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Variational principles in grid generation and geometric
modelling: theoretical justi�cations and open problems

V. A. Garanzha∗;†

Computing Center of Russian Academy of Sciences; Vavilova 40; Moscow 119991; Russia

SUMMARY

The paper is devoted to analysis of variational principles for construction of mappings with prescribed
properties in grid generation and geometric modelling. An attempt is made to formulate general re-
quirements which should be satis�ed by the variational principle. Theoretical justi�cation is considered
along with review of unsolved problems and fundamental mathematical di�culties. Copyright ? 2004
John Wiley & Sons, Ltd.

KEY WORDS: grid generation; variational principle; polyconvexity; quasi-isometric mapping; manifold
of bounded curvature

1. INTRODUCTION

Variational grid generation methods [1–12] have become important tools in many real-life
applications. Despite considerable progress in this area, lots of unsolved problems still exist.
Some of them are the subject of this paper.
With onset of unstructured grid generation methods the widespread opinion was that grid

generation methods in a classical sense, namely mapped ‘elliptic’ grid generators and varia-
tional grid generators, are not necessary any more. Now ready methods to split computational
domains into simple standard subdomains are available. Or meshless methods can kill the idea
of grid generation itself. However this initial euphoria was over very fast.
First of all it was found that ‘meshless’ methods require grid generation. Another example

is that best unstructured mesh improvement can be achieved using variational methods, which
in fact are exactly those suggested for mapped grid generation but in di�erent guise. Another
reason is that lots of new applications for variational mapping construction methods were
found, such as sensitivity analysis and topological optimization, geometric design, design of
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536 V. A. GARANZHA

machining tools, animation, morphing, texture mappings, computational anatomy problems,
including brain mapping, colonoscopy, and many others.
As a result, engineers started to understand that the common denominator of a successful

technique is that (a) a variational principle should be used, (b) variational problem should be
well posed.
One of the basic motivations of the research outlined in this paper is that the drawbacks

in rigorous foundations can adversely a�ect engineering properties of the resulting practical
methods. In particular, one has to understand clearly the valid domain of application of a
certain technique as well as its intrinsic ‘breakdown threshold’. This notion is hard to de�ne
formally, but given that in the state-of-the-art engineering development manual intervention is
supposed to be very small, the natural question for engineers is ‘will this black box method
solve my problem and at what cost?’, or ‘is it safe to use this tool in the production cycle?’.
Theoretically it is possible to ‘break down’ any technique. This is particularly simple for

mapped �nite di�erence elliptic grid generation methods [13]. In Reference [8] examples of
simple domains were presented where �nite di�erence methods were not able to construct
non-degenerate grids, while discrete variational methods, suggested in Reference [8], handled
the same problems successfully. Such breakdowns can be attributed to the lack of rigor-
ous existence and unisolvability results for generating equations in the practically interesting
cases. The convergence of �nite di�erence (or any other) approximations to the solutions of
continuous problems is also not proven.
For discrete variational methods the ‘breakdown threshold’ is much higher, but it still ex-

ists and simply has a di�erent expression. Non-degenerate grids can always be constructed.
However the grid properties can be very far from expected. One can encounter various insta-
bilities, such as non-unique grids, lack of convergence of sequence of grids, grid instabilities
with respect to small variations of input data and ‘non-smooth’ structured grids despite the
fact that the functional of interest is elliptic [14]. The main problem is that there is no simple
criteria to predict the appearance of such phenomena. In most (but not all) cases it goes
virtually undetected and as a result little attention is paid to these problems.
Another problem is that the variational methods for construction of mappings are derived

based on the assumption that the underlying spatial mappings are smooth and one-to-one [7].
Unfortunately, such properties are not provable for minimizers of variational problems. Even
in the case of harmonic mappings technique from a practical point of view one has to con-
sider two di�erent solutions. The �rst one is obtained using minimization of the Dirichlet-type
functional (or solving the Beltrami equations) and is smooth and unique. However it is well
known that in order to obtain the computational grid one has to exchange dependent and
independent variables. As a result it is necessary to minimize highly non-linear non-convex
functionals. Contrary to the suggestions from Reference [7], these two problems are not prov-
ably equivalent, the solutions are not provably the same and the conclusions derived from the
analysis of Beltrami equations can serve only as heuristics.
It is also obvious that the classes of geometrical objects of interest to engineers should

include non-smooth objects. Hence classical results from di�erential geometry and geometry
of Riemannian manifolds are of limited use in this case. In particular, the theory of manifolds of
bounded curvature (MBC) which is reviewed in the current paper is based on concepts of
distances and angles. The Christo�el symbols found in di�erential geometry are simply not
used! The classical grid generation methods may exhibit various singularities when non-
smooth boundaries and metrics are present. As a result the behaviour of these methods is
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unpredictable in the range of high curvature objects to non-smooth objects which are very
important for engineers.
Another example is related to sensitivity analysis. Here the natural assumption is that vari-

ations of input data are small, but generally one cannot assume that they are smooth! The
conclusion is that the variational method should not exhibit such pathological sensitivity with
respect to curvature and thus should not make excessive appeal to the smoothness of input
data.
The variational principles in grid generation and geometric modelling in principle have

arti�cial nature. In particular they are not introduced as approximations of physical models.
This ambiguity allows one to construct a good variational formulation as soon as clear under-
standing of its underlying principles is available. The main idea which is adopted in this work
is that the continuous variational principle should be considered. This continuous variational
principle should provide a spatial mapping as a minimizer of the variational problem. This
spatial mapping in turn should provide a provably optimal parameterization for the problem
of interest. The target �nite element grid should be constructed as the �nite element solution
of the continuous variational problem.
The problems related to validation of the above procedure are considered.

2. GENERAL REQUIREMENTS FOR VARIATIONAL PRINCIPLE

1. The variational problem should be well posed, its solution should exist and should be
stable with respect to input data.

2. The variational principle should not admit singular mappings as minimizers, hence the
class of admissible mappings consists of locally invertible quasi-isometric mappings [15].
By de�nition, under quasi-isometric mapping the ratio of the distance between any two
close enough points and the distance between their images is uniformly bounded from
below and from above.

3. The solutions of the variational problem should be as smooth as possible.
4. The ability to construct quasi-uniform mappings is a key property in grid generation.
Quasi-uniformity means minimal or at least bounded distortion of distance between any
close enough points under the mapping.

5. The deviation of the solutions of the variational problem from the target ones should
be bounded in maximum norm. The target solution as a rule is unknown mapping with
known properties. This principle also naturally leads to the quasi-isometry concept.

6. The variational principle should make sense for quite general spatial domains. In partic-
ular, the boundary smoothness requirements should not be very restrictive.

7. The solutions of the variational problem should be orientation-preserving and with proper
boundary conditions should be globally one-to-one.

8. The discretized variational principle should make sense, its solution should converge to
the minimizer of the continuous variational problem.

9. The discrete solutions (say piecewise-a�ne mappings) should be locally invertible and
with additional constraints should be globally invertible.

Assumption that the variational principle itself is completely arti�cial implies that it can
be as simple as possible. Previous experience shows that most of the variational principles
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538 V. A. GARANZHA

successfully used in grid generation are very similar to the stored energy functionals in hy-
perelasticity theory [16], but generally free from hyperelasticity axiomatics.
Let us denote by �0 an open bounded domain in co-ordinates �= {�1; : : : ; �n}. The spatial

mapping of interest y(�) : �0 →Rn is constructed as a minimizer of the functional depending
on the gradient of the mapping:

∫
�0
f(∇�y) d�; f : Rn×n →R (1)

where ∇�y denotes matrix with entries @yi=@�j. In fact this is Jacobi matrix of the mapping
y(�).
Comprehensive analysis of the mathematical formulation of minimization problems for such

class of functionals, including analysis of conditions of well posedness, regularity of solutions,
restrictions on domains and boundary conditions can be found in Reference [16].
The quasi-isometry means that for any two su�ciently close points in � co-ordinates, say

� and �, the following inequality holds:

L
C

|� − �|6|y(�)− y(�)|6LC|� − �| (2)

where C¿0 is a constant, | · | is the Euclidean length and L is the length scale. The quasi-
isometry implies that the function y(�) is not just continuous, but also bi-Lipschitz continuous.
Let

Wk;p(�;Rn)= {vi ∈ Lp(�); @�vi ∈ Lp for any multi-index |�|6k; i=1; : : : ; n};
16p6∞

be the standard Sobolev space.
We will use another de�nition of quasi-isometry. The mapping y(�)∈W1;1(�0;Rn), is called

quasi-isometric if the inequality

L
C1
6�i(∇�y)6LC1 (3)

is satis�ed almost everywhere in �0. Here �i are the singular values of ∇�y (or the square
roots of the eigenvalues of the matrix ∇�yT∇�y) and C1¿0 is a constant.
From (2) it follows that the gradient of y(�) belongs to L∞ and inequality (3) holds. On

the other hand, any function with a gradient belonging to L∞ is locally Lipschitz continuous,
in a sense that there exists a continuous representative of the equivalence class [17]. In what
follows we will use (3) as a de�nition of a quasi-isometric mapping. In fact equivalence of
these two de�nitions is not that obvious but we will use both of them rather loosely anyway
keeping in mind that a precise mathematical statement of equivalence can be formulated.
Instead of quasi-isometry, it is possible to consider a weaker constraint

1
C2
6
�i(∇�y)
�j(∇�y)6C2
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almost everywhere in �0. Here C2¿1 is a constant. The above condition is called the bounded
distortion inequality. It also means that the pointwise distortion measure (which is sometimes
called linear dilatation)

�(∇�y)= �max(∇�y)�min(∇�y) (4)

is bounded from above almost everywhere. Obviously mappings with bounded distortion can
violate quasi-isometry constraints.
There are several well-established approaches to construct spatial mappings. The harmonic

mappings approach is relatively simple and is based on convex functionals [18]. In many
practically important 2-D cases it guarantees the construction of one-to-one mappings [19–22].
However in the presence of non-smooth boundaries the dilatation of a harmonic mapping (i.e.
the ratio of maximal to minimal singular values of the Jacobi matrix) near boundaries can be
unbounded. This phenomenon is known in mechanics as stress concentration. In the case of
a harmonic map with a non-smooth metric the unbounded dilatation can be present far away
from the boundaries [22]. When singularities are present, the harmonic maps are not stable
with respect to input data. So despite its considerable success in the �eld of grid generation,
the harmonic mappings approach can be considered only as a solution technique for some
particular problems.
The conformal mappings technique provides a rather good answer to the above formulated

requirements in some simple cases.
In Reference [15] it was shown how to construct mapping of curvilinear quadrangle with

smooth sides onto a square being both conformal with respect to special metric and quasi-
isometric. The existence and uniqueness of the solution of the variational problem was proved
as well. Since the minimizer of the variational problem is smooth enough, it is guaranteed
that the discrete solution converges to the exact solution, and when the mesh size is small
enough this discrete solution is a globally invertible piecewise-bilinear mapping, i.e. it is an
unfolded mesh. However in this approach the total metric distortion, i.e. the constant C1 is
far from minimal. This approach cannot be applied for domains with non-smooth boundaries
and cannot be generalized to the 3-D case.
There were also some more or less successful attempts to apply variational principles from

hyperelasticity to grid generation, see for example References [6, 23]. It is unclear whether
the above requirements are satis�ed in these works.
Some new theoretical results related to variational principles for crystallography in 3-D

[24] also can be relevant for grid generation. In Reference [24] the following results are
presented: for a certain variational principle in 3-D the minimizing spatial mapping exists, is
unique and globally invertible and is smooth in a classical sense. The applicability of these
results for grid generation and geometric modelling requires further research.

3. HOW TO OBTAIN WELL-POSED VARIATIONAL PROBLEM

The basic principles of spatial mappings construction via solution of well-posed variational
problems are formulated in the context of the mathematical theory of hyperelasticity with �nite
deformations. Let us brie�y review the basic mathematical ideas for variational problems of
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the type (1) to be well posed as formulated by Ball [25]:

1. The function f(∇�y) should be polyconvex, namely it can be written as a convex function
of minors of ∇�y. In 2-D case it means that there exists a convex function g(·; ·), such
that f(∇�y)= g(det∇�y;∇�y). In the 3-D case the existence of a convex function g(·; ·; ·)
is assumed, such that f(∇�y)= g(det∇�y;∇�y; adj∇�y), where adjQ=Q−T detQ denotes
the adjugate matrix.

2. f(∇�y) should possess the so-called barrier property, namely it should be bounded from
below and should tend to +∞ when feasible y(�) tends to the boundary of the feasible
set, for example when det∇�y→ + 0.

3. f(∇�y) should satisfy certain growth conditions [25].
4. The set of admissible mappings should be de�ned by a polyconvex inequality [26].
The above conditions allow to prove an existence theorem for the functional of inter-
est. In particular, for the 3-D case Ball introduces [25] the following set of admissible
mappings �:

�= {u∈W1;p(�0); adj∇u∈ Lq(�0); det∇u∈ Lr(�0); u= u0 on @�0; det∇u¿0
a:e: in �0} (5)

where ‘a.e.’ means almost everywhere. The growth conditions, which are consistent with the
de�nition of admissible deformations, are de�ned as follows:

f(A)¿�(‖A‖p + ‖adjA‖q + (det A)r) + �
for all A∈M3

+, where the constants are as follows:

�¿0; p¿2; q¿p=(p− 1); r¿1

and M3
+ is the set of 3× 3 matrices with positive determinant. Here ‖ · ‖ means the Frobenius

norm of the matrix: ‖A‖=
√
tr(ATA).

The existence theorems are based on the assumption that there exists at least one element
of � providing a �nite value of the functional. In this case the minimizer of the functional
exists and belongs to �. The above assumption is in fact a quite non-trivial hidden constraint
on �0 and on the boundary condition u0(@�0). Unfortunately the existence theory itself does
not provide a simple criteria allowing to establish the validity of this assumption. So from a
practical point of view this existence theory is not closed.
Since the original paper of Ball [25] lots of variations of this existence theory were con-

sidered. It was applied to many di�erent problems, which required modi�cations in, say, the
de�nition of growth conditions and de�nition of the set of admissible deformations. But the
most fundamental property—polyconvexity cannot be relaxed. Any polyconvex functional is
also rank one convex, namely

f(�S1 + (1− �)S2)6�f(S1) + (1− �)f(S2) where rank (S1 − S2)61; 06�61
When f(·) is smooth enough, the rank one convexity is equivalent to the Legendre–Hadamard
(ellipticity) condition. Thus we come to the conclusion that ‘elliptic grid generation’ methods
should be the ones based on the polyconvex variational principles.
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4. POLYCONVEXITY OF THE SET OF ADMISSIBLE MAPPINGS

The formal de�nition of the polyconvex set of admissible spatial mappings can be written as
follows [16]:

L(∇�y)60; L : Rn×n →R

where L is the polyconvex function of minors of ∇�y.
One can consider the minors of ∇�y as independent variables and consider the Cartesian

space where these minors de�ne the co-ordinates. In particular, we will use the n2 + 1-D
space of matrix ∇�y entries plus its determinant. Some important examples of polyconvex
constraints are presented below.
1. Orientation-preserving mappings are de�ned by the inequality

det∇�y¿0 a:e: in �0 (6)

This inequality de�nes a half-space, i.e. a convex domain in extended co-ordinates, which
is shown in Figure 1(left)

2. ‘Sti�ening’ function by Ciarlet and Necas [26]:

tr(Ed
T
Ed)6�; Ed=E − 1

3 (tr E)I; E= 1
2(∇�yT∇�y − I) a:e: in �0 (7)

where �¿0 is a constant. This constraint does not allow the singular values of ∇�y to be
much di�erent from each other, meaning that the shape distortion measure (4) is bounded.
In Reference [16] it was stated that this constraint allows ‘polyconvexi�cation’, meaning
that it can be replaced by a equivalent polyconvex relation. Inequality (7) does not de�ne
the sign of the determinant. The de�nition of the set of admissible deformations (5) can
be augmented by constraint (7) and the variational problem with functional (1) will still
be well posed [16, 26].

3. Another convenient polyconvex de�nition of mappings with bounded distortion was sug-
gested in Reference [27].

det∇�y¿K
(
1
n
tr(∇�yT∇�y)

)n=2
a:e: in �0; 0¡K61 (8)

J 1 J 2 J 3

Figure 1. 3-D cross-section of feasible sets in extended co-ordinates. 1—the set of orien-
tation-preserving mappings, 2—the set of mappings with bounded distortion [27], 3—the

polyconvex set of quasi-isometric mappings [11].
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In extended co-ordinates this inequality de�nes a paraboloid of high degree, see Fig-
ure 1(centre). This inequality simultaneously constrains the shape distortion of the map-
ping and guarantees that the mapping is orientation-preserving. Thus (8) can replace
simultaneously both (6) and (7).

4. In Reference [11] the following polyconvex de�nition of the set of quasi-isometric map-
pings was suggested:

det∇�y¿t��(det∇�y;∇�y) a:e: in �0; 0¡t61

where y(�)∈W1;1(�0;Rn) and

��(J; T )= �
(
1
n
tr(T TT )

)n=2
+
(1− �)
2

(
v+

J 2

v

)
; 0¡�¡1

v¿0 is a constant which de�nes the target average value of det∇�y. This inequality
de�nes an ellipsoid of high degree in extended co-ordinates, see Figure 1(right).

5. LOCALLY AND GLOBALLY INVERTIBLE SPATIAL MAPPINGS

In order to be applicable for geometric modelling, the minimizers of the variational problems
should be globally invertible mappings, or in some particular cases at least locally invertible.
From a practical point of view it means that relatively easily checked and=or guaranteed
algebraic properties of the solutions should lead to the required global topological properties.
Important examples of such relations are presented in Reference [27]. There it was shown

that a mapping y(�)∈W1; n(�0;Rn) satisfying the bounded distortion inequality (8) almost
everywhere is either constant or open and discrete. Namely, the image of any open set under
this mapping is an open set, and any point can have only �nite number of preimages.
In Reference [28], an inverse function theorem was proved, which is fully reproduced below

due to its importance.

Theorem (Ball [28])
Let �⊂Rn be a non-empty bounded connected strongly Lipschitz open set. Let u0 : ��→Rn be
continuous in �� and one-to-one in �. Let p¿n and let u(x)∈W1;p(�;Rn) satisfy u|@� = u0|@�;
det∇u(x)¿0 almost everywhere in �. Let u0(�) satisfy the cone condition, and suppose that
for some q¿n ∫

�
|∇u−1(x)|q det∇u(x) dx¡∞

Then u is a homeomorphism of � onto u0(�), and the inverse function x(u) belongs to
W1; q(u0(�);Rn). The matrix of weak derivatives of x(·) is given by

∇x(v)=∇u−1(x(v)) almost everywhere in u0(�)

If, further, u0(�) is strongly Lipschitz, then u is a homeomorphism of �� onto u0( ��).

Here | · | is the spectral matrix norm. The cone condition means that there exist a �xed
cone, such that any boundary point of u0(�) is the vertex of a cone which belongs to u0(�)
and is congruent to this �xed cone.
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This theorem is of key importance for the variational principles in geometric modelling
since the minimizers of variational problems are orientation-preserving but, unfortunately, are
not probably regular enough in order to be locally invertible. A quite disappointing example
of such behaviour is suggested in Reference [28]. The mapping u of the unit disc D= {|x|¡1}
in R2 is given in polar co-ordinates r; ’ by

u : (r; ’)→
(
1√
2
r; 2’

)

Obviously the mapping u is quasi-isometric, det∇u(x)=1 if x �=0 and the singular values
of ∇u(x) are equal to 1√

2
;
√
2 almost everywhere. However, u is not locally invertible at the

origin. In fact the mapping u(x) does not de�ne a manifold parameterization.
Thus, in practically useful cases the global invertibility of orientation preserving minimizers

is assured directly from regularity properties and boundary conditions avoiding the proof of
local invertibility.
The above theorem can be used to analyse whether a computational grid is a globally

invertible mapping. In fact this theorem is too general for that problem. For global invertibil-
ity it is enough to assert that the grid (i.e. the piecewise-smooth mapping) coincides on the
boundary with the continuous homeomorphism, is orientation preserving and is Lipschitz con-
tinuous. Obviously mappings de�ned on �nite elements grids with non-degenerate low-order
elements are Lipschitz continuous so global invertibility results from References [29, 30], can
be applied directly.
Nevertheless, Ball’s inverse function theorem has another important application in grid gen-

eration: it provides rigorous grounds for exchanging dependent and independent variables. It
is very well known since the pioneering works by Crowley, then Winslow [2] and Godunov,
Prokopov [3] that the grid generation as a separate discipline started from this ‘simple trick’
of interchanging variables in functionals. Not too much attention was paid to the validation
of this procedure. The most striking example is related to 2-D harmonic co-ordinates x(u)
which are constructed as minimizers of the Dirichlet functional

∫
�

1
2
tr(∇xT∇x) du (9)

subject to boundary conditions of the �rst kind. Since in practice x(�) is a convex domain, say
a square, the useful solution is the inverse function u(x) which provides the non-degenerate
co-ordinates in �. Thus one can exchange variables in (9) resulting in 2-D in the following
highly non-linear functional:

∫
x(�)

1
2
tr(∇uT∇u)
det∇u dx (10)

The integrand of this functional is polyconvex, but the growth conditions are too weak for
the Ball’s existence and inverse function theory to be applied. In fact recent results about
mappings with �nite distortion [31] are that the mapping u(x)∈W1;2(�;R2) which pro-
vides a �nite value of integral (10) is open and discrete—so it is close to mappings of
bounded distortion. Anyway, it is not known to the author whether the existence theorem
holds for (10) and when precisely the extremal mapping of (10) is the inverse harmonic
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mapping. It seems that recent results from Reference [22] can be of help here. Numeri-
cal evidences suggest that the �nite element solutions of (9) and (10) can be completely
di�erent [8, 14].
Besides the case when the boundary conditions are speci�ed on all of the boundary of

domain it is important to know when the solutions of the variational problem with ‘free’
boundary conditions are globally invertible mappings. This very important situation was con-
sidered in References [16, 26]. The set of 3-D admissible deformations (5) is replaced by the
following one:

�1 =
{
u(x)∈W1;p(�0); adj∇u∈ Lq(�0); det∇u∈ Lr(�0);

u= u0 on �0; det∇u¿0 a:e: in �0;
∫
�0
det∇u dx6vol u(�0)

}
(11)

where vol means the volume of the domain. The area of �0 is supposed to be positive, but
it is just an open subset of @�0. If the other assumptions of Ball’s existence theory hold,
then the minimizer of the variational problem in the modi�ed set of admissible deformations
�1 also exists and is globally invertible almost everywhere. More precisely, it means that for
every y∈ u( ��0) the number of preimages is equal to 1 almost everywhere.

6. VARIATIONAL PRINCIPLE FOR QUASI-ISOMETRIC MAPPINGS

The mapping y(�)∈W1;∞(�0;Rn) is quasi-isometric if there exist constants 0¡t61, v¿0,
such that

det∇�y¿t��(det∇�y;∇�y) a:e: in �0 (12)

where

��(J; T )= �
(
1
n
tr(T TT )

)n=2
+
(1− �)
2

(
v+

J 2

v

)
; 0¡�¡1

v¿0 is a constant which has a sense of the target average value of det∇�y.
The relation between (12) and (3) was discussed in Reference [11], where it was shown

that if (12) holds, then the constant C1 from (3) can be evaluated, namely

C1¡
(
c2 +

√
c22 − 1

)1=n (
c1 +

√
c21 − 1

)(n−1)=n
c1 =

1− (1− �)t
�t

c2 =
1− �t
(1− �)t L= v1=n

We see that the value 1=t has the meaning of the total metric distortion and any function
y(�)∈W1;1(�0;Rn) satisfying (12) in fact belongs to W1;∞(�0;Rn). Since in our case �0 is
strongly Lipschitz bounded domain then y(�) is Lipschitz continuous [17].
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Now the variational principle for construction of quasi-isometric mappings takes the fol-
lowing form [11]:

∫
�0
f(∇�y) d �;

f=



(1− t) ��(det∇�y;∇�y)

det∇�y − t��(det∇�y;∇�y) det∇�y − t��(det∇�y;∇�y)¿0
+∞ otherwise

(13)

This variational principle satis�es most of the requirements formulated in the previous section.
It is well posed for arbitrary n¿2 [32] in the following sense. If the feasible set (12) is not
empty then a minimizer exists and is a quasi-isometric mapping [32]. In Reference [32] the
existence theorem was proved in the case when y(@�0) is prescribed on all the boundary.
When y(@�0) coincides with the boundary values of the continuous homeomorphism the
global invertibility of the minimizers of (13) follows directly from Ball’s inverse function
theorem.
The generalization of existence results to the case of ‘free’ boundary conditions, when y(�0)

is given where �0 is an open subset of @�0 seems to be straightforward, provided that the
constraint ∫

�0
det∇�y d�6voly(�0)

is added to guarantee the global invertibility of the minimizers almost everywhere.
Due to similarity with elasticity problems it is natural to expect that global uniqueness

of the solution and convergence of �nite element approximations is provable for problems
with very smooth boundary conditions and a solution close to the identity mapping when the
implicit function theorem can be applied [16, 33, 34].
However numerical experiments suggest that convergence of the �nite element approxima-

tions is observed in quite general cases so further theoretical analysis is necessary.
The existence theory for hyperelasticity described in the previous sections in principle does

not exclude Lavrentiev phenomenon. The Lavrentiev phenomenon [35] generally means that
we have di�erent minimizers in di�erent functional spaces. It is just known that the de�nition
of the set of admissible deformations (5) excludes the cavitation, which is a particular case
of Lavrentiev phenomenon.
Unlike hyperelasticity problems, no Lavrentiev phenomenon is possible for (13) since min-

imally regular solutions are still Lipschitz continuous. However if we set t=0 in (13) then
it can be shown that the cavitation can appear which is consistent with Ball analysis. Hence
one cannot relax the requirement t¿0.
The unsolved theoretical problems for (13) include the stability conditions for the mini-

mizers and the proof (if any) that the minimizer lies strictly inside the feasible set. To ‘lie
strictly inside the feasible set’ means that for the minimizer of the variational problem (13)
a stronger inequality

det∇�y − t1��(det∇�y;∇�y)¿0 (14)

is satis�ed almost everywhere with t1¿t + 	, where 	 is a strictly positive constant.
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One of the results of Ball’s existence theory for hyperelasticity is that when the minimizer
belongs to W1;∞(�0;Rn) and lies strictly inside the feasible set, meaning that the determinant
of the Jacobi matrix is larger than some positive constant almost everywhere, then the weak
variational formulation of Euler–Lagrange equations of the functional makes sense. However
it is not known how to guarantee such properties of minimizers [36]. For (13) the regularity
property is guaranteed, so it remains to prove (14) for the minimizer, if it is possible. In fact,
if it is true then one also can expect higher regularity of the minimizer, in particular H	older
continuity of ∇�y.

7. CONTROL OF THE MAPPINGS PROPERTIES VIA COMPOSITION
OF MAPPINGS

Up to this point we have considered the variational principle for construction of quasi-uniform
mappings. However in practice it is necessary to construct mappings and grids with con-
trolled variations of the local shape, size and orientation of the elements. We do not consider
here orientation=alignment control which is a very hard problem. A more general polyconvex
functional allowing for construction of quasi-isometric mappings with alignment control was
suggested in Reference [37]. Here only shape and size control are considered. The general
idea is to use composition of mappings in order to modify the properties of the solutions. It
is illustrated in Figure 2.
The mapping y(�) is represented as a composition of mappings 
(�), x(
) and y(x). It is

assumed that 
 and x are co-ordinates in n-dimensional space, while more general case of
y co-ordinates in m-dimensional space, m¿n is considered as well. In particular, y(x) may
de�ne a parameterization of the surface. The mappings y(x) and �(
) are speci�ed while
the function x(
) is the new unknown solution. We assume again that y(x) and �(
) are
quasi-isometric mappings, but possibly with large constants C1. Using the notations

H =∇
�; S=∇
x; Q=∇xy; T =∇�y; J =det T

we get

T =QSH−1; J =
detQ det S
detH

; d�=detH d


Figure 2. Composition of mappings. y(x) and �(
) are prescribed mappings, −1 means inverse mapping.
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and functional (13) is simply rewritten as
∫
�
f(Q∇
xH−1)detH d
 (15)

where �(�)=�0. Note that the function f depends only on the orthogonal invariants of the
matrix T TT , and using equalities

T TT =H−TSTGSH−1; G(x)=QTQ; H̃ (
)=HTH

and the fact that tr(AB)= tr(BA), we get that f can be written via the orthogonal invariants
of the matrix [11]

STGSH̃−1

This formulation is quite general since the matrices Q and H now can be non-square and
metric tensors H̃ (
); G(x) are not assumed to be smooth. The only restriction is that their
eigenvalues are positive and should have uniform lower and upper bounds. We will show
later that even when input control data are just two metric tensors, the discrete approximation
to the functional on each simplex element naturally employs a factorized representation (15).
The existence results in Reference [32] in fact were obtained in the presence of the matrix

H̃ (
)∈ L∞. The presence of H̃ (
) means that the integrand f in (15) is a function of 
;∇
x.
When G(x) is present as well, then f is the function of 
; x;∇
x. However when f is not a
continuous function of x, the standard direct method for proving existence cannot be applied.
But from a practical point of view it is natural to assume more or less the same regularity
of the functions H̃ (
) and G(x). Ball’s inverse function theorem can be of help here. It
is established in Reference [32] that any minimizer y(�) of the variational problem (13)
which coincides on the boundary of �0 with continuous one-to-one mapping does satisfy the
Ball inverse function theorem conditions. In fact it is possible to exchange dependent and
independent variables in (13) and the resulting problem with respect to �(y) will also be well
posed and the minimizer will satisfy the inverse function theorem conditions.
Now introducing the metric G(x) into this variational problem for the inverse mapping also

results in a well-posed formulation, but the inverse function theorem now allows to establish
the existence result also for the original problem (13) when H̃ (
)= I and G(x) given, but
not smooth. The details of this statement will be published elsewhere.

8. FUNDAMENTAL DISCRETIZATION PROBLEMS

Unlike other ‘standard’ problems, say related to �nite element solution of linear elliptic prob-
lems, the discretization problems in the mappings theory are fundamental and mostly unsolved.

1. Surprisingly the problem to approximate locally invertible mapping by a converging
sequence of locally invertible piecewise a�ne mappings is not solved even for quasi-
isometric mappings, not mentioning general Sobolev mappings [36].

2. A more di�cult problem: given a mapping with a metric distortion below a certain
threshold 1=t (12). Is it possible to construct a sequence of converging piecewise a�ne
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mappings, each being below the same threshold 1=t? If it is possible, how to do it in
practice?

3. The variational principle for a surface grid generation should be invariant with respect to
surface parameterization, including the case of non-smooth parameterizations. How can
this property be implemented on the discrete level? What is the counterpart of the �nite
element patch test condition [38] in the case of spatial mappings?

Our hypothesis is that the solutions to the above discretization problems in the 2-D case
should be based on the theory of manifolds of bounded curvature.

9. THEORY OF MANIFOLDS WITH BOUNDED CURVATURE
AND FOUNDATIONS OF ADAPTIVE GRID GENERATION

9.1. Adaptive grids and convergence of metric

In many numerical simulation methods based on adaptive grids the same ‘standard’ approach
is applied and works reasonably well.
Given a discrete solution, one computes a certain metric, a new grid is constructed which is

optimal in some sense with respect to this metric, the solution is recomputed on this grid so
a new metric is in turn available [39]. This cycle is repeated until some convergence criteria
are satis�ed.
In fact the underlying assumption for the above procedure is that the solution of the contin-

uous problem de�nes a certain continuous metric and the iterative solution technique creates
a sequence of ‘discrete’ metrics. The convergence of the ‘discrete’ metric to the exact one
implies convergence of the discrete solutions to the solution of the continuous problem.
A natural question then arises: what class of metrics should one consider and what is the

meaning of convergence of the sequence of metrics?
In fact in the 2-D case these questions are correctly formulated and answered in the frame-

work of the theory of manifolds of bounded curvature (MBC). The MBC theory was developed
by A.D. Alexandrov and his school [40]. Some results of this theory which are most relevant
to adaptive grid generation and geometric modelling are presented below based on the review
[41]. We will use notations from [41] in the current section.

9.2. 2-D manifolds of bounded curvature (MBC)

A metric space (M;�) is called a space with intrinsic metric if it is linearly connected (there
exists a path connecting any two points) and for any two of its points X; Y the quantity
�(X; Y ) is equal to the lowest bound of the lengths of the arcs connecting these points. An
example of the intrinsic metric is the sphere where the distance between points is the length
of the shortest arc connecting them. On the other hand, the Cartesian distance between the
points on the sphere is not an intrinsic metric [41]. Any Hilbert space and any normed vector
space are spaces with intrinsic metric.
Let us consider 2-D manifold with intrinsic metric. The de�nition of curvature is based on

the notion of triangle excess. Consider a triangle T where the three vertices are connected by
shortest curves. The excess 	(T ) is de�ned as

	(T )= �+ �+ �− 
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where �; �; � are the angles between the sides at the vertices. In fact the formal axiomatics
is based on the concept of upper angles which are always de�ned [41]. For the Riemannian
manifolds, 	(T ) coincides with the integral Gauss curvature of the geodesic triangle T which
follows from the Gauss–Bonnet formula.
A manifold has a bounded curvature when every point X has a neighbourhood U such

that the sum of excesses of pairwise non-overlapping triangles lying inside U is uniformly
bounded from above

∑
	(T )¡N

where N does not depend on the choice of triangles and depends only on U .
The curvature is de�ned as follows. The positive and negative parts of curvature of the

open set G are de�ned as the exact upper and lower bounds of the sums of excesses of
pairwise non-overlapping triangles lying in G:

!+(G)= sup
∑
	(T ); !−(G)= inf

∑
	(T )

The curvature itself is de�ned as

!(G)=!+(G) +!−(G)

while the absolute curvature is de�ned by

|!|(G)=!+(G)−!−(G)

The curvature at a point is understood as the integral characteristics of the point set.

9.3. De�nition of curvature and peak points via isothermal co-ordinates

Another de�nition of curvature is based on the analytic representation of 2-D MBC by means
of a line element. Namely, any point X on MBC has a neighbourhood U which is isometric
to some �at domain G with a metric de�ned by a line element

ds2 = �(x; y)(dx2 + dy2)

where logarithm of � is the di�erence of two subharmonic functions [41]. Here x; y are
Cartesian co-ordinates on the plane. �(x; y) may vanish or have points of discontinuity, which
is not possible for Riemannian manifolds.
Let us denote by ’ the one-to-one mapping which maps U onto G and let z=’(X ) be

the point on the plane. In the domain G=’(U ), a set function !(z) is de�ned which does
not depend on the choice of the particular isothermal co-ordinate system.
Let �(X; r) be a circle, i.e. the union of points whose distance from X is equal to r. Then

the following important statement holds (Lemma 8.1.1 from Reference [41]):
Let X ∈U; z=’(X ). Then there is a number 	1¿0 such that if 0¡r¡	1, then �(X; r) is

a simple closed curve. Let �(X; r) be the length of the curve �(X; r). Then

�(X; r)
r

→ �(X )=2
−!(z) as r→ 0

The quantity !(X )=!(z) is called the curvature of the manifold at the point X . �(X )=2
−
!(X ) is the total angle at the point X .
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X

Y

A B

Figure 3. A—a peak point, curvature at the vertex X is equal to 2
, B—the curvature at the vertex Y
is less than 2
 and the local tangential cone at the vertex is well de�ned.

When

!(X )=2


then X is called a peak point, which is illustrated in Figure 3.
Another important notion is the so-called tangent cone condition.
The 2-D manifold of bounded curvature is called a cone when it has a non-zero curvature

only at one point—the vertex, and has zero curvature everywhere. Let us denote by Q(�; h)
the set of all points of the cone at a distance less than h from its vertex. Here � denotes the
total angle at the vertex of the cone. In fact the cone can be de�ned directly, not using the
concept of manifolds of bounded curvature.
Let M be a 2-D manifold with intrinsic metric and A be an arbitrary point of M. M

has a tangent cone at A if there is a cone Q(�; r) that admits a one-to-one map ’ onto a
neighbourhood of A such that A corresponds to the vertex O of the given cone and for any
X; Y ∈Q(�; r) such that X �= Y

�Q(X; Y )
�M (’(X ); ’(Y ))

→ 1 as X →O; Y →O

The 2-D MBC has a tangent cone at any point X which is not a peak point.

9.4. Chebyshev parameterization of MBC

Besides isothermal co-ordinates, the manifolds with bounded curvature admit other types of
parameterizations. In particular, it is possible to introduce quasi-isometric co-ordinates.
In order to present these results, one has to introduce the cut and paste operations over

MBC. In particular one can cut from a 2-D MBC another manifold, which will also have
bounded curvature, provided that the cut itself is not pathological. On the other hand several
MBC’s can be pasted or glued together along the boundaries, provided that the length of
the glued fragments of the boundaries is the same. The formal de�nition of cut and paste
operations is quite complicated and is omitted here. The only de�nition we need is that of a
polygon:
A polygon is a domain whose boundary consist of �nitely many shortest curves and each

connected component of the boundary is a homeomorphic image of either a circle or an
open interval.
Let R2+ be the positive quadrant {(x; y)∈R2 | x¿0; y¿0} on the plane. Let us assume that

from R2+ a polygon P0 homeomorphic to a disc is cut out and then a polygon P, homeomorphic
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Figure 4. A—A polygon is cut from the initial manifold. B—A polygon with the same length of the
sides is cut from the positive quadrant on the plane. The polygon from the manifold is pasted into the
hole. C—The manifold M from B is one-to-one mapped onto the positive quadrant creating Chebyshev

co-ordinates in M , Duv is shown as a bricked area.

to a disc is pasted in its place, which is cut out from a 2-D MBC. The manifold M =(R2+=
P0) ∪ P formed under this pasting is in turn a 2-D MBC.
Then the following theorem holds:

Theorem (Bakelman [42, 43])
Let M be the manifold de�ned as above and |!|(M)¡
=2. Then there is a one-to-one map
’ of M onto R2+ such that if one introduces in R2+ the line element

ds2 = du2 + 2 cos �(u; v) du dv+ dv2 (16)

where �(u; v)=
=2−!(’−1(Duv)) and Duv is the rectangle {(x; y)∈R2+ | 0¡x6u; 0¡y6v},
then ’ is an isometric map of M onto the square R2+ endowed with the metric generated by
the line element (16).

From this theorem it follows that for each point X of a 2-D MBC with small enough
absolute curvature one can �nd a circle in which the metric of the manifold is de�ned by
(16). This co-ordinate system is called a Chebyshev co-ordinate system.
The theorem is illustrated in Figure 4.
In other words this theorem states that when the absolute curvature of a manifold is small

enough then it admits a global quasi-isometric parameterization via �attening.
The above theorem has a converse, which essentially says that the metric on the plane

de�ned by the line element (16) with �(u; v)=
=2 − !(Duv) de�nes a manifold of bounded
curvature. It is only assumed that the total variation of ! is less than 
=2.

9.5. Quasi-isometric parameterization of MBC

It is interesting that the practical �attening methods for surfaces with complicated bound-
aries are based essentially on the same cut-and-paste procedure. In Reference [37] quasi-
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Figure 5. A—The initial surface with its boundary. B—A polygon with the same length of the sides is
cut from a triangle on the plane. The surface is pasted into the hole. C—The resulting manifold B is
one-to-one mapped onto another triangle creating quasi-isometric co-ordinates on the initial surface.

isometric �attening procedure was suggested, based on cut and paste operations illustrated in
Figure 5.
The details of this algorithm are explained in Reference [37] and the motivation to choose

a triangle as a domain to paste manifold into was based on graph theory arguments.
The relations between the curvature of manifold and the distortion of �attening are very

important for practice. Finding optimal distortion bounds, or quasi-isometry constants, or in
other words bi-Lipschitz constants is currently a hot topic of research. The results from
Reference [43] are not optimal for quasi-isometric �attening since the Chebyshev para-
meterization is very restrictive. However the proof presented in Reference [43] can be eas-
ily generalized for the case of quasi-isometric �attening leading to much better
estimates.
Recently a new promising generalization of the above theorem was obtained in Reference

[44], where the following result was proved.

Theorem (Bonk and Lang [44])
Suppose that Z is a complete MBC homeomorphic to a plane. Let � denote the metric of Z .
If !+(Z)¡2
 and !−(Z)¡∞, then there exists a one-to-one mapping � : Z→R2 satisfying

1
L

|�(X )− �(Y )|6|�(X; Y )|6L|�(X )− �(Y )|

with

L=
(
2
+!−(Z)
2
−!+(Z)

)1=2
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In the notations of Reference [44] Z is L-bi-Lipschitz equivalent to R2. The inequality is
sharp when Z is a cone.
This theorem seems to provide the best known theoretical distortion estimate for quasi-

isometric parameterization. It can be applied to manifolds with boundary using the cut and
paste operations.
Let us formulate the following conjecture:

Conjecture
Suppose Z is a complete MBC homeomorphic to a plane. Let G denote a domain in Z
homeomorphic to a closed disc such that the boundary of G is a recti�able simple closed
arc. If !+¡2
 for each point of Z and !−(Z)¡∞, then Z is L-bi-Lipschitz equivalent to
R2 with

L=0((q(2
+!−1(Z)))1=2)

where

q= sup
G

2�(G)
p2

and �(G), p denote the area and the perimeter of G, respectively.

The idea of this conjecture is suggested by the inequality (see Theorem 8.5.2 in
Reference [27])

�(G)6
p2

2(2
−!0) ; !0 =!+(G)¡2


which is attained for a cone. From this inequality it follows that (q(2
+!−(Z)))1=26L. The
intuitive meaning in the case of surfaces is that q can be considered as a measure of the
‘pockets’ and the distortion of �attening should be a function of these ‘depths of pockets’.
It is very important to get rid of the very restrictive upper bound on the positive part of the
curvature. The constraint !+(Z)¡2
 is overly restrictive since in practice a quasi-isometric
�attening with relatively small distortion can be constructed for surfaces with a large absolute
curvature. A simple example is the plane with a regular net of small bumps which has an
unbounded !+ but can be �attened with a small distortion.

9.6. Polyhedral metric

The key concept in the theory of MBC is the manifold with a polyhedral metric.
It is said that the manifold has a polyhedral metric if

(A) for any internal point X of the manifold one can �nd a neighbourhood that admits an
isometric map onto some circular cone;

(B) for any boundary point X of the manifold one can �nd a neighbourhood that admits
an isometric map onto some circular sector.

There is an important theorem related to the triangulation of a manifold with a polyhedral
metric.
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Theorem (Reshetnyak [41])
Let M be a 2-D manifold with boundary. We assume that M is connected and is endowed
with a polyhedral metric. Then M admits a triangulation such that any triangle is isometric
to a triangle on the plane.

It is important to see the di�erence between a polyhedron and a manifold with a polyhedral
metric. In particular, a �nite circular cone does de�ne a manifold with a polyhedral metric
but it is not a polyhedron.

9.7. Metric convergence

One of the key facts of the MBC theory is the possibility to approximate any 2-D MBC by a
manifold with a polyhedral metric. In order to present these results one has to introduce the
de�nitions of convergence.
Let (M;�) and (Mk; �k), k=1; 2; : : : be the metric spaces with intrinsic metric. The spaces

(Mk; �k) converge to the space (M;�) if for each k a homeomorphism ’k of M onto Mk is
speci�ed, such that �k(’k(X ); ’k(Y ))→�(X; Y ) uniformly as k→ ∞. Denoting by �̃k(X; Y )=
�k(’k(X ); ’k(Y )), one obtains a sequence of metrics �̃k on M .
Another important concept is the local convergence of metric spaces. Let in the manifold

M a sequence of domains Mk; k=1; 2; : : : be speci�ed, such that for each k the closure of
Mk is compact, it is contained in Mk+1 and

∞⋃
k=1
Mk =M

The sequence of metrics �k , k=1; 2; : : : converges locally to the metric � if for any k the
sequence of metrics �m, m= k; k+1; : : : converges to � on the set Mk , that is �m(X; Y )→�(X; Y )
as m→ ∞ uniformly when X; Y ∈Mk irrespective of the value of k.
The local convergence is useful when, for example, the boundary of the manifold should

be approximated by the boundary of a polygon.
One of the main convergence results is that any manifold of bounded curvature is the limit

of manifolds with a polyhedral metric provided that the absolute curvature of a polyhedral
metrics is bounded. The metric convergence is uniform. Moreover, the positive and negative
parts of the curvature of the polyhedral metrics converge to the positive and negative parts
of the curvature of the MBC in a weak sense [40].

9.8. Tangent cone condition and approximation of MBC by manifolds with polyhedral
metrics

Now we are in a position to formulate one of the mains results on approximations of MBC.
Let us use the following de�nition of the proportional convergence:
Assume that on the set M metrics �, �k , k=1; 2; : : : are speci�ed. The metrics �k converge

proportionally to the metric � if for any ”¿0 there exists a number k0 such that for any
k¿k0

1
1 + ”

�(X; Y )6�k(X; Y )6(1 + ”)�(X; Y )

for any X; Y ∈M .
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The theorem which can be applied in the case of quasi-isometric parameterizations is for-
mulated as follows.

Theorem (Reshetnyak [41])
Let M be a compact 2-D manifold with intrinsic metric �. We assume that M has a tangent
cone at each point of it. Then there is a sequence of polyhedral metrics �k , k=1; 2; : : : de�ned
in M that converges proportionally to the metric of the manifold.

In fact a 2-D MBC has a tangent cone at any point of it which is not a peak point [45].
When peak points are present, MBC can still be a limit of a uniformly convergent sequence

of manifolds with polyhedral metrics.

10. PROPORTIONAL CONVERGENCE AND DISCRETIZATION PROBLEMS

The metric convergence theory does not provide ready solutions to the questions posed in
Section 8, it rather suggests that these problems should be somewhat reformulated.
Consider for example problem 8.1. Let y(�) : �0 →R2 be the locally invertible quasi-

isometric spatial mapping. If the domain �0 is regular enough then y(�) is Lipschitz contin-
uous. Using as an intrinsic metric the lowest bound of the length of the curves lying on the
graph of the function y(�) and connecting any two points, we obtain a 2-D MBC. If y(�)
is regular enough then there exists a sequence of manifolds with polyhedral metric which
converge proportionally to this manifold. Each manifold with a polyhedral metric can be tri-
angulated. From a �rst glance it looks like the problem is solved. Unfortunately it is not true.
First of all the curvature of a Lipschitz mapping can be unbounded, so it is not necessarily
MBC. Another problem is that the existence of a manifold with a polyhedral metric does
not necessarily imply the existence of a polyhedron where this metric is realized. In our case
existence of a ‘good’ polyhedral metric does not mean that a piecewise-a�ne mapping exists,
which realizes exactly this metric. A manifold which is intrinsically �at in general is a ruled
hypersurface from the point of view of extrinsic geometry.
Only manifolds with polyhedral metric homeomorphic to a sphere with a non-negative

curvature at every vertex can always be realized as a convex polyhedron. This statement is
based on the famous folding theorem by Alexandrov [46].
It is possible to formulate the following hypotheses about the relations between variational

problems for spatial mappings and theory of manifolds:

1. It is possible to de�ne a functional (13) using the concept of manifolds with polyhedral
metric.

2. The extrema of (13) should be sought in the class of bounded curvature mappings.
3. Proportional convergence of polyhedral metric to metric satisfying the tangent cone con-
dition implies convergence of the value of the functional (13).

4. Proportional convergence of a polyhedral metric to a metric satisfying the tangent cone
condition implies convergence of the gradient of discrete functional to the gradient of the
exact functional in a weak sense, i.e. the weak variational formulation for Euler–Lagrange
equations is well de�ned.

Hypothesis 4 is based on the results about weak convergence of positive and negative parts
of a curvature.
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It seems that in many particular cases it is possible to construct polyhedrons with metric
converging to the given polyhedral metric. However, a serious question is whether this step
is absolutely necessary. It seems that manifolds with polyhedral metric are good numerical
analysis objects by themselves and numerical simulation can be done using them. This thesis
is illustrated below using an optimal surface parameterization as a test case. It is shown also
that one does not need the polyhedron itself in order to compute the value of the functional
and to run the minimization solver. The polyhedral metric is just enough!

11. GEODESIC TRIANGLES AND PATCH TEST FOR GRID FUNCTIONALS

Let us return to the notations introduced in Section 7. and consider the problem of �nding opti-
mal parameterizations of surfaces. Thus let �(
) : R2 →R2 and y(x) : R2 →R3 be given. In par-
ticular, let y(x) de�ne an existing surface parameterization, while �(
) be a speci�ed mapping.
We require that the discrete approximation to the functional of interest should satisfy a

simple compatibility condition. Let us consider a mapping between two developable surfaces,
or more precisely when y(x) and �(
) are both isometric.
Then with proper boundary conditions functional (15) should attain its absolute minimum

on the isometric mapping x(
). We require that the discrete functional attains its absolute
minimum on the same isometric mapping.
Since we consider here the intrinsic geometry problem, the particular shape of the surface

is not relevant.
Since developable surfaces are intrinsically �at, they are locally indistinguishable which is

illustrated in Figure 6.
In order to build a discrete approximation to (15) fully employing all introduced controls, we

assume that a certain triangulation is available in 
-co-ordinates and construct a composition
of mappings, similar to those in (15).
Our unknowns are images of the nodes of this triangulation in x-co-ordinates. It is already

assumed that each triangle mapping y(�) is a�ne. However the mappings y(x) and �(
)
are not a�ne ones and should be somehow approximated on each triangle. The idea of the
approximation is very simple and is attributed to Alexandrov as well (Figures 7 and 8).
Let us take three points A; B; C in x-co-ordinates and compute their images under the map-

ping y(x). Connecting these three points via the shortest arcs we obtain a geodesic triangle on
the surface y(x). And �nally replacing this triangle by a �at one with edge lengths coinciding

A

B

C

A

B

C

A

B

C

Figure 6. Indistinguishable geodesic triangles on developable surfaces.
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Figure 7. Composition of mappings and their approximation by composition of a�ne map-
pings. The matrix QSH−1 is supposed to approximate the gradient ∇�y. ◦ symbols mark

the unknowns of the variational problem.

A

B

y(A)

y(B)

y(C)

C

flattening
preserving edge length

Q

geodesic triangle

Figure 8. Construction of an a�ne approximation to ∇xy(x).

with those of the geodesic triangle, we obtain a local a�ne approximation to y(x) and natural
formula for the matrix Q which can be easily derived and is omitted here. We assume that
our triangles are homeomorphic to a disc. This operation is always well de�ned since the
distance along geodesics satis�es the triangle rule, provided that one vertex is not lying on
the shortest path connecting the other two vertices. Note that the spatial orientation of the
last �at triangle is irrelevant since the functional depends only on the matrix QTQ.
The discrete functional is just the sum of elementary terms over all triangles, where each

term is just f(QSH−1)detH multiplied by the area of the triangles in 
 co-ordinates, which
are constants.
Suppose that we have a certain developable surface in 3-D space y and two di�erent

�attenings of this surface. The �rst one is isometric (see Figure 9 (left)) and the second one
is distorted and is quasi-isometric (see Figure 9 (right)).
Since in the �rst case G= I , the discrete functional will attain its absolute minimum pro-

vided that the target shapes for each plane triangle are correctly chosen. It can be easily shown
that in the second case the solution via composition of mappings can be reduced to the �rst
one and the functional also attains its absolute minimum, so independently of the surface
parameterization, the optimal geodesic grid on the surface is the same (of course provided
that all geodesics are unique, which is not always the case).
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1

2

3

4

1

2

 3

4

1
2

3

4

Figure 9. Patch test: di�erent �attenings and parameterizations of the developable surface
and the same optimal mesh on the surface.

One has a good reason to claim that the discrete functional has a manifold with a polyhedral
metric as an argument.

12. GLOBAL PARAMETERIZATION OF SURFACES VIA UNFOLDING AND
FLATTENING

In the example shown in Figure 9, the surface parameterization is constructed via a �attening
operation. This is very powerful tool in geometric modelling [47]. In particular it can provide
a global parameterization for surfaces de�ned by multiple patches (in real life up to 4–
5 thousands). Any triangulated surface homeomorphic to a disk with holes can be �attened
[47]. A more general statement can be formulated as a hypothesis: every manifold of bounded
curvature without peak points, homeomorphic to a disk with holes, admits quasi-isometric
�attening. Of course this statement is inexact because it does not take into account the ratio
of perimeter squared=area of the surface which greatly in�uences the distortion bounds of
�attening.
More precise hypothesis can be formulated as follows: every compact manifold of bounded

curvature without peak points admits a �nite quasi-isometric chart. Above statement means
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flattening unfolding

gluing rule

Figure 10. Flattening vs unfolding for surface parameterization.

that in this manifold one can choose a �nite number of domains, homeomorphic to disks,
which admit quasi-isometric �attening thus creating local quasi-isometric co-ordinates in each
domain. The transformation rules for the local co-ordinates in the overlapping domains are
also quasi-isometric. The union of these domains coincides with the manifold itself. In fact
a similar statement was already proved in Reference [43] under more restrictive conditions.
Obviously the theorem [44] allows to relax these conditions.
The quasi-isometric parameterization can be constructed via cut and paste operation.
It seems that the optimal strategy is to create a �nite number of cuts on the manifold and

perform a quasi-isometric �attening which is either global combined with unfolding, or can
be applied for polygons cut from a manifold.
As a rule of thumb the cuts should decrease the depth of pockets in manifold. Finding

optimal cuts is a very hard and unsolved problem.
In practice, we have two basic operations: �attening of a surface and improvement of plane

grids—which means optimization of local co-ordinate systems (Figure 10).
Both the �attening operation and the variational improvement of plane grids can be done

using the composition of mapping framework. In the �attening operation the target shape for
each plane triangle is given via the matrix H which in turn is computed via the �attening
of the geodesic triangle of the surface. In a plane mesh improvement one already has a
parameterization of the surface y(x) provided by the �attening procedure, so it is necessary
to recompute the matrix Q for each plane triangle during the optimization procedure. If
additional adaptation is necessary, say adaptation to curvature of the surface, then we just
have a di�erent de�nition of metrics G(x), but the same rules for construction of the matrix
Q, since the length of the geodesics is de�ned only by G(x).

13. NUMERICAL EXAMPLE

The practical minimization method for the suggested functional is based on the idea of frozen
metrics G. Obviously the matrix H for each triangle is computed only once and ‘accompanies’
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Figure 11. Surface meshing via quasi-isometric �attening, plane grid generation and varia-
tional improvement. A—a mesh constructed using a discrete functional satisfying the patch

test; B—the patch test is violated.

each triangle during the minimization process. We can interpret it as a shape=size de�nition
in ‘Lagrangian’ co-ordinates. On the other hand the matrix Q changes each time when the
triangle vertices are updated, it behaves more like a shape=size de�nition in ‘Eulerian’ co-
ordinates. So the idea of the iterative solution is to solve a partial minimization problem
for the functional when for each triangle f=f(Qk−1SkH−1), k being the iteration number.
Generally this partial minimization problem involves just 1–2 iterations of the preconditioned
gradient method [11]. This approach was found very stable and converged quite fast.
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In practice, one can have a surface description given by a tesselation which approximates
the geometry with a prescribed chordal error. In this case one starts from the manifold with a
polyhedral metric which is very bad and should be approximated by a polyhedral metric which
is good—namely it provides surface triangles which are almost equilateral. Then the basic
problem is to compute a quasi-isometric �attening of an extremely ill-conditioned triangula-
tion [37].
An example of a meshing procedure based on global �attening is shown in Figure 11. Note

the di�erence between the meshes in sub�gures A and B. In both cases the mesh quality is
quite good, but in case B the discrete functional violates the patch test and problems with
mesh convergence can be expected.
Contrary to what was said in previous sections, the above �gure shows the polyhedron as

a solution of the variational problem. In fact it is not true. The solution of the variational
problem is some plane triangular grid where a constant metric tensor is de�ned on each
triangle. Thus the solution is the manifold with a polyhedral metric. However the meshing
procedure takes into account the sharp edges in the surface and puts the triangle edges onto
these sharp ‘feature’ lines. So when plane mesh vertices are mapped onto the surface and
connected by the straight edges, the length of these edges is very close to the length of
geodesics. But the polyhedral metric on the �nal surface by itself is only an approximation of
the polyhedral metric computed via the optimization procedure. In our case these two metrics
converge to each other in a very nice way.

14. CONCLUSIONS

The main conclusion is that the validations of variational principles for grid generation should
use mathematical methods developed in �nite hyperelasticity and in the theory of manifolds
of bounded curvature, in particular those related to proportional approximations by manifolds
with polyhedral metrics. It is well known that the research to construct generalizations of
theory of manifolds of bounded curvature to 3-D case is under way. These results should be
used for validations of spatial variational principles.
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