m (13)258

where m is the number of adjacent faces for vertex p.259

It is geometrically evident that vector ν is fully defined by 2 or 3 active faces, despite the fact that it can touch260

larger number of planes.261
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ν =
ni + n j

1 + nT
i n j

264

satisfies all the remaining constraints (13). If such pair is not found, we seach for a triple of distinct normals ni, n j, nk265

being the solution of the linear system
(
ni n j nk

)T
ν = (1 1 1)T .266

If no admissible solution is found then exterior penalty solution of the overdetermined QP problem is used to267
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remaining faces are marked as active for variational method.269

Simple “two cubes” model with non-Lipschitz vertices is shown in Fig. 11.270

At least one of the prisms adjacent to non-Lipschitz vertex p should be degenerate and the Jacobian of mapping (7)271

should attain zero or negative values. For such a prism another approximation scheme for variational method should272

be used. Consider prism P adjacent to p and based on “bad” face. We exclude from the set of 12 quadrature nodes273

those tetrahedra which contain at least two prism edges originating from vertex p. Remaining quadrature nodes serve274

to guarantee nondegeneracy of this prism as a generalized polyhedron.275
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(a) (b)

Fig. 12: (a) Surface mesh for TsAGI SRV model, (b) prismatic layer

(a) (b)

Fig. 13: (a) Complicated surface fragment, (b) fragment of the prismatic layer

Consider quite a complicated test case for prismatic meshing. The model of TsAGI RSV contains sharp tips and276

flaps. In order to build high quality mesh one should change topology of the layer near flap. Hence presented results277

illustrate the stress test where connectivity is not changed.278

Fig. 12 shows surface mesh on TsAGI RSV and fragments of the prismatic layer.279

Complex geometric structures on the surface of the model are shown in Fig. 13(a). Fig. 13(b) shows that very deep280

and thin cuts do not lead to reduction of the layer thickness.281

This test case also provides nice illustration of the fact that the precise measuring of the thickness of “thick layer” is282

not simple problem. The most obvious solutions: true distance from the surface and length of mesh lines may provide283

unacceptable results.284

Surface mesh on TsAGI RSV model does contain few non-Lipschitz vertices which does not prevent presented285

algorithm from constructing a thick layer.286

7. Discussion287

Numerical experiments have shown that deviation from orthogonality in resulting layers near surface is negligible,288

general quality of prismatic layers is quite good and it can be useful in industrial application. On the other hand289

variational method is time consuming if applied globally. It seems to be at least five times slower compared to the290

state-of-the-art industrial prismatic meshers. We briefly discuss here the way to reduce the computational costs of291

the algorithm. First of all better initial guess should be constructed. It can be done by smoothing the field of surface292

normals/transverse directions by solving simple unconstrained convex quadratic programming problem. This simple293
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correction of algorith may sharply increase the admissible thickness of the vast majority of prismatic cells of the294

initial layer. Variational optimization can be applied locally, only around the zones where degenerate prisms are295

found. One should be quite careful since straightforward application of springback technique to the fragment of thin296

layer surrounded by thick layer results in very poor performance of iterative minimization due to the prisms with297

highly skewed upper lid as shown in Fig. 14(a). In order to make minimization problem less stiff one should use298

sliding boundary conditions as shown in Fig. 14(a).299

(a) (b) (c)

Fig. 14: (a) Bad coupling of thin and thick layer fragments, (b) coupling with sliding boundary conditions, (c) “locked” boundary configuration
results in sharp local layer thickness reduction

In many cases there is no need to construct offset surfaces and one-cell-wide thick prismatic layers. Hence the above300

described technique while being very powerful becomes too complex and cumbersome. It has obvious drawbacks301

when “locking” of transverse directions leads to sharp layer thickness decrease as shown in Fig. 14(c). Note however,302

that second application of the same technique to the outer boundary of the first layer allows to recover thick layer,303

or even to mesh all the domain by the prismatic mesh. Still, the problem of smooth coupling of layers with variable304

thickness is not trivial and may require some additional smoothing passes with a careful choice of target cell shapes.305

Another drawback is related to contruction of the traces of the prismatic layer on the side surfaces (“side walls”).306

Single-cell-wide offset is not compatible with curved side walls.307

Nevertheless suggested technique still can be very useful when mesh should follow the normal mesh size distribu-308

tion with very high precision irrespectively of the size and shape of the surface elements. Rather distorted cells can be309

created at a certain distance from the boundary but inverted mesh cells cannot appear since they result in the infinite310

value of the discrete stored energy.311

Springback technique seems to be promising tool which can be used as a part of automatic fully hexahedral mesh312

generator.313
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[2] A. Loseille, R. Löhner, Robust boundary layer mesh generation. Proceedings of the 21st International Meshing Roundtable. 2013 493-511.320

[3] Y. Kallinderis, S. Ward, Prismatic Grid Generation for Three-Dimensional Complex Geometries. AIAA Journal 31(1993) 1850-1856.321

[4] V.A. Garanzha, L.N. Kudryavtseva, S.V. Utyzhnikov, Untangling and optimization of spatial meshes // Journal of Computational and Applied322

Mathematics. 269 (2014) 24-41.323

[5] S.A. Ivanenko, Construction of nondegenerate grids. Comput. Math. and Math. Phys. 28(1988) 141-146.324

[6] L.V. Branets, V.A. Garanzha, Distortion measure for trilinear mapping. Application to 3-D grid generation. Num. Linear Algebra Appl. 9(2002)325

511–526.326

[7] M.S. Floater, K. Hormann, Surface Parameterization: a Tutorial and Survey. // Advances in Multiresolution for Geometric Modelling, Mathe-327

matics and Visualization. Part 4. – Berlin, Heidelberg, New York: Springer, 2005. – P. 157-186.328

[8] V.A. Garanzha, The barrier method for constructing quasi-isometric grids. Comput. Math. Math. Phys. 40(2000) 1617-1637.329

[9] I.E. Kaporin, High quality preconditioning of a general symmetric positive definite matrix based on its UT U + UT R + RT U?decomposition.330

Numerical linear algebra with applications 5 (1998) 483-509.331

[10] S.A. Ivanenko, A variational form of the Winslow grid generator. Journal of Computational Physics, 136(1997) 385-398.332



	 V.A. Garanzha et al. / Procedia Engineering 203 (2017) 401–413� 41312 V.A. Garanzha, L.N. Kudryavtseva / Procedia Engineering 00 (2017) 000–000

(a) (b)
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Fig. 13: (a) Complicated surface fragment, (b) fragment of the prismatic layer
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