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a b s t r a c t

A variational method that can provably construct 3D quasi-isometric mappings between
domains of a complex shape is introduced. A localmaximumprinciple for polyconvexmesh
element distortion measures is formulated. It allows us to control the invertibility and dis-
tortion bounds for non-simplicial elements in the minimization process. A simple and ef-
ficient technique for construction of boundary orthogonal meshes suggested in Garanzha
(2000) is applied to the construction of hexahedral meshes and thick prismatic mesh lay-
ers around complex shapes. The mesh untangling technique, which is a generalization of
the penalty method suggested in Garanzha and Kaporin (1999), is verified on a wide set of
challenging test problems. Another untangling technique based on theoretical ideas from
Ivanenko (1997) is implemented and tested. It provably constructs admissible meshes us-
ing a finite number of minimization steps. A minimization technique for the mesh distor-
tion functional is described. The approach is based on the global gradient search technique
with preconditioning and domain decomposition for local mesh optimization and untan-
gling. Application areas for explicit and implicit minimization methods are evaluated.

© 2014 Published by Elsevier B.V.

1. Introduction

The aim of mesh optimization is to control shape, size and orientation of mesh elements in order to satisfy mesh quality
requirements. The problem of optimization becomes much more difficult if mesh adaptation is also included which implies
construction of the mesh which maximizes certain quality and/or efficiency functional of the solution of certain PDE,
e.g. the Navier–Stokes equations. In this paper we focus our attention onmesh optimization via node displacement without
topological changes. Variational methods proved to be the most robust techniques for optimization of planar, surface and
volume meshes [1–14]. The nondegeneracy condition for resulting mesh can be formulated as a set of explicit constraints
and resulting variational methods which are generally termed constrained optimization techniques guarantee that mesh be
nondegenerate. In the presented approach there is no need to include invertibility conditions as a set of explicit constraints
while other types of constraints may appear.

The term ‘‘mesh untangling’’ is generally used when initial guess for the mesh optimization process contains folded and
inverted elements or self-overlaps. Hence, a preliminary stage of untangling, which intuitively is very similar to untangling
of fisherman net or volleyball net, should be applied. The untangling can be local if just a few elements are folded and one can
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easily extract a relatively small subdomain containing them. The global untangling problem is tightly related to the prob-
lem of numerical construction of homeomorphisms between domains with complex shape. Note that one may consider a
related problem of least squares matching between domains via deformation in the class of diffeomorphisms. In [15] nu-
merical matching results for 2d and 3d cases were presented. Theoretical foundations of the algorithm can be found at [16].
Untangling is not required in this case.

Several approaches to the untangling problem were developed earlier [5,17–28].
Attempts have been made recently to make finite element approximations suitable for tangled meshes [29]. Analysis is

still required to check whether results from [29] are applicable when accurate numerical fluxes are needed or when tangled
mesh elements get outside computational domain.

In the beginning of 1990s, Godunov formulated the basic principle of optimal variationalmeshing such that amesh should
be constructed via a convergent approximation of quasi-isometricmapping. By definition the ratio of the length of any simple
curve to the length of its image under quasi-isometricmapping is bounded above by a constantK and bounded belowby 1/K .
The mapping should be the unique solution of a variational problem. The variational problem in turn should be constructed
using the distortion measures based on principal invariants of the metric tensor of deformation. The discretized variational
problem should also have a unique solution. Implementation of these ideas was first presented in [30] using the conformal
mapping technique for the problemof constructing parametrization of curvilinear quadrangle. However, in the case of a gen-
eral domain such a problemhas still not been solved even in the 2D case. These ideas inspired a series of papers [31,25,32–34]
where the variational principle for construction ofmultidimensional quasi-isometric mappings was suggested and justified.

In geometrical modeling, the concept of the quasi-isometry is very natural since it provides the rigorous formulation of
the intuitive concept of quasi-uniform meshes and deformations with minimal distortion, see review [35].

Wedescribe belowa theoretical background for themesh optimization based on the variational principle for construction
of quasi-isometric mappings. The iterative minimization algorithm is also briefly given. The general formulation of varia-
tional mesh optimization in implicit domains with slip boundary conditions is provided. Some applications to untangling
and optimization of block-structured, hexahedral and prismatic meshes are considered.

2. Variational principle of hyperelasticity in Lagrangian coordinates

The theory of finite hyperelasticity in fact studies the construction of homeomorphisms (elastic deformations) with
controlled properties. Application of these ideas to mesh generation is very natural. It was first done in papers by Jacquotte
[4,36], see also [17,37]. Let us explain how hyperelasticity principle can be used to construct quasi-isometric mappings.

Let ξ1, ξ2, ξ3 denote the Lagrangian coordinates associated with elastic material, and x1, x2, x3 denote the Eulerian coor-
dinates of a material point. Spatial mapping x(ξ) : R3

→ R3 defines a stationary elastic deformation. The Jacobian matrix
of the mapping x(ξ) is denoted by C , where cij = ∂xi/∂ξj.

We look for the elastic deformation x(ξ) that minimizes the following stored energy functional

F(x) =


Ω

Φ(C) dξ, (1)

whereΦ(C) is the elastic potential (internal energy), and domainΩ defines elastic body in the Lagrangian coordinates.
The elastic potential should have the following properties.
(a) Invariance and objectivity: The internal energy should be insensitive to coordinate frame translation and rotation.

Hence, Φ(UC) = Φ(C), where U , detU = 1 is an orthogonal matrix. If the elastic material is isotropic, the internal energy
is invariant with respect to the Lagrangian frame rotation, namely, Φ(CV T ) = Φ(C), where V , det V = 1 is an orthogonal
matrix as well.

Hence,

Φ(UCV T ) = Φ(C),

where UTU = I , detU = 1, V TV = I , det V = 1 and function Φ(C) can be expressed as a symmetric function of singular
values σi of matrix C . Equivalently, this means that Φ(C) can be represented as a function of the principal invariants of
matrix CTC .

(b) Isometry preservation: The absolute minimum ofΦ(C) is attained when C = U , where UTU = I , detU = 1. In fact,
the stored energy should reach the minimal value when elastic body is not deformed, i.e. when mapping x(ξ) is isometric.

(c) Linear elasticity limit: In the case of small deformations the hyperelastic material behavior should be described
by the linear elasticity equations resulting from Hooke’s law. Technically speaking, for the elastic potential the following
expansion should be valid

Φ(C) = Φ(I)+
λ

2
(tr E)2 + µtr E2

+ o(∥E∥
2),

where E =
1
2 (C

TC − I) is the Green–Saint-Venant deformation tensor, λ and µ are the Lame coefficients.
The theorems of existence for solutions of stationary hyperelasticity problems were formulated in the papers by Ball

[38,39]. These results are based on the following additional requirements.
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• Regularity: elastic deformation is assumed to be the Sobolev mapping;
• Barrier property:Φ(C) → +∞ when det C → +0. This property is incompatible with the convexity of functionΦ(C).
• Polyconvexity: function Φ(C) is called polyconvex if it is the continuous convex function of the minors of matrix C ,

i.e. there exists continuous convex functionΦ(C) = Φ(C, det C, cof C);
• Penalty for large deformations: functionΦ(C) should satisfy certain growth conditions.

Ball [39] formulated sufficient conditions for elastic deformations to be homeomorphismswhich are not smooth but reg-
ular enough for deformation as a function of Lagrangian coordinates to belong to a certain Sobolev space. Omitting technical
details, one can formulate the theorems of existence as follows. Suppose that there exists at least one Sobolev homeo-
morphism which belongs to a certain admissible set and provides finite value for the stored energy functional. Then, the
minimizer of the hyperelasticity problem exists and is the Sobolev homeomorphism as well. The proof technique is based
on the so-called direct method via the analysis of minimizing sequences. For direct method existence of the global minimiz-
ing sequence is established. However the existence proof is not constructive hence in practice local minimizing sequences
are constructed.

A practical conclusion from the theoretical results given above is that construction of an admissible Sobolev homeo-
morphism is obviously related to the mesh untangling while the construction of a minimizing sequence is related to mesh
optimization.

Ball proved [38] that every polyconvex functionΦ(C) is rank one convex, namely

Φ(λC1 + (1 − λ)C2) ≤ λΦ(C1)+ (1 − λ)Φ(C2), (2)
rank(C1 − C2) = 1, 0 ≤ λ ≤ 1.

If in addition function Φ(C) is twice continuously differentiable, then rank one convexity is equivalent to the Hadamard–
Legendre condition

d
i,j,k,p=1

∂2Φ

∂cik∂cjp
pipjrkrp ≥ 0, (3)

where p, r ∈ R3 are arbitrary vectors. This inequality is also called the ellipticity condition for the Euler–Lagrange equations
of the functional (1).

A simple transformation can be applied to the elastic potential to make the singular mappings inadmissible. Let W (C)
denote the elastic potential. For 1 < α < +∞ consider the following transformation:

Wα(C) =

 1
α

(α − 1)2W (I)W (C)
αW (I)− W (C)

whenW (C) < αW (I)

+∞ whenW (C) ≥ αW (I).
(4)

PotentialWα(C) is finite only if

W (C) < αW (I). (5)

The Lame coefficients λ and µ of the potentials W (C) and Wα(C) coincide. Parameter α is used to control the upper bound
of deformation (quasi-isometry constant).

The general properties of the elastic potential can be understood betterwhen the theorems of existence for the variational
problem are formulated. Let us note that the formulated requirements differ from those formulated in Ball’s theorems.

LetΩ be a bounded Lipschitz domain in R3. Consider the stored energy functional Fα(x)which can be written as

Fα(x) =


Ω

Wα(∇ξ x) dξ, (6)

where function Wα(C) is defined in (4), and C = ∇ξ x is the Jacobian matrix of the mapping x(ξ).
Let us define the set of admissible deformations Aα via

Aα = {y ∈ W1
p(Ω), p > 3,W (∇ξy) < αW (I) almost everywhere inΩ} (7)

where W1
p is the standard notation for the Sobolev space with the norm defined by

∥y∥W1
p

=


Ω


i

(|yi|p + |∇ξyi|p) dξ

 1
p

.

It is assumed that the functionW (C) has the following properties:

(P1) W (C) : R3×3
→ R̄ is a polyconvex function;

(P2) W (C) ≥ W (U) = W (I) > 0, for any U such that UTU = 1, detU = 1;
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(P3) there exist continuous monotone increasing locally bounded functions φ1(α), φ2(α) such that φi(1) = 1, φi(+∞) =

+∞, and from inequality W (C) < αW (I) it follows that

det C >
1

φ1(α)
,

1
φ2(α)

< σi(C) < φ2(α)

(P4) there exists continuous monotone increasing locally bounded function φ3(α) such that if det C > 0 and C satisfies
inequality 1

φ3(α)
< σi(C) < φ3(α), then W (C) < αW (I).

Here, σi(C) denotes the ith singular value of the matrix C .

Theorem 2.1. Suppose that function W (C) satisfies conditions (P1)–(P4). Let Ω,Ω1 ⊂ R3 be bounded Lipschitz domains such
that there exists a quasi-isometric mapping y0(ξ) : Ω̄ → Ω̄1, y0 ∈ Aα0 and Fα0(y0) < +∞ for certain 1 < α0 < +∞.

Then, there exists x∗(ξ) ∈ Aα0 such that

Fα0(x
∗) = inf

y∈Aα0 ,y|∂Ω=y0|∂Ω
Fα0(y) (8)

and x∗(ξ) : Ω̄ → Ω̄1 is a quasi-isometric mapping.

The proof of the theorem can be found in [34].
For mesh generation in [31] it was suggested to use the polyconvex elastic potential represented by a sum of shape

distortion and volumetric distortion terms:

W (C) = (1 − θ)

 1
3 tr (C

TC)
3/2

det C
+

1
2
θ


1

det C
+ det C


. (9)

Here, parameter θ plays the role of the volumetric modulus, while 1− θ is the shear modulus. The Lame coefficients do not
have geometrical meaning so it is not advisable to prescribe them directly. They can be expressed in terms of shear modulus
and volumetric modulus.

Functional (6) and (9) essentially measures the deviation of mapping from isometry. It can be used to construct quasi-
uniform meshes. In fact, formula (9) generates a family of mesh generation functionals.

Incompressible deformations are not included into the above analysis. However almost incompressible deformations can
be simulated setting θ ≈ 1. Experience of authors shows that construction of almost incompressible finite deformations is
quite tricky in a sense that it may create multiple solutions relatively easily. This topic is beyond the scope of the paper.

A simple variant of mesh optimization and smoothing can be obtained using

Ws(C) =

 1
3 tr (C

TC)
3/2

det C
.

The resulting functional is used for many years in the theory of quasi-conformal mappings. It is scale invariant and can be
applied only for mesh element shape optimization. Note that in many cases it can lead to appearance of very large or small
elements. A family of scale invariant distortion measures is presented in [6]. One can also use another shape distortion
measure (see, e.g. [40,10,26])

W̃s(C) =

1
3 tr (C

TC)
det C2/3

.

This scale invariant distortion measure is polyconvex as well. The properties of these two distortion measures are similar,
however, Ws(C) is more sensitive to distortion. If these measures are bounded, then the singular condition number of the
matrix C (namely, the ratio of any singular values) is bounded. Unfortunately existence theorems cannot be applied for this
class of distortion functionals due to the lack of proper growth conditions.

When the control over mesh size is desirable, one can use a balanced distortion measure (9)

W (C) =
φθ (C)
det C

, φθ (C) = (1 − θ)


1
3
tr (CTC)

3/2

+
1
2
θ(1 + det C2). (10)

Numerical experiments in [31,24] suggested that θ = 4/5 should be used for balanced distortion measure. Larger values of
theta make the hyperelastic material behave close to the incompressible one and may potentially result in instabilities in
the case of large deformations.

The most complex distortion measure among considered is the quasi-isometric distortion measure [31] which is con-
structed as a combination of (4) and (9), and can be written as follows:

Wt(C) = (1 − t)
φθ (C)

det C − tφθ (C)
. (11)

Here, parameter α = 1/t plays the role of the global upper bound of distortion. The particular choice of the distortion mea-
sure depends on the application. For the mesh smoothing problems a simple shape distortion is a good choice. For problems
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such as construction of global mappings, flattening of 2D and 3Dmanifolds andmany others, a balanced distortion measure
can be used,while application of quasi-isometric distortionmeasure being critical for the problemswhere control overworst
elements is crucial. For example, in [41,42], max-norm optimization of element quality is used for improvement of theworst
mesh elements in 3Dmesh. Here, instead of applying the max-norm optimization strategy, one has to solve the sequence of
variational problems with the distortion measure (11) using the continuation technique that maximizes the parameter t .

In practice, one can control the spatial distribution of distortion measure without actual contraction of the feasible set.
It is possible to introduce a weight function in the Lagrangian coordinates which takes large values in critical regions and is
close to unity elsewhere. The weighted distortion measure looks as follows:

Ww(C) = w(ξ)
φθ (C)
det C

. (12)

In the process of minimization, elements with a larger weight tend to have a smaller value of distortion function W (C).
Hence, their shapes and sizes are very close to the target ones. This simple approach proved to be very efficient for mesh or-
thogonalization near the boundary [43,31]. A proper choice of theweight allows us to satisfy the no-slip boundary conditions
and to approximate boundary orthogonality conditions and prescribed mesh size in the normal direction very accurately.
Prescribed intersection angle boundary conditions can be approximated as well.

Theoretical arguments suggest that in order to eliminate the local singularities of the distortion function the weight
distribution should be singular. However, this singularity is only reached in the limit of mesh refinement and for any given
finite mesh weight distribution is bounded.

Let Gξ (ξ) and Gx(x) denote the metric tensors defining linear elements and length of curves in Lagrangian and Eulerian
coordinates in the domainsΩξ and Ωx, respectively. Then, x(ξ) is the mapping between metric manifolds Mξ and Mx. The
distortion functional for this mapping can be written as

Fα(x) =


Ωξ

Wα(Q∇ξ xH−1) detHd ξ, (13)

where

HTH = Gξ , detH > 0, Q TQ = Gx, detQ > 0

are arbitrary matrix factorizations of metric tensors Gξ and Gx. If certain quasi-isometric parameterizations η(ξ) and y(x) of
manifoldsMξ andMx already exist, then one can simply use the functional suggested in (6) for mapping y(η) and apply the
chain rule to obtain the variational formulation for mapping x(ξ)which coincides with (13) provided that

H = ∇ξη, Q = ∇xy.

The functional (13) is invariant with respect to the coordinate transformation in Lagrangian and Eulerian coordinates
[32]. Hence, the composition of mappings y ◦ x∗

◦ η−1 does not depend on the initial parameterizations η(ξ) and y(x),
where x∗(ξ) is mapping minimizing the functional (13). Functional (13) only depends on the principal invariants of matrix
CTGxCG−1

ξ . The existence theorem can be generalized for this case under additional regularity conditions on function Gx(x).
In [21] it was suggested to approximate barrier functional by the penalty functional thus relaxing condition det∇ξ x > 0

for the set of admissible mappings. The idea is to replace det C in the denominator of elastic potential by the function

χε(det C) =
1
2
(det C +


ε2 + det C2). (14)

Thus functional (13) is approximated by

Φε(x) =


Ωξ

Pε(Q∇ξ xH−1) detHd ξ, (15)

where penalty potential Pε(C) is defined as follows

Pε(C) =
φθ (C)

χε(det C)
, (16)

where φθ (C) is defined in (10). Note that penalty function (16) generally is not polyconvex and violation of polyconvexity
is related to values of | det C | comparable to ε. One can use functional (15), (16) in order to construct admissible mapping
for barrier distortion functional which is explained in the section devoted to iterative solver.

Another way to approximate barrier functional is to extend the set of admissible mappings using barrier elastic potential
with a wider admissible set

Ψε(x) =


Ωξ

Pε(Q∇ξ xH−1) detHd ξ, Bε(C) =
φθ (C)

det C + ε
. (17)

Note that function Bε(C) is polyconvex.
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One can use composition of mappings in order to control the local properties of mapping, e.g. to adapt a mesh to the sur-
face curvature. The curvature-sensitive adaptation is very important for resolution of geometrical features and qualitymesh-
ing of complex-shaped surfaces and solids. In most practical cases, a surface is defined by nonsmooth and noisy data which
makes analytical computation of a curvature unfeasible. The curvature sensitive adaptation should be stable with respect to
noisy data and provide controllable mesh condensation near sharp edges. Highly skewed elements should not be present.

Consider a parametric surface S in R3 defined by the function
y1(x1, x2), y2(x1, x2), y3(x1, x2). The Laplace–Beltrami operator is defined as

∆B =
1
J


∂

∂x1

g22
J

∂

∂x1
−

∂

∂x1

g12
J

∂

∂x2
−

∂

∂x2

g12
J

∂

∂x1
+

∂

∂x2

g11
J

∂

∂x2


, (18)

where gij =


k
∂yk
∂xi

∂yk
∂xj

are the entries of the first fundamental form G of S, J = detG
1
2 .

Since

∆By = νH, (19)

where ν is the unit normal to the surface, and H is the mean curvature, one can use the discrete Laplace–Beltrami operator
to calculate the discrete mean curvature.

A special finite volume technique is used to discretize the Laplace–Beltrami operator, which provides second order ac-
curate ‘‘fluxes’’ through dual edges on highly nonuniform almost orthogonal meshes and remains stable on nonconvex
quadrilaterals.

LetGξ (ξ) andGx(x) be themetric tensors defining themetrics in Lagrangian and Eulerian coordinates in domainsVξ ⊂ R2

and Vx ⊂ R2, respectively. The curvature sensitive 2D distortion functional for optimization of surface meshes can be
written as

Fα(x) =


Vξ

Wα(Q∇ξ xP−1) det Pd ξ, (20)

where

PTP = Gξ , det P > 0, Q TQ = Gx,

are some factorizations of 2 × 2 matrices.
The metric tensor Gx(x) is given by

Gx(x) = (1 + c|H(x)|)I,

where H(x) is the mean curvature, c is a constant weight. Distortion function Wα(C) is based on the following 2D elastic
potential

W (C) = (1 − θ)

1
2 tr (C

TC)
det C

+
1
2
θ


1

det C
+ det C


.

The casewhen there is no explicit representation for surface S should be considered aswell. Then S ⊂ ∂Ω , whereΩ ⊂ R3

is a bounded domain, ∂Ω is defined as zero isosurface of certain piecewise regular Lipschitz function u(y). It is assumed that
u(y) < 0 at interior points of the domain Ω , u(y) > 0 in the complement of the domain, its derivatives along a certain
nondegenerate vector field transversal to ∂Ω exist and do not vanish in a certain finite layer R near ∂Ω . In fact, we assume
that the behavior of the implicit function u qualitatively resembles the behavior of the signed distance function.

Then, in the neighborhood of each point p ∈ S one can find the coordinate frame such that S locally is the graph of
Lipschitz continuous height function y(x)which essentially provides surface parametrization. Thus the iterative method for
surface mesh optimization can be applied.

3. Discretization of distortion measures and minimization technique

Consider mapping x(ξ) from parametric domainΩξ ⊂ R3 onto computational domainΩx ⊂ R3. Suppose that domain
Ωξ admits normal tiling by canonical elements Kk.

The distortion measure of the mapping x(ξ) can be approximated by the following semidiscrete functional

Fα(xh(ξ)) =


Kk


Kk

Wα(∇xh(ξ)) dξ,

where xh(ξ) is certain continuous piecewise-smooth mapping.
If all canonical elements Kk are simplices, then the mapping xh(ξ) on each element can be chosen to be affine, and the

local Jacobian matrix is constant. Hence,

Fα(xh(ξ)) =


k

Wα(∇xh(ξ))|Kkvol(Kk) = F h
α(xh(ξ)),

where F h
α(xh(ξ)) denotes fully discrete functional.



Author's personal copy

30 V.A. Garanzha et al. / Journal of Computational and Applied Mathematics 269 (2014) 24–41

If the localmapping is not affine, the quadrature rules should be used to approximate the contribution fromeach element.
When Gξ = I and Gx = I then for a certain class of continuous piecewise-polynomial mappings quadrature rules were

suggested in paper [25], which in the case of polyconvex functionWα(C) guarantee that

Fα(xh(ξ)) ≤ F h
α(xh(ξ)). (21)

This property is very important since it guarantees that once an initial guess is admissible mapping, namely, it is a quasi-
isometric mapping satisfying given constraints and boundary conditions, then in the process of minimization the discrete
solution remains admissible.

The geometric quadrature rules are based on the followingmaximumprinciple for polyconvex distortionmeasure, which
is a generalization of the result from [25]. Outline of the proof is essentially the same as in [25], but formulation of the
theorem is refined.

Theorem 3.1. Let C1, . . . , Cm be a set of d × d matrices, function f (C) is polyconvex, and U ⊂ Rd is a convex domain. Assume
that the Jacobian matrix of smooth mapping x(ξ) : Ū → Rd is defined by equality

∇ξ x(ξ) = C =

m
j=1

CjΛj(ξ),

k
j=1

Λj = I, Λj ≥ 0, (22)

whereΛj(ξ) ∈ C(Ū) are diagonal d × d matrices.
Let C̃ν, ν = 1, . . . ,md denote ‘‘compound’’ d × d matrix, with kth column chosen as kth column of any basis matrix Ci.

Suppose that inequality f (C̃ν) ≤ c0, c0 > 0 holds for all values of ν . Then, (a) f (C) ≤ c0; (b) one can find the set of coefficients
aν(ξ) ≥ 0,

md

ν=1 aν = 1 such that

C(ξ) =

md
ν=1

aν(ξ)C̃ν, f (∇ξ x) ≤

md
ν=1

aν(ξ)f (C̃ν). (23)

Now assume that U is a canonical mesh element in the parametric space which could be a regular or semi-regular polyhe-
dron. Let us assume that the Jacobian matrix of mapping xh(ξ) : Ū → Rd is defined by ∇ξ xh =

m
i=1 CiΛi(ξ).

To construct a discrete distortion measure of the image of element U , one can use the following quadrature rule:
U
f (∇ξ xh) dξ ≈

Nq
q=1

βqf (C̃q)vol(U), βq =
1

vol(U)


U
aq dξ, Nq = md, (24)

where aq is the set of coefficients from Theorem 3.1. The inequality (21) is a direct consequence of (23). Summing up
contributions from all mesh elements, one can compute fully discrete functional F h

α(xh(ξ)).
The resulting geometric quadratures are exact for constant functions and for the determinant of the Jacobian matrix. If

the parametric domain U is centrally symmetric in the sense that the integral of any linear function of ξ taking zero value
at its center is zero then the quadratures are exact on linear functions.

The maximum principle can be applied to the polyconvex distortion measures for bilinear quadrangles, trilinear hexa-
hedra, pyramids and prisms, quadratic triangular and tetrahedral isoparametric elements and to arbitrary order Bernstein–
Bezier polynomials.

In [44], a sufficient condition was derived for invertibility of the Bernstein–Bezier polynomial mappings.
In 1D the Bernstein–Bezier polynomial of the order of p defined on interval 0 ≤ ξ ≤ 1 can bewritten as follows (e.g. [45]):

u(ξ) =

p
i=0

uiξ
i(1 − ξ)p−i p!

i!(p − i)!
. (25)

Equality (25) is nothing else but the convex combination of p + 1 control points ui
p

i=0

ξ i(1 − ξ)p−i p!
i!(p − i)!

= (ξ + (1 − ξ))p = 1.

The first derivative of u(ξ) is given by

∂u
∂ξ

=

p−1
i=0

p(ui+1 − ui)ξ
i(1 − ξ)p−i−1 (p − 1)!

i!(p − i − 1)!
. (26)

Since
p−1
i=0

ξ i(1 − ξ)p−i−1 (p − 1)!
i!(p − i − 1)!

= (ξ + (1 − ξ))p−1
= 1,

one obtains that the first derivative is a convex combination of p differences p(ui+1 − ui).
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To construct the polynomial mapping of multidimensional cube, one can use the tensor product of the 1D Bernstein–
Bezier polynomials. Below we consider in the 3D case the following mapping of the unit cube x(ξ) : U → D, where U =

{ξ : 0 < ξi < 1} and D is a curvilinear hexahedron. Denote the control points of the spline by xijk, i, j, k ∈ {0, . . . , p}.

x(ξ) =

p
i,j,k=0

xijkξ i1(1 − ξ1)
p−iξ

j
2(1 − ξ2)

p−jξ k3 (1 − ξ3)
p−k

·
p!p!p!

i!(p − i)!j!(p − j)!k!(p − k)!
(27)

The columns ci of the Jacobian matrix C = ∇ξ x of polynomial mapping (27) can be written as follows:

c1 =

p−1
i=0

p
j,k=0

p(xi+1jk − xijk)ξ i1(1 − ξ1)
p−i−1

× ξ
j
2(1 − ξ2)

p−jξ k3 (1 − ξ3)
p−k (p − 1)!p!p!

i!(p − i − 1)!j!(p − j)!k!(p − k)!

c2 =

p−1
j=0

p
i,k=0

p(xij+1k − xijk)ξ
j
2(1 − ξ2)

p−j−1

× ξ i1(1 − ξ1)
p−iξ k3 (1 − ξ3)

p−k (p − 1)!p!p!
j!(p − j − 1)!i!(p − i)!k!(p − k)!

c3 =

p−1
k=0

p
i,j=0

p(xijk+1 − xijk)ξ k3 (1 − ξ3)
p−k−1

× ξ i1(1 − ξ1)
p−iξ i2(1 − ξ2)

p−j (p − 1)!p!p!
k!(p − k − 1)!i!(p − i)!j!(p − j)!

.

(28)

Hence, the Jacobian matrix admits representation (22)

∇ξ x = C(ξ) =

m
k=1

CiΛi(ξ), Λi(ξ) ≥ 0,
m

k=1

Λi(ξ) = 1,

where Λi(ξ) are diagonal matrices, Ci are constant matrices and value m in the 3-dimensional case is equal to p(p + 1)2.
Hence, the maximum principle for polyconvex distortion measures holds.

When p = 1, D is a hexahedron with straight edges. Mapping (27) is just a trilinear mapping

x(ξ1, ξ2, ξ3) =

1
i,j,k=0

(1 − ξ1)
1−iξ i1(1 − ξ2)

1−jξ
j
2(1 − ξ3)

1−kξ k3xijk, (29)

m = 4 and total number of quadrature ‘‘nodes’’ is equal to 43
= 64.

In practice, simplified quadrature rules are frequently used that can be understood as simplicial approximations of non-
simplicial elements. In this case, estimate (21) cannot be rigorously derived but numerical experiments showquite favorable
results.

The unknowns of the discretized variational problem are vertices of the mesh in the computational domain. Denote by
zk ∈ R3, k = 1, . . . , nv the vector of kth vertex coordinates, and Z = (z1 z2 · · · znv ) is the 3× nv matrix of unknowns. Hence
the solution of the discrete variation problem with functional F h

α(xh(ξ)) is reduced to minimization of the function F(Z).

4. Iterative minimization scheme

The stationarity condition at the kth internal vertex of the mesh is simply written as ∂F
∂zk

= 0.
For an implicit domainΩ , the slip boundary conditions should be included into the minimization process. Let us assume

that vector ∇u(zk) be defined. Otherwise, in order to obtain an approximate value of the gradient, one can use the tangent
cone at a point that is always defined. Note that, in practice, this approximate value is computed using finite differences.
Let us use notation Lk = (I − ∇u∇uT/|∇u|2)|zk ∈ R3×3 if zk is a vertex on the slip boundary. Multiplication by matrix Lk
eliminates the component normal to the local boundary tangent plane. For all other points we set Lk = I .

Then the stationarity condition for the function F(Z) at the sliding boundary vertex zk can be re-written as

Lk
∂F
∂zk

= 0 (30)

u(zk) = 0. (31)

Let δzk denote a displacement at the point zk. Linearizing Eq. (30), one can obtain

δzTk ∇u(zk)+ u(zk) = 0.

Thus, when u(zk) = 0, displacement δzk should lie in the tangent plane.
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Let us denote by V the operator which projects a point onto ∂Ω along approximate gradient curves of function u(x).
The gradientR of the function F(z1, . . . , znv ) is obtained from3Dvectors rk =

∂F
∂zk

. TheHessianmatrixH of F is constructed

from 3 × 3 blocks Hij =
∂2F
∂zi∂zTj

, where matrix Hij is placed on the intersection of the ith block row with jth block column.

Function F is not convex hence matrix H generally is not positive definite. However, it follows from the Hadamard–
Legendre inequality (3) that Hii are positive definite matrices. For the proof it suffices to consider variation of F with respect
to displacement of a single node. This displacement has rank one in a sense that gradient of resulting deformation at internal
points of elements adjacent to this vertex can be represented as the gradient of initial deformation plus rank one matrix.
Function F is convex with respect to rank one displacements. Another type of rank one displacement is displacement of all
mesh vertices in the same direction with different amplitudes. It means that one can symmetrically reorder matrix H into 9
nv × nv blocks such that diagonal blocks are positive definite matrices which correspond to finite element approximations
of scalar elliptic operators.

Using the notations given above, one can formulate the following iterative scheme which can be considered as the
projected Newton–Raphson method:

nv
j=1

LTi HijLjδzj + LTi ri(Z
l) = 0 (32)

z l+1
k = V (z lk + τlLkδzk), k = 1, . . . , nv. (33)

Parameter τl can be found using an approximate solution to the following line search problem

τl = argmin
τ

F(V (Z l
+ τδZ)).

To obtain a method similar to the iterative barrier method of Charakhchyan, Ivanenko, 1988 [5], one should set

Hij = 0 for i ≠ j. (34)

We refer to this method as explicit one since it does not require solver for the solution of the linear system on each iteration.
In order to obtain an implicit method similar to the method from [31] one should neglect the nondiagonal elements in the
matrices LTi HijLj. As a result, the linear system (32) is split into three independent linear systems with respect to the vectors
δZm, defined by

(δZm)i = (δzi)m.

The resulting linear systems with symmetric positive definite matrices can be solved approximately using the precondi-
tioned conjugate gradient technique. Let us note that the gradient projection technique is a standard tool in the optimization
methods and was successfully used in mesh generation, see e.g. [36,46].

The convergence of iterations to a stationary point of the discrete functional was rigorously proven in [33] for the most
known polyconvex stored energies and for a quasi-isometric functional.

5. Mesh untangling technique

The variational method can also be used in the case when the algebraic volume of some tetrahedra in an initial mesh is
zero or negative. An iterative method in this case is formulated as follows [21]:

H lδZ = Rl, where (δRl
m)k = (r lk)m, r

l
k = Lk

∂Φ l
ε

∂zk

ε(Z) = (δ20 + 0.004 ∗ (min(0,min(det C(Z)|l)))2)
1
2 , C = Q∇ξ xP−1 (35)

Z l+1
= V (Z l

− τlδZ) where (36)

τl = argmin
τ
Φε(V (Z l

+ τδZ)). (37)

Here function Φε : R3×nv → R denotes the discretized penalty functional (15). Formula (35) means that the minimum of
the determinant of matrix C is computed over all quadratures nodes of all elements of the mesh Z l. Parameter δ0 is certain
small positive constant, say δ0 = 10−11. Since potential Pε for penalty functionalΦε is not polyconvex, generally one cannot
guarantee that diagonal blocks of the Hessian matrix ofΦε(Z) are positive definite. However one can easily prove required
positive definiteness provided that terms depending on second derivatives of the function χ are eliminated.

As one can see, steps of the untangling algorithm are quite similar to those for optimization. Moreover, when det C is
positive everywhere they essentially coincide. Careful look at the choice of penalty formulation suggests that during the
iterative process elements may travel back and forth from the admissible set. Numerical experiments with block structured
grids, presented in the next section, are based on such an approach. Sometimes it is desirable to make element evolution
one-way: they may travel into the admissible set but not allowed to get outside. Simple modification of the above scheme
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serves to this purpose. When parameter ε is computed using formula (35), it is formally replaced by the value δ0 for all
nondegenerate elements. Hence 1D line search step (37) prevents degeneration of these elements.

Numerical experience shows that sequence of parameters εl tends to zero andmesh is untangled and simultaneously op-
timized in the already untangled subdomains. In [21] it was proven that one can construct the trajectory of the continuation
technique with respect to parameter ε such that the solution converges to the stationary point of the functionalΦδ0 .

When admissible mesh is constructed it is usually not far from the optimal solution. Note that algorithms for simultane-
ous untangling and optimization were also presented in [26,47].

In 2D the above algorithmwas found to be quite robustwith respect to the initial guess.We did not encountered practical
test cases which were not treatable using the technique suggested in [21].

However, in the 3D case performance of the untangling technique based on a penalty functional is less robust with
respect to the stiffness of the problem. If the target shapes for the mesh elements are very anisotropic, as it happens while
constructing very thick prismatic layers, the iterative untangling procedure can be very slow.

An approach alternative to the penalty technique is a variant of the barrier untangling algorithm based on expansion of
the admissible set with subsequent contraction. The idea is to use function Ψε(Z) (17) instead of penalty functional Φε(Z).
Parameter ε is chosen in such a way that

det C(Z)+ ε > 0 (38)

for all quadrature nodes of all elements. Formula (35) should be replaced by the following one

εl+1
= max(δ0, εl − σ(εl − |min(det C, 0)|)), 0 < σ < 1. (39)

This formula guarantees that εl+1 < εl and εl+1 satisfies (38) with Z = Z l providing admissible initial guess for iteration
l + 1. Here it is suggested ε0 =

3
2 |min(det C, 0)|.

It was proven in [18] that such an algorithm constructs an admissible mesh using only a finite number of exact mini-
mization steps provided that the solution exists, i.e. for a certain number M we get εl = 0, l >= M . Surprisingly, to the
best of our knowledge, this algorithm has never been tested before in practical 3D test cases. In practice, one should extract
subdomains containing tangled elements and self-intersections and apply the optimization locally, reducing the size of the
active set of mesh elements along with the minimization of parameter εl.

One should also note that finite untangling proof can be generalized to the penalty algorithm provided that iterative
scheme guarantees essential reduction of functional during each iteration.

One can roughly divide the applications of the variational mesh optimizationmethod into two groupswith respect to the
choice of the iterative solver. The applications for the preconditioned iterative methods include the global surface flattening
with a minimal distortion, the global untangling for complicated domains and similar problems in which the initial guess is
quite far from the solution and, due to problem formulation, large distortions are present. The applications, in which explicit
methods are preferable include the admissible mesh smoothing and optimization, especially in the case of slip boundary
conditions and local untangling when the tangled grid contains a relatively small number of elements.

6. Numerical experiments

We consider several examples, which illustrate the performance and robustness of the proposed methods.

6.1. Untangling and optimization of structured meshes

The first test problem is specially devised to test the robustness of the untangling algorithm. Geometric setting is simple
and easily reproducible. Consider the unit cube C = {xi : −

1
2 ≤ xi ≤

1
2 , i = 1, 2, 3}. One can construct in C uniform Carte-

sianmesh consisting of n1×n2×n3 cubes. All vertices of thismeshwhich lie inside smaller cube CI = {xi : −
1

2
√
2

≤ xi ≤
1

2
√
2
,

i = 1, 2, 3} are rotated around the x3 axis by the angle α and fixed. The positions of all remaining internal vertices are found
using untangling and subsequent optimization procedure. Initial guess in all cases is uniform Cartesian mesh. Results are
presented for mesh with n1 = n2 = n3 = 32. For this test case it is not possible to deform initial Cartesian mesh into
final one using gradual rotation of inner cube and vertex movement keeping mesh admissible. Evidently in order to con-
struct such a deformation one may reduce the size of the inner cube, gradually rotate and restore initial size of the cube.
Variational untangling technique is supposed to solve the same problem in a black box mode. Fig. 1 shows certain subset of
initial Cartesian mesh elements and the same subsets for deformed meshes for rotation angles π/8, 3π/8, π/2, 7π/8, π .
One should note that cases α = 7π/8, π are quite difficult. Moreover numerical solutions are not unique which is clear
from the loss of symmetry of solutions. Similar results for 2D barrier functional were obtained in [21].

Fig. 2 shows three different coordinate surfaces for these test cases.
Fig. 3 shows deformation of the coordinate surface i3 = 16 passing through the center of the cube. Note that for α = π/8

this coordinate surface remains flat and retains discrete symmetry, while for large angles symmetry is lost. For α = 7π/8
deviation of this coordinate surface from plane is very large.

Quantitative behavior of the implicit version of an untangling technique is illustrated in Table 1.
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Fig. 1. Rows of elements of resulting mesh and coordinate surface i3 = 4 for α = 0, π/8, 3π/8, π/2, 7π/8, π .

Fig. 2. Three different coordinate surfaces for α = 0, π/8, 3π/8, π/2, 7π/8, π .

Here Minit is a number of inverted ‘‘tetrahedra’’ in the initial mesh. ‘‘Tetrahedron’’ here is the geometrical object which
generates single contribution to quadrature rule for hexahedral element as explained in (24). Hence corresponding number
of degenerate hexahedra is much smaller.Mmax denotes the maximal number of inverted tetrahedra during the untangling
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Fig. 3. Coordinate surface i3 = 16 for α = 0, π/8, 3π/8, π/2, 7π/8, π .

Table 1
Untangling results.

α π/8 3π/8 π/2 π ⋆/2 7π/8 π

Minit 19264 22400 31192 124128 32032 34157
Mmax 19264 36029 82330 663436 213554 126644
niter 140 8160 2120 9240 63600 56000
tu 164 8243 2983 67654 84562 67928
φmin 4.34 × 10−2 1.72 × 10−3 1.97 × 10−3 7.76 × 10−4 1.02 × 10−4 2.65 × 10−4

ψmin 1.06 × 10−1 7.0 × 10−3 1.48 × 10−2 9.07 × 10−3 3.05 × 10−4 1.87 × 10−3

procedure. Parameter niter denotes the number of untangling iterations sufficient to reach the mesh with total number of
inverted tetrahedra less than 100. At that phase fragment containing these tetrahedra is untangled locally without much
influence on total wall-clock time. tu is the CPU time for making niter steps. Timings were obtained on single core of Intel I7
2200HGz. Hereφmin is theminimal value of the shape quality function det C/( 13 tr C

TC)
3
2 andψmin is theminimal value of the

volumetric quality function 2 det C/(1+det C2), C is the Jacobianmatrix. Variantmarkedwith ⋆ corresponds to 64×64×64
mesh. Figs. 4 and 5 below illustrate comparative behavior of implicit and explicit untangling algorithms.

Obviously, the implicit method is quite efficient but it may spontaneously create localized zones where mesh is knotted
which can be attributed to the fact that some descent directions in the implicit method are quite bad. An explicit method
generally is knot-free, but the untangling process in general is much slower. This difference is much more pronounced on
finer meshes. Note that each iteration of the explicit method is about two times faster compared to the implicit one. For this
test case targetmesh is uniform. For highly stretchedmeshes an implicit method ismore efficient. Testing the admissible set
reduction scheme (17) on the same data sets using parameter sequence (39) leads to the following conclusions: (a) restarts
make the untangling algorithmmore efficient; (b) for relatively simple test problems, saywhen α = π/8, the admissible set
reduction algorithm is quite efficient; (c) for stiff problems this algorithm ismuch slower. One can conclude that the penalty
technique is suitable for industrial applications while the admissible set reduction technique is still of theoretical interest.

The second example is related to the construction of structured meshes in complicated domains. Consider a winged
body shown in Fig. 6. A geometrical model of the body is given by the surface tessellation that is essentially a triangulation
in which the exact surface is approximated with a prescribed chordal error. This triangulation can contain surface triangles
with an arbitrarily bad shape.

The surface-curvature sensitive structured surface mesh for this model is constructed using 2D functional (20).
A structured 3Dmesh around a winged body is computed using the minimization procedure for the 3D functional 13. To

this end, an initial algebraic mesh is constructed. A metric in the Lagrangian coordinates defining the near-wall stretching
is prescribed. An implicit iterative minimization solver is used.
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Fig. 4. Implicit method, coordinate surface i3 = 16 for iterations 0, 200, 400, 800, 1200, 1400.

Fig. 5. Explicit method, coordinate surface i3 = 16 for iterations 0, 1600, 3200, 4800, 6400, 7080.

Intermediate untangling results are shown in Fig. 7. For this test case it takes 50 iterations for untangling. The last figure
in the series corresponds to the optimized mesh. As one can see, the resulting mesh precisely corresponds to the prescribed
near-wall stretching law and the deviation from orthogonality near the surface is negligible.

The global view of the 3D mesh is illustrated in Fig. 8 where three families of coordinate surfaces are presented.
A relatively difficult test problem for the surface and volumemeshing algorithm is a swept wing body configuration. The

result of the application of the same mesh generation procedure is illustrated in Fig. 9. Here, several coordinate surfaces
of 3D mesh are shown including one that corresponds to the surface of the swept wing body. One can see that the mesh
stretching is very well controlled and orthogonalization errors near the surface are still negligibly small.
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Fig. 6. Tessellated model.

Fig. 7. Successive stages of the untangling procedure.

To alleviate the influence ofmesh elements flow over sharp edges on the body, a surface curvature sensitive surfacemesh
is constructed.

The left-hand side in Fig. 10 shows the example of a surface mesh sensitive to the discrete mean curvature of the surface,
while the distribution of the discrete mean curvature on an adaptive mesh being shown on the right-hand side.

As can be expected, the discrete mean curvature field based on the surface tessellation is noisy. A simple filtering
technique is applied to alleviate the influence of this noise.When discrete absolutemean curvature is below certain problem
dependent threshold it is set to zero, while the values above another positive constant are replaced by this constant.

The next figure illustrates the construction of a surface curvature sensitive 3D mesh as compared to a uniform 3D mesh
Fig. 11.
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Fig. 8. Coordinate surfaces of 3D mesh around winged body.

Fig. 9. Coordinate surfaces of 3D mesh for a swept wing configuration.

Fig. 10. Curvature sensitive mesh and discrete mean curvature field.

Fig. 11. Left—uniform mesh, right—mean curvature sensitive surface mesh and 3D mesh.

6.2. Construction of large offsets and thick prismatic layers using the variational method

The second application of the suggested variational method is related to the construction of large offsets and thick
prismatic mesh layers around complicated bodies. A layer is called ‘‘thick’’ since its thickness is allowed to be comparable
to the characteristic size of the geometric model.

Construction of prismatic layer for relatively realistic airplane test model is illustrated in Figs. 12–13.
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Fig. 12. (a) Initial thin layer, (b) intermediate layer, (c) thick layer, (d) layer with eliminated self-intersections.

Fig. 13. (a) Layer after the Laplacian–Beltrami smoothing, (b) splitting of current layer into two, (c) orthogonalization of internal layer, (d) finalmultilayered
mesh.

As the first step, one-element-wide prismatic layer of prescribed thickness is constructed. To this end, one first constructs
a relatively thin layer using the mesh vertex normals to define the side edges of the prisms as shown in Fig. 12(a). The
maximal thickness of this layer is bounded from above by the prism nongeneracy condition. Each prism is assumed to
consist of an elastic material which is highly compressed in the direction normal to the surface in Lagrangian coordinates.
Hence, one can solve stationary elastic springback problem by minimizing functional (13) and prescribing for each prism in
the layer a target shape with a certain height (thickness). An intermediate solution to the springback problem is shown in
Fig. 12(b). The result of untangling and optimization is a relatively thick layer which does not contain degenerate prisms.
However, it may contain overlaps and self-intersections as shown in Fig. 12(c).
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To eliminate self-intersections, a special iterative procedure for cutting excessive material is applied. If an intersection
between prisms is detected, then the height of both prisms is reduced by a certain value chosen to be quite close to unity.
Successive application of this procedure reduces the number of self-intersections and eventually eliminates them creating
an approximate contact spot, which resembles a medial surface. The result of such a procedure is illustrated in Fig. 13(a).

Additional material is eliminated to restore precise layer thickness. This process is coupled with the Laplace–Beltrami
smoothing of final offset surface. Discrete approximation of the Laplace–Beltrami operator is constructed using the mean
value theorem for harmonic functions [35]. In the process of smoothing only vertex movement along outcoming edges of
prismatic mesh is allowed. The result is shown in Fig. 13(a).

To construct the final multilayered prismatic mesh, a combination of themarching technique and the variational method
is applied. At each step a one-layered mesh is split into two sublayers, and the variational optimization is applied to the
resulting prismaticmeshwhich tends to orthogonalize the inner layer. Fig. 13(b)–(c) illustrate this step as applied to the final
mesh layer number four. After few optimization iterations the inner layer is extracted and added to the pool of the computed
layers. The same algorithm is again applied to the remaining one-layered mesh. This procedure is repeated until the initial
layer is exhausted. Optionally, in order to preventmesh element skewing, near-external-boundary subdivision/optimization
steps can be stopped before the exhaustion of initial layer and the remaining layer containing skewed elements can be just
thrown away.

The above procedure is rather complicated. However, it guarantees that at each step of construction prismatic mesh
elements remain nondegenerate, even though the deformations can be quite large. This property is crucial for really thick
layers where very long prisms with a small base can appear. It has to be noted that simple marching algorithms can very
easily lead to degeneration of such elements.

One should also note that for the elastic springback phase an implicit iterative solver is used, since an explicit solver is
not powerful enough to converge and reach the target thickness of the layer. Meanwhile, the optimization for marching
generation of layers is based on a less expensive explicit minimization iterative solver.

One can easily see that deviation from orthogonality near the boundary is negligible and the overall quality of the pris-
matic layer makes it useful for industrial flow simulations. The resulting algorithm is integrated into pre- and postprocessor
of multiphysics simulation code LOGOS [48].

7. Conclusions

Theoretical foundations for variational mesh optimization methods have been presented. We have introduced a varia-
tional method which can provably construct 3D quasi-isometric mappings between domains of a complex shape. A local
maximum principle for polyconvex distorted measures has been formulated which allows us to control the invertibility
and distortion bounds for non-simplicial elements in the process of minimization. The simple and efficient technique for
construction of boundary orthogonal meshes suggested in [31] has been applied to the construction of hexahedral meshes
and thick prismatic mesh layers around complex shapes. The untangling technique which is a generalization of the method
proposed in [21] has been verified on awide set of challengeable test problems. Another untangling technique based on [49],
which provably constructs admissible meshes using finite number of minimization steps, has been implemented.

A minimization technique for the mesh functional has been formulated. The approach is based on the global gradient
descent technique with preconditioning using domain decomposition for local mesh optimization and untangling. Slip
boundary conditions for implicit domains are incorporated into the iterative minimization procedure.

It is shown that implicit solver is well suited for global surface flattening with minimal distortion, global untangling for
complicated domains, optimization of meshes and mappings for stiff problem. The main advantages of this technique are
stability and robustness. An explicit method is better suited for mesh smoothing and optimization, especially in the case
of slip boundary conditions and local untangling. This technique is considerably faster per iteration. However, we were not
able to solve certain problems using explicit solver.

For further reading

[50], [51] and [52].
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