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1. INTRODUCTION

Mesh generation plays important role in numerical simulation and arises in many fundamental prob�
lems and real�life applications. Currently methods for tetrahedral mesh generation in domains of complex
geometry are fairly well developed (see [1–8]).

Software solutions and research codes in various applied fields rely on these methods. Before con�
structing mesh, one should build geometric model of the object under study. As a rule, the construction of
such a model, for example, an airplane or an automobile, is based on geometric modeling and computer�
aided design methods. Eventually, a geometric model is represented as a set of curvilinear faces defined by
B�splines supplemented by the gluing rules. In biological problems and engineering analysis, a geometric
model is frequently constructed using data of three�dimensional scanning, tomography, or electronic
microscopy. In this case a preliminary stage of surface reconstruction is required, which produces a surface
consisting of flat triangles (see, e.g., [9–13]).

As a result, geometric models may require so�called clean�up or “repair,” i.e. correction of the geo�
metric and topological errors in the definition of surfaces and three�dimensional bodies. Sophisticated
algorithms and specialized software have been developed to address this problem.

As a rule, volume mesh generation is preceded by the construction of a triangular surface mesh. Next,
a tetrahedral partition is constructed inside the resulting polyhedron. It is well known that a given set of
boundary faces may be incompatible with Delaunay partition. Hence a number of heuristic algorithms
have been proposed for tetrahedral mesh generation in polyhedral domains with prescribed boundary
mesh. The least heuristic and most robust in practice is the algorithm from [7], which is used as a compu�
tational kernel in a number of mesh generation algorithms, including the one described in [14].

The purpose of this paper is to construct three�dimensional tetrahedral meshes directly from incom�
plete, weakly structured, and inconsistent data describing a geometric model without the reconstruction
of the surface. The basic idea behind the proposed method is to find a scalar function defining the body
such that its boundary is the zero isosurface of the function. Such implicit description of three�dimen�
sional domains can be constructed analytically or using a cloud of points, a set of cross sections, or a
“soup” of individual vertices, edges, and faces. By applying Boolean operations over domains, simple
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primitives can be combined with reconstruction results to produce complex geometric models without
resorting to specialized software. The basic difficulty which has to be resolved in the implementation of a
mesh generation algorithm is that practically interesting implicit functions are not smooth and their zero
isosurfaces contain sharp edges and conical vertices. Moreover, the boundary of resulting tetrahedral mesh
should reproduce all the basic features of the domain boundary without compromising the quality of mesh cells.

For tetrahedral mesh generation in implicit domains, a number of effective algorithms have been pro�
posed, which instead of the explicit definition of domain boundary rely on the fast procedure for compu�
tation of the intersection point of domain boundary with an arbitrary straight�line segment. In [15] a fast
tetrahedral mesh generation algorithm with guaranteed mesh quality for domains with a smooth boundary
was proposed. An algorithm for mesh generation in implicit domains with a piecewise smooth boundary
was developed in [16, 17]; however, it required that sharp edges on the surface be defined in an explicit form.

The starting point for the development of the suggested algorithm was work [18] describing a simple
algorithm for the generation of two� and three�dimensional Delaunay meshes in implicit domains imple�
mented as a small Matlab code. The idea behind the algorithm from [18] is as follows: the edges of a mesh
are interpreted as elastic struts with prescribed length distribution, and mesh generation is treated as the
problem of achieving an equilibrium state of the mechanical system. The strut lengths are chosen so that
they are in a compressed state for a quasi�equilibrium solution. The topology of the connections, i.e., the
choice of points joined by the edges follows from the Delaunay empty ball principle. In [18] an implicit
domain was defined using a signed distance function from the boundary. A remarkable property of this
algorithm in the two�dimensional case is that the resulting triangular meshes are highly regular, even if the
initial approximation is chaotic. Comparative analysis (see [19]) has shown that this algorithm is one of
the best self�organization algorithms for two�dimensional meshes. Specifically, it is less sensitive to the
initial approximation compared to Lloyd’s self�organization algorithm (see [20]). Generalizations of this
algorithm to three dimensions were addressed, for example, in [21, 22]. In the three�dimensional case,
Lloyd’s algorithm is known to face a number of difficulties. Searching for equilibrium states using
Delaunay principle is not enough for the elimination of flat tetrahedra from the resulting mesh. Below, flat tet�
rahedra are referred to as “slivers.” Thus, an additional stage is usually required to remove those tetrahedra.

In [19] a modification of the algorithm from [18] was proposed where the implicit function is not
required to be a signed distance function, since the construction of such implicit functions by itself is a
complicated problem of computational geometry. The resulting algorithm turned out to be very simple and
undemanding with respect to input data. Moreover, in the two�dimensional case, empirical observations
have shown that this algorithm, as a rule, automatically reproduces sharp angles on the boundary of the
implicit domain without applying any additional techniques. However, this is not the case in 3D, and the
algorithm from [18, 19] as it is may fail to reproduce sharp edges on the domain boundary. The solution of
this problem is presented below. Preliminary results were published in [23].

2. ALGORITHM FOR TETRAHEDRAL MESH GENERATION IN IMPLICIT DOMAINS

Definition of an Implicit Domain

Consider a bounded domain Ω ⊂ �
3
. Assume that the boundary of Ω is Lipschitz continuous and

piecewise regular and the neighborhood of each boundary point in some coordinate system can be repre�
sented as the graph of a function defined as the difference of convex functions.

Let u(x) : �
3
  � be a given function such that u(x) < 0 at interior points of the domain and u(x) > 0

in the complement of the domain (see Fig. 1).

Assume that u(x) is a Lipschitz continuous piecewise smooth function that can be represented as the
difference of convex functions and its derivatives along a nondegenerate vector field transversal to ∂Ω exist
and do not vanish in a finite layer S near ∂Ω. The layer is defined as follows: it is assumed that there exists
a constant r0 > 0 such that S contains the union of all balls of radius r0 with centers lying on ∂Ω. A domain
defined by means of an implicit function is illustrated in Fig. 1.

Methods for constructing functions satisfying such conditions (at least empirically) are discussed in
Section 5. In fact, we assume that the behavior of the implicit function qualitatively resembles the behavior
of the signed distance function. Since the mesh generation method proposed in this paper is, in fact, heu�
ristic, we do not present more rigorous conditions on the domain.
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Tetrahedral Mesh in Implicit Domain

Let us discuss what kind of meshes are admissible as the output of a three�dimensional mesh generation
algorithm. The three�dimensional domain Ω defined by the inequality u(x) ≤ 0 is approximated by a poly�
hedron Ωh whose boundary ∂Ωh consists of flat triangles glued along whole edges. Inside Ωh, we construct
a normal tetrahedral partition � such that the set of boundary triangles is a subset of faces of this partition.
It is required that the surface Ωh converges pointwise to ∂Ωh as the edge length of the boundary mesh tends
to zero. Moreover, the piecewise constant field νh of unit normals to ∂Ωh is required to converge to the
piecewise continuous field ν of unit normals to ∂Ω. The parameter h here plays the role of a mesh cell size;
i.e., it is assumed that the maximum edge length in � does not exceed Ch, where С is a constant.

Thus, we assume that there exists a homeomorphism ψh : �
3
  �

3
 such that ψh(Ωh) = Ω, ψh(∂Ωh) = ∂Ω,

(a)   0 when h  0 for all p ∈ ∂Ωh, (b)   0 when h  0 for all p ∈ Ωh

not belonging to the set of edges �.
The most common approach to mesh generation is as follows. First, a triangular surface mesh approx�

imating the boundary of Ω is constructed, and then a three�dimensional mesh defining a partition of the
resulting polyhedron is generated. The algorithm we propose is based on a different approach. Specifically,
a three�dimensional mesh in the domain and a boundary mesh are constructed simultaneously. For this
purpose, we use a simple heuristic self�organization algorithm that distributes a set of points over domain

according to a given distribution density. The distribution density is defined by a function fh(x) : �
3
  �,

fh(x) > 0, which can be viewed as the target edge length at the point х.

According to [18], it is not always convenient to define fh(x) directly. In practice, the target edge length
is defined using the function fh(x) = Mf(x), where f(x) specifies the relative characteristic length, i.e., the
ratio of the target edge lengths at different points of the computational domain, and the coefficient М
depends on h and the volume of Ω. At each step, given a set of vertices, the algorithm constructs a tetra�
hedral mesh satisfying the Delaunay criterion (see [24–26]). The tetrahedra that according to certain cri�
teria are recognized not to belong to the computational domain are eliminated from the mesh. These steps
of the algorithm are repeated until a mesh is generated for which the measure of deviation of the polyhe�
dral boundary from the zero isosurface does not exceed a certain threshold, while the tetrahedral mesh
contains a small number of nearly flat tetrahedra. Next, we apply an optimization algorithm that mini�
mizes some measure of mesh distortion without changing the mesh connectivity, thus improving the mesh
and eliminating the nearly flat tetrahedra. Note that boundary mesh points can move along the zero
isosurface. The optimization algorithm may lead to the violation of the Delaunay property.

Self�Organization Algorithm

The idea of a self�organization algorithm for a point system can be described as follows. Using a
mechanical analogy, we model a hypothetical elastic medium, assuming that the mesh vertices are mate�
rial points that experience repulsive forces. As a result, some points can be pushed outside Ω. These points
are projected back onto the boundary of Ω. Thus, the projection onto the boundary can be interpreted as
an impermeable barrier that prevents the points from moving outside the domain. As an illustration, we
can use construction foam that expands and fills three�dimensional cavities, matching their boundaries.
The algorithm produces a hypothetical “equilibrium” mesh in which all the forces acting on a material
point are balanced. The repulsive forces are chosen so that the elastic medium in equilibrium is in a com�

p ψh p( )– νh p( ) ν ψh p( )( )–

x1

x3

x2

u(x1, x2)

Ω

Fig. 1. Example of an implicitly defined two�dimensional domain Ω.
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pressed state. In the two�dimensional case, this simple idea was used in [18] to produce high�quality two�
dimensional triangulations that were comparable in quality to those constructed with the advanced front
method.

Consider a 3D point set � = {p1, p2, …, pn}. Denote by �(�) a Delaunay tetrahedral partition from
which a subset of tetrahedra violating certain criterion of affiliation to domain is removed. The union of
all tetrahedra in � is a polyhedron Ωh, which generally may not approximate Ω. The mesh �(�) is said to
be equilibrium if it satisfies the condition

where F(pi) denotes the force acting on the point pi. The force can be represented as

Here, Fe is the repulsive force directed along the edges of �, Fee is the force caused by the repulsion
between the opposite edges in each tetrahedron in the mesh, and F

vf is the force caused by the repulsion
between a tetrahedron vertex and the opposite face. The vector Fb(pi) denotes the “sharpening” boundary
force, which is used to decrease the angle between the normal to a boundary face and the direction of the
gradient of u. Here, Fb(pi) = 0 if pi is an interior mesh node. The operator U is defined as

Thus we can say that U removes from q defined at the boundary node pi the component orthogonal to the
isosurface of u passing through pi. Note that U is defined only at those points pi where ∇u(pi) take definite
nonzero value. The conditions on u imply that at every point х of the isosurface u(x) = 0 a tangent cone
K(x) exists. If this cone is a plane, then the function is smooth at x and its gradient is uniquely determined.
In the general case, the direction of the generalized gradient can be fixed using, for example, the ray join�
ing the point х with the center of the ball that is the nearest to х among all the unit balls lying inside K(x).

Below we, wee, wvf and wb are positive weights.

Repulsive forces are calculated as follows. First, consider repulsive forces acting along the edges. Let
Fe(pi) = 0 for all i. Consider the edge ek with vertices pi and pj from the edge set of �. Then the contribution
of this edge to the forces acting on pi and pj can be written as a pseudocode

where

(1)

Summing the contributions of all the edges, we obtain the final expressions for Fe. It follows from (1) that
the contribution to the repulsive force is made only by edges that are shorter than the target length. The
target edge length L0 is defined by the value of the sizing function at the center of the current edge.

The repulsive force between the opposite edges of a tetrahedron is computed as follows. Let Fee(pi) = 0
for all i. Let Tk ∈ � be a tetrahedron with its four vertices denoted by local indices {1, 2, 3, 4}, which cor�
respond to global indices i1, i2, i3, i4. The force of repulsion of the edge [p1, p3] from the edge [p2, p4] is com�
puted as illustrated in Fig. 2a.

Let ne denote a vector with its initial point а lying on the edge [p2, p4] and its terminal point b lying on
the edge [p1, p3] that is orthogonal to these edges. If there is no such vector, then we set ne = 0. The given
force makes the following contribution to Fee:

F pi( ) 0, 1 i n,≤ ≤=

F pi( ) U weFe pi( ) weeFee pi( ) w
vfFvf pi( )+ +( ) wbFb pi( ).+=

U q pi( )( )

q, pi is an interior point of Ωh,

q ∇u pi( )
q

T∇u pi( )

∇u pi( ) 2
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where

and c = 1/4(p1 + p2 + p3 + p4) is the centroid of the tetrahedron. Summing the contributions made by all
three pairs of opposite edges for each tetrahedron, we obtain Fee at all mesh nodes.

Now consider the repulsive force between the face f with vertices p1, p2, p3 and the opposite vertex p4

(see Fig. 2b). The contribution of a face–vertex pair to the force F
vf can be written as

,

,

where

Here, nf denotes the inward unit normal to the face f, α is the angle between the vectors nf and q, and c is
the algebraic center of Tk. Summing the contributions of four vertex–face pairs for all tetrahedra yields
the values F

vf at all mesh nodes.
The sharpening boundary force Fb(pi) at the boundary point pi is defined by the formula (see [27])

(2)

where star(pi) denotes the set of boundary triangles of ∂Ωh containing the vertex pi, area(T) is area of the
triangle Т, and c is the centroid of the triangle T. According to Fig. 3a, if pi does not lie on a “relatively
sharp” edge of ∂Ω, then the projection of the boundary force Fb(pi) onto the tangent plane to an isosurface
of u(x) is directed toward the edge. If pi lies on the edge as shown in Fig. 3b, then the boundary force has
nearly the same direction as the gradient u.

A quasi�equilibrium mesh is constructed as follows. Let a point set �
k
 consisting of n points  be given

at the kth iteration. A step of the selforganization algorithm is formulated as follows:

(i) Construct a Delaunay tetrahedral partition (�
k
) for �

k
 using the Quickhull algorithm (see [28])

built in Matlab.

(ii) Eliminate the tetrahedra  that violate the criterion of affiliation to domain. The resulting parti�

tion is denoted by �
k
(�

k
).
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Fig. 2. Repulsive force (a) between opposite edges and (b) between a vertex and the opposite face.
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(iii) Update the coordinates of the vertices of the point system affected by mechanical forces according
to the following rule:

(3)

where

and V is a projector which is an identity operator for all interior mesh points and projects boundary vertices
onto the surface u(x) = 0. The step τk in the relaxation process is chosen so that the maximum displace�
ment in the course of relaxation does not exceed half the local characteristic length.

The forces acting on the mesh points are computed using the weighting coefficients wb = 5, w
v
 = 0.1,

we = 0.1 and wf = 0.1.
The operator V projects a boundary vertex p onto the surface u(x) = 0 with the help of the simple iter�

ative procedure

(4)

Here, m denotes the local iteration number. If u(x) is a linear function and τ1 = 1, then formula (4) defines
the orthogonal projector onto the plane u(x) = 0. In the general case, iteration (4) is repeated until the
distance of the point pm from ∂Ω becomes less than a threshold �b. In practice, this is reduced to verifying
the inequality

(5)

where �b can be regarded as the error in the specified geometry. In [18] the threshold was specified as �b =
h/10. Analysis of the performance of the algorithm as applied to a number of test problems suggests the
following conclusions. Due to the repulsive forces, the mesh points are eventually distributed over Ω

according to the given relative local size function f(x). The boundary points of �
k
 are distributed over the

boundary of Ω approximately matching f(x). The boundary faces of the mesh eventually approximate the
smooth regions of ∂Ω, while sharp edges manifest themselves on the polyhedral surface without using any
special sharp edge detection algorithm. Tetrahedra with small or extremely large dihedral angles turn out
to be unstable and break up.

Note that the volume repulsion mechanism may lead to degenerated tetrahedra. This property is very
important, since optimal mesh generation involves continuous and discrete optimization. Continuous
optimization is related to the search for the best positions of vertices. Discrete or topological optimization
is related to the search for the best mesh connectivity. At present, the formal application of global optimi�
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Fig. 3. Sharpening boundary force: (a) a vertex is attracted to a potential sharp edge and (b) a vertex is close to an equilib�
rium state.
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zation methods fails to produce effective mesh generation algorithms. The quality of meshes is optimized
using a set of heuristic topological transformation procedures (see, e.g., [29, 30].

In fact, “loopholes” admitting mesh cell degeneration in repulsion and the subsequent connectivity
change according to the Delaunay criterion can be considered as heuristic methods to jump out from local
minima of a mesh quality objective function.

Figure 4a shows a flat tetrahedron (sliver), for which the size of the circumscribed sphere is relatively
small. The repulsive forces are constructed in such a way that this tetrahedron is a nonequilibrium one.
Figure 4b demonstrates another type of tetrahedron degeneration, when a tetrahedron vertex coincides
with the centroid of the opposite face. For such a tetrahedron, the edge–edge and vertex�face forces are
close to zero. Thus, tetrahedra of this type can serve as loopholes allowing for a connectivity change with�
out a noticeable increase in the amplitude of the forces acting on the vertices.

Based on a formula of type (2), an edge�sharpening algorithm for surface triangulations approximating
implicit surfaces was proposed in [27]. In fact, the development of an effective algorithm based on the
interaction between a boundary edge sharpening algorithm and volume mesh generation is a major new
practical result of this paper.

Iterations (i)–(iii) can be terminated only if Ω is sufficiently accurately approximated by Ωh. Moreover,
the following conditions should hold:

(i) The Euler characteristics of Ω and Ωh coincide. 

(ii) Condition (5) of proximity to ∂Ω holds for boundary vertices of �
k
.

(iii) For all boundary faces of �
k
, the following condition holds (meaning the proximity of normals to

exact values):

(6)

where nf is the outward normal to a face and c is the centroid of the face.
(iv) The sliver�type flat tetrahedra are few, and there are no almost degenerate tetrahedra of other types.
Note that the declared goal of the algorithm—the generation of an equilibrium mesh—is frequently

not achieved in practice. Geometric oscillations may arise, when small displacements of vertices change
the connectivity of the mesh leading to the formation of a new tetrahedron (sliver), being strongly non�
equilibrium. For this reason, a small amplitude of the forces acting on all the mesh vertices is ineffective
as a termination criterion.

In fact, conditions (5) and (6) are empirical, since they are not actual proximity measures for ∂Ω
and ∂Ωh. It is easy to formulate formal conditions under which (5) and (6) become proximity measures.
In fact, they are reduced to the requirement that the current mesh be fine enough to resolve the fine details
of the isosurface u(x) = 0. From a practical point of view, we will use only conditions (5) and (6).

After iterative process (i)–(iii) is completed, variational mesh optimization (see [31]) is used without
changing the connectivity of the mesh.

3. ELIMINATION OF TETRAHEDRA

Consider in more detail a procedure for eliminating from  the tetrahedra that violate the criterion
of affiliation to domain. This procedure reminds the removal of redundant material by a sculptor, so it is

nf
T∇u c( ) 1 Cb�b–( ) nf  ∇u c( ) ,≥

�̃
k

(a) (b)

Fig. 4. (a) Sliver is a nonequilibrium tetrahedron; (b) the edge–edge and vertex�face forces are zero.
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sometimes called sculpting. Specifically, the tetrahedra which are guaranteed to lie outside Ω are removed
first. Then we consecutively eliminate tetrahedra having some undesirable properties and lying near the
domain boundary; i.e., u(x) changes the sign on them, but their intersection with Ω is fairly “shallow.”
After eliminating such tetrahedra, the vertices and the normals to the faces of the polyhedral boundary are
expected to be close to the corresponding exact values (conditions (5) and (6)). However, it is easy to con�
struct examples of point sets and domains of simple shape with a piecewise smooth boundary such that,
for some regions on the boundary of Ω, there are no Delaunay faces satisfying proximity conditions (6).
Thus, whatever criteria are used for tetrahedra elimination, the resulting polyhedron looks “jagged.” As a
rule, it is this effect that is observed at the first iterations of the algorithm. However, these situations must
be eliminated in the search for optimal vertex locations. Nevertheless, the tetrahedra elimination algo�
rithm has to be able to construct acceptable polyhedral bodies at initial iterations as well. The following
set of heuristic rules is used for this purpose.

I. Eliminate tetrahedra whose centroids satisfy the condition u(c) > 0. 
II. For all tetrahedra with at least one boundary face, for each vertex, consider the segment joining the

vertex with the center of the face in circle. If u(x) is positive at a point х of the segment, then this vertex is
marked as poor. If there is a vertex marked three times or two vertices marked twice, then the correspond�
ing tetrahedron is announced to be a “bridge” between areas of the boundary of Ω and is eliminated.

III. Find a set of tetrahedra �b that can be eliminated without the formation of “pockets.” A pocket is
characterized by the presence of a boundary mesh vertex p such that u(p) < , while the geomet�
rically nearest point on the domain boundary is separated from p by a tetrahedron. An example of such a
pocket is shown in Fig. 5. Eliminate external tetrahedra lying slightly deeper in Ω according to the crite�
rion u(c) > .

IV. From the set �b, eliminate only those tetrahedra in which all the edges satisfy

where L is the edge length, L0 = Mf(cl), c is the centroid of a tetrahedron, and cl is the midpoint of an edge.
V. Eliminate almost flat near boundary tetrahedra where the minimal dihedral angle is smaller than 10°

or the maximal dihedral angle is larger than 170° and

where a is the centroid of the tetrahedron or its arbitrary vertex.
At several last iterations near a quasi�equilibrium state, the value of the proximity threshold �b is halved.

Steps II–IV are repeated until the set of tetrahedra to be eliminated is empty.

Specification of an Initial Vertex Distribution

The simplest method for specifying an initial vertex distribution is as follows. Define a set � of the cen�
ters of a cubic lattice with the spacing h. The points satisfying the inequality u(p) ≥  are
removed from the set. Then � is decimated by removing points with a probability proportional to the value
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��������������� �bMf c( )max L
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Fig. 5. Elimination of a boundary tetrahedron has led to the formation of a pocket.
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of Mf(x) at these points (see [18]). As a result, the initial point distribution is roughly consistent with the
sizing function. A more effective algorithm based on the construction of an octree of Ω was proposed, for
example, in [15]. An overview of the theory and algorithms for constructing quadtrees and octrees can be
found in [32, 33].

Note that one can define random initial vertex distribution. Such an initial guess is convenient for test�
ing the algorithm, since one of the goals of its development was to make the final mesh weakly sensitive to
the initial vertex distribution. Numerical experiments have confirmed this behavior of the algorithm, but
as expected, mesh generation with a poor initial guess required much more iterations of vertex displace�
ment and mesh reconnection.

4. VARIATIONAL MESH OPTIMIZATION

Stages (i)–(iii) in the self�organization algorithm are aimed at the reconstruction of the domain
boundary, the determination of a quasi�optimal mesh connectivity, and the distribution of points over the
domain according to a given sizing function. The quality of the final mesh is improved via an additional
optimization stage based on vertex relocation without changing the mesh connectivity.

The shape and volume of mesh cells are optimized as described in [31]. Consider a polyhedral domain
Ωh with a tetrahedral partition � consisting of ns tetrahedra with n

v
 vertices, of which nb are boundary

ones. The vertices of � are denoted by zi, i = 1, …, n
v
, Z is 3 × n

v
 matrix, with columns zi. On each tetra�

hedron Tk ∈ � the values y0, y1, y2 and y3 are the vertices with the local numbering. For each tetrahedron
of this partition, we choose an equilateral tetrahedron as a the target one. The vertices of the target tetra�

hedron  are denoted by ζ0, ζ1, ζ2 and ζ3, as shown in Fig. 6.

Define the matrices H = (ζ1 – ζ0ζ2 – ζ0ζ3 – ζ0) and Q = (y1 – y0y2 – y0y3 – y0). The columns of these

matrices are assumed to make up a right triple in �
3
; i.e., detH > 0 and detQ > 0. The volumes of the tet�

rahedra are given by

.

The Jacobian matrix S = ∇ξx
h of the affine map xh(ξ) :   Tk is written as S = QH–1.

We search for a mapping that minimizes the following functional, which can be viewed as a mesh dis�
tortion measure:

where
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Thus, ϕ is the sum of the shape distortion measure

and the volume distortion measure

Here, θ = 0.8 and v0 is the ratio of the volume of the target tetrahedron to the volume of a tetrahedron
with unit edges: v0 = (Mf(c))3, where Mf(c) is the value of the characteristic length function at the centroid
of Tk.

Two types of boundary conditions are considered. The first is the Dirich�let boundary condition, for
which the boundary vertex zk is fixed. The second is the slip boundary condition, for which the point zk

can move along the surface

during mesh optimization. It is assumed that vector ∇u(zk) takes a definite value. If u is not differentiable
at zk in the classical sense, then the gradient can be approximately computed as described above by using
the tangent cone to ∂Ω at this point. Thus, at the point zk, we can calculate the vectors l1 and l2 tangent to

the boundary of Ω and assume that  = 0.

Then the stationarity condition for the functional at zk can be written as

(8)

(9)

This system consists of three equations, which correspond to three variables constituting the vector zk.
Let δzk denote the increment at zk. Linearizing Eq. (9) gives the following equation for δzk:

Thus, if zk lies on the boundary of Ω, then u(zk) = 0 and δzk can be represented as a linear combination of
the vectors li:

(10)

where βi are arbitrary coefficients. In other words, equality (10) means that boundary nodes can move only
along the tangent plane to the boundary.

Assume that zk does not belong to the boundary of the domain. Denote by V the projector onto the
boundary described in (4).

The gradient R of F(z1, …, zn) is composed of the three�dimensional vectors . The Hessian H

of F is made up of 3 × 3 matrices , where Hij is placed at the intersection of the ith block row

and the jth block column.
The Newton–Raphson method for finding a stationary point of a mesh functional without taking into

account slip condition can be written as

(11)

(12)

Let Lk denote a 3 × 3 matrix with the first two columns being the vectors li calculated at the point zk and
with the last column equal to zero. If k ∉ Ks, then we set Lk = I. Here Ks denotes the set indices of internal
vertices.
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To include the slip condition in iterative scheme (11), (12), we multiply (11) by  from the left and
take into account the fact that δzj satisfies (10) for j ∈ Ks; i.e.,

so that the two�dimensional vector αj can be used in linear system (11) as an unknown vector instead of δzj.

Let  denote the increment vector equal to δzj for j ∉ Ks and to ( , 0)T for j ∈ Ks, so that δzj = .
With the notation introduced, the iterative method for finding a stationary point of F(Z) can be written as

(13)

(14)

Equality (14) can be rearranged into

where the projector V onto the domain boundary coincides with that defined by formula (3). The relax�
ation parameter τl is determined by approximately solving the one�dimensional minimization problem

For this purpose, we use the Armijo scheme (see [34]) or the simplest bisection method.
To obtain a method similar to the Ivanenko–Charakhch’yan iterative barrier method (see [35]), we set

Hij = 0 for i ≠ j in general formulas (13). Here,  are determined by solving independent linear systems
of dimension 2 at sliding points and of dimension 3 at the remaining mesh points. To obtain the implicit

method of [31] from (13), all the off�diagonal terms in the matrices  are suppressed. In this case,

linear system (13) is split into three independent linear systems for the vectors  being the rows of the

matrix , which are related to  by the equalities

The variational method can also be used when the algebraic volume of some tetrahedra in the initial
mesh is equal to zero or negative. In the presence of such negative tetrahedra, an efficient approach is to
use the mesh untangling method proposed in [36]. The idea behind this method is that the determinant
detS in the denominator of (7) is replaced by

.

The mesh is corrected using continuation technique with respect to ε from large values to zero.

5. DEFINITION OF AN IMPLICIT FUNCTION

Construction of an Implicit Function Using Boolean Operations

Implicit functions defining geometric primitives are fairly easy to construct. Several simple examples
are given below. For example, a sphere is defined by the function

a cube is defined by the function
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and a finite circular cylinder is defined by the function

Complicated domains can be constructed by consecutively using Boolean operations of union, inter�
section, and difference on simpler domains. Let u1(x) and u2(x) be implicit functions defining domains Ω1

and Ω2. Then, depending on the definition of Ω3, the function u3(x) is given by

If the functions u1 and u2 and the domain Ω3 are correctly defined, then u3 will be correct as well.

Construction of an Implicit Function from a Set of Contours in Parallel Planar Cross Sections

Quite popular method for constructing implicit functions from incomplete data is based on the use of
radial basis functions (RBF) (see [37–42]). We describe this method as applied to a simple two�dimen�
sional example.

Let a function φ be given on the segment [ab] = {x : x = a + (b – a)t, 0 ≤ t ≤ 1}. The problem is to con�

struct a function u�(x) defined for all x ∈ �
2
 and being close to φ on [ab]. The computational formulas are

very simple:

where the weight function w� is defined, for example, as

If n is sufficiently small, then u�(x) can oscillate in the vicinity of [ab]. To suppress these oscillations, n has
to be chosen large enough for the distance between pi and pi + 1 be less than �. Since the interpolant u0(x)
is obtained in the limit �  0, we see that the construction of a quality approximation requires a very
detailed auxiliary extra segment partition. In what follows, the corresponding set of points pi is referred to
as the set of quadrature points.

The RBF method can be used to construct an approximant that approximates not only a function but
also its gradient on a given segment. For this purpose, we define the function of two arguments

where q is an arbitrary interior point of the segment [ab]. Define the approximant

.

As �  0, the function u� and its gradient at a quadrature point pi converge to φ(pi) and ν, respectively.
To ensure their convergence at all points of the segment, the distance between adjacent quadrature points
must decrease faster than �.
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In [37] it was suggested to use the analytical representation of approximant in the limit as n  +∞.
To find this analytical representation, it is assumed that as n  +∞, the following relations hold

  (15)

  (16)

Thus, we have the representation

.

Assume now that we want to construct an approximant for a set of segments (edges) Sk, k = 1, …, K. An
approximant is sought in the form

where lk is the length of Sk and, in view of (15) and (16), θk(x) and Θk(x) have the form

Here, nk is the unit normal to an oriented edge which defines the target value of the implicit function gra�
dient. The weighting factors lk ensure that the quadrature nodes are uniformly distributed over the edges
irrespective of their lengths, and this condition must hold during passage to the limit.

1
n
�� w� x pi–( )

i 0=

n

∑ w� x a– t b a–( )–( ) td

0

1

∫ Θ x( ),=

1
n
�� w� x pi–( )φ x pi,( )

i 0=

n

∑ w� x a– t b a–( )–( )φ x a t b a–( )+,( ) td

0

1

∫ θ x( ).=

u� x( ) θ x( )
Θ x( )
����������=

u� x( )

lkθk x( )
k

∑

lkΘk x( )
k

 

∑
���������������������,=

θk x( )
φ bk( ) φ ak( )–( )t φ ak( ) x qk–( )T

nk+ +

bk ak–( )t ak x–+
2 ε2

+( )
2

���������������������������������������������������������������������������� t,d

0

1

∫=

Θk x( ) 1

bk ak–( )t ak x–+
2 ε2

+( )
2

������������������������������������������������������ t.d

0

1

∫=

(a) (b)

(c) (d)

Fig. 7. (a) Exactly defined contour with an interpolating function constructed. (b) Self�intersecting contour. The exact
interpolant forms undesirable loops. (c) Approximant constructed from a self�intersecting contour. The deviation of the
function zero from the contour is insignificant. (d) Noisy input data. The approximant smoothes out the discontinuities
and self�intersections.
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Let qk = (ak + bk)/2. The functions θk(x) and Θk(x) can be written analytically as

where

θk x( ) BI1 CI2, Θk x( )+ 1

bk ak–
4

�����������������I2,= =

I2
1

t K1+( )2
K2+[ ]

2
��������������������������������� td

0

1

∫
1

2K2 K2

���������������� ξ

ξ2
1+

����������� ξ( )arctan+⎝ ⎠
⎛ ⎞

K1

K2

��������

1 K1+

K2

������������

,= =

I1
t

t K1+( )2
K2+[ ]

2
��������������������������������� td

0

1

∫
t K1+

t K1+( )2
K2+[ ]

2
��������������������������������� td  – K1I2 = – 1

2K2 ξ2
1+( )

�����������������������
K1

K2

��������

1 K1+

K2

������������

K1I2,–

0

1

∫= =

1600
1400
1200
1000

800
600
400
200

0 20 40 60 80 100 120 140 160 180

All 14015
Bad 110

All 14301

Bad 17

All 14301

Bad 0

1600
1400
1200
1000

800
600
400
200

0 20 40 60 80 100 120 140 160 180
1600
1400
1200
1000

800
600
400
200

0 20 40 60 80 100 120 140 160 180

1800
2000

Fig. 8. Successive stages of algorithm.

Fig. 9. Domain defined as the
union of a cube and a ball.

Fig. 10. Minimal dihedral angle is equal to 10.6°
and a maximal dihedral angle is equal to 165.3°.
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and the coefficients A, B, K1 and K2 are given by the formulas

In fact, � serves as a smoothing parameter, namely, the function u� is almost insensitive to details of the
contour whose size is less than �.

Let us use the above idea to construct an implicit function from a set of contours. Consider the two�
dimensional case first. Assume that an oriented contour is approximately defined by a set of segments. The
goal is to construct a function of two variables u�(x) with a zero level curve approximating this contour so
that u�(x) < 0 to the left of the contour and u�(x) > 0 to its right when the contour is traversed counterclock�

wise. In the case of RBF, the function  is set to zero on each segment, while its gradient is equal to the
value of the outward unit normal to this segment.

When an approximant is constructed according to this scheme, the zero isoline generally intersects the
contour. To guarantee that the vertices on the contour lie inside the domain whose boundary is defined by
the isosurface of the function, in [37] it was suggested to iteratively update the values of φk at the vertices.
This approach was not implemented in this paper, since, for small �, the shape of the domain is affected
insignificantly. To reduce the approximation error for the boundary of the domain, the mean value of the
function on the boundary is subtracted from its computed value.
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Fig. 11. Domain defined as a
cube with extracted ball.

Fig. 12. Minimal dihedral
angle is equal to 11.9°, and a
maximal dihedral angle is
equal to 159.4°.

Fig. 13. Domain defined by
applying Boolean opera�
tions over a cube, ball, and
cylinder.

Fig. 14. Minimal dihedral
angle is equal to 12.5°, and a
maximal dihedral angle is
equal to 159.4°.
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Figure 7 illustrates the construction of interpolating and approximating functions. This is necessary to
verify that the approximation results on these examples coincide with those of [37]. In Figs. 7a and 7b, an
interpolant is constructed from a given contour (� is negligibly small). Since the weight function has a sin�
gularity at zero, the evaluation of the integrals may face difficulty at � = 0. The lighter areas correspond to
u�(x) < 0. On the contour with a self�intersection, the zero level curve of the exact interpolant forms a loop.
In Figs. 7c and 7d, approximating functions are constructed for � = 0.2 and the contour diameter D = 2.
Nevertheless, after the refinement stage, the zero level of the function nearly coincides with the outer
edges of the contour. The perturbation to the edges is introduced in such a way that both self�intersections
and discontinuities are observed on the contour. In this case, the algorithm for constructing an approxi�
mating function performs well, smoothing the discontinuities according to the parameter �.

If the contour γi is defined in a planar cross section x3 = hi of three�dimensional Euclidean space, where
the sequence of hi is strictly monotonically increasing, then the function in each cross section can be con�
structed using the above RBF algorithm. As a result, we obtain a set of two�dimensional functions
ui(x1, x2) = u(x1, x2, hi), which are used to reconstruct the three�dimensional function u(x), for example,
by applying the simplest linear interpolation along a vector field when hi < x3 < hi + 1.

6. NUMERICAL EXPERIMENTS

In the first group of numerical experiments, meshes were constructed for domains of relatively simple
shape assembled from geometric primitives. Figure 8 illustrates the successive stages of algorithm from top
to bottom: (a) the initial Delaunay mesh roughly approximates the domain and contains large number of
slivers; (b) an intermediate Delaunay mesh approximates the implicit domain fairly well, but still contains
a few slivers; and (c) the mesh after optimization does not contain slivers.

The histograms on the right in Fig. 8 show the distribution of dihedral angles of all tetrahedra in the
mesh.

Figures 9–16, 18–20 present surface meshes. The reproduced sharp edges of the boundary are marked
with bold lines.

Figures 15–17 serve to compare the domain boundary reconstructions produced by the proposed algo�
rithm and by the marching cube algorithm (see [9]). It is clearly seen that the latter algorithm fails to
reconstruct sharp edges.

Figure 20 shows meshes reproducing complicated structure of intersecting sharp edges, while Fig. 21
illustrates application of the suggested method for engineering mesh generation problem.

Fig. 15. Domain defined as
the intersection of two ellip�
soids with subsequent twisting.

Fig. 16. Minimal dihedral
angle is equal to 12.5°, and a
maximal dihedral angle is
equal to 159.2°.

Fig. 17. Isosurface recon�
struction by marching cubes.
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Figure 22 gives an example of reconstructing a three�dimensional implicit function from a set of planar
cross sections and presents the resulting three�dimensional mesh. Contours are shown on the left, while
the boundary faces of a three�dimensional mesh constructed in the domain defined by the resulting
implicit function are depicted in the center and on the right. The boundary mesh is also displayed on the
right. Note that Boolean operations were also used to define the domain.

The resulting domain may depend on the prescribed vector field along which the approximation is per�
formed. A set of contours is presented in Fig. 23 on the left. The domain obtained by approximation along
a vertical vector field is shown in the center. This domain contains tunnels and bridges. In the case
depicted on the right, the vector field was chosen in such a way that the resulting domain consisted of two
disconnected components. The choice of a suitable vector field along which an implicit function interpo�

Fig. 18. Domain is defined
as the complement of the
spiral shown in Fig. 15.

Fig. 19. Minimal dihedral angle
is equal to 12.5°, and a maximal
dihedral angle is equal to 159.4°.

Fig. 20. Recovery of a complex structure of sharp edges on an implicit surface.
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lant is constructed depends on additional assumptions about the shape of the domain and on the applica�
tion field.

Figure 24 displays a set of six contours defined with errors. Their top views are shown on the left. One
can see that the contours contain considerable jumps and self�intersections.

Fig. 22. Three�dimensional mesh generation from a set of cross sections.

Fig. 23. A set of cross sections and reconstructions for different vector fields.

Fig. 21. Three�dimensional mesh generation for an engineering model.
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Figure 25 displays a boundary mesh for the domain defined by the function constructed from such
input data. Approximating functions are defined by the smoothing parameter � = 0.1. The figure demon�
strates the behavior of the approximating functions corresponding to the fifth and second contours. The
subdomains corresponding to negative and positive values of the approximating functions are shown by
light and dark grey, respectively.

7. CONCLUSIONS

An algorithm was developed that automatically constructs three�dimensional Delaunay meshes in
implicit domains with a nonsmooth boundary. Sharp edges and conical points on the boundary are recon�
structed automatically without solving the problem of sharp edge detection on an isosurface. An algorithm
for mesh cell optimization that eliminates almost degenerate tetrahedra and an algorithm for constructing
an implicit function and a three�dimensional mesh directly from a set of contours were implemented, and
their performance for noisy and inconsistent data were demonstrated. The overall algorithm was imple�
mented as Matlab code, hence estimation of its performance on large�scale meshes and its comparative
efficiency still requires more efficient realization.
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