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1 Introduction

In last decade, it has been shown in a number of papers (see, for example,
[1,2]) that triangles with obtuse and acute angles stretched along the direc-
tion of minimal second derivative of a solution may be the best elements for
minimizing the interpolation error. As the result, an optimal adaptive mesh
may frequently contain anisotropic elements, i.e., elements with obtuse and
acute angles. A theoretical analysis of anisotropic meshes is still the challeng-
ing problem for researchers. In this paper, we review several theoretical issues
related to optimal (possibly anisotropic) triangulations. The results published
in our previous papers [3,8] will be presented briefly.

The paper outline is as follows. In Section 2, we introduce a concept of an opti-
mal triangulation and under certain assumptions prove its existence. In Section
3, we formulate the main property of optimal triangulations and give L, error
estimates for a linear interpolation operator. In Section 4, we introduce nota-
tion of quasi-optimal triangulations and show that they are approximations to
the optimal one. The methodology used in this paper is based on the Hessian



recovered from a discrete P; solution. In Section 5, we discuss a few methods
for the Hessian recovery.

2 Existence of optimal triangulations

Let © € R? be a polygonal domain and €, be its conformal partition into

triangles,

N ()
Qh = U €,
i=1

where N () is the number of elements in €. Let C*¥(D) be a space of
functions with continuous in D C  partial derivatives up to order k. Let
| - lloo,p and || - ||2,p denote the norms on the spaces Lo, (D) and C?*(D),
respectively, and || - [|oo = || - ||oo,0- In addition, we shall use notation P; ()
for the space of functions continuous in €2 and linear on each element of €.
Furthermore, let P : C°(Q2) — Pi(Q5) be a projector on the discrete space
Pi(Qp) and Z§ : C°(Q) — Pi(Q) be the linear interpolation operator. We
shall omit mesh related subscripts whenever it does not result in ambiguity.

Some theoretical results formulated in this paper are based on the assumption
that the solution of a continuous second order boundary value problem belongs
to C?(Q). However, constants in our error estimates are independent of the
actual value of C%-norm of the solution. Since C?(Q2) is dense in C%(Q), one
can try to analyze regularized problems with smooth solutions and get error
estimates for the original problem by the density arguments. We shall address
this challenging problem in the future papers.

Definition 1 Let u € C°(Q) and P§, be given. The mesh Qp(Ny, u) consist-
ing of at most Nr elements is called optimal if it s a solution of the optimiza-
tion problem

Qp(Np, u) = arg Qh:NI{g}S<NT ||lu — 'PghuHoo. (1)

Another optimization problem can be formulated when we restrict the number
of mesh nodes rather than the number of triangles. Let M(2) denote the
number of mesh nodes in €2,.

Definition 2 Let u € C°(Q) and Py be given. The mesh Q,(Np, u) consist-
ing of at most Np nodes is called optimal if it is a solution of the optimization
problem

Qu(Np, u) = arg Qh:MI?S%;ILIKNp lu — P&, ulloo- (2)



In a general case, the optimization problems (1) and (2) may be not well
posed: the optimal triangulation may not exist. However, by definition, there
exists an arbitrary close approximation of the optimal triangulation. Under
certain conditions, the existence of the optimal triangulation may be proved.
Since the number of triangles does not exceed the double number of nodes,
the optimization problems (1) and (2) are equivalent.

Theorem 3 Let u € C°(Q) and |lu — P ulls be a continuous functional of
mesh coordinates. Furthermore, let the projector ’P}‘Zh satisfy

lu — Phyullos < llu — Phyullc

for any triangulation Q2 being a hierarchical partitioning of triangulation €} .
Then, the optimization problem (2) has a solution.

Proof. Since |lu — P§ ullc > 0, there exists a sequence of triangulations
{QF}2, such that

. __ ph _ . __ ph
i flu—Phyulloo = inf - flu—Ph,ull ®)

The triangulation Qf may be represented by the set of nodes XF and con-
nectivity table (list of triangles with references to the nodes) TF. Since the
Cartesian product Q x ... x © of Np compact and bounded sets is compact
and bounded, the sequence X} contains a convergent (in the product met-
ric) subsequence. For the sake of simplicity we assume that {XF}%, is this
subsequence. Let

X = lim XF (4)

k—o00

and Ng° be the number of elements in the set X°. It is obvious that Ng° < Np.

Let mf, j=1,...,NE be the elements (points in Q) of X¥ £k =1,2,..., 00
with minimum distance between the points 6¥. The convergence property (4)
implies that for any small € > 0 there exists k. such that any point z¥, k > k.,
belongs to a disk B(x%°, €) of radius € centered at a node x%°.

Let a® denote the minimum angle of all possible non-degenerated triangles
with nodes from X;° and &, = 1/m where m > mqy > 0 is an integer and my
is a sufficiently large integer providing 6°° sin @ /10 > &,,. Due to (3) there
exists a conformal triangulation QF" = {X}™ TFm} whose nodes are in &,,-
vicinity of X£°. Let the nodes from X° be counted similarly to X ™. Multiple

nodes from X ,’f” in &,,-vicinity of a node z3° result in multiple counting z3°.

This allows us to define formally a triangulation Qf» = {X°, T¥=} which is



an &,,-perturbation of Q’,jm. Therefore, by the continuity assumption:

||u — Pg};zmuﬂoo < |u— Pg};zmuﬂoo + C(u)em

where C(u) depends only on u. However, Qf™ is not always a conformal tri-
angulation since some of the triangles from T,’f’" may degenerate (have zero
area) or even tangle. The assumption 0% sina®/10 > &, implies that each
tangled triangle may intersect with only one neighboring triangle. We modify
T,fm within two steps in order to get a conformal triangulation Q’,ﬁm with the
nodes X;°. First, we eliminate from T,fm all degenerated triangles. It will not
change the norm of the error. Hanging nodes left by triangles degenerated
into mesh edges are transformed to nodes of a conformal mesh by a hierar-
chical partition of neighboring-to-degenerated triangles without insertion of
additional nodes. The partition can not increase the norm of the error. At
the second step, we split all the overlapping neighbors of the tangled triangles
into subtriangles without insertion of additional nodes. The tangled triangles
constitute a subset of the set of subtriangles and may be eliminated from T,’f’”
in order to get a conformal mesh Q’gm. The partition and the elimination can
not increase the norm of the error. By the theorem assumptions

[l — ngm“||w < |Ju— 'Pgﬁmuﬂoo <ju— 'Pgﬁmuﬂoo + C(u)em

Therefore,
. _ ph . __ ph _ . _ ph
’ITIL% ||U ,PQZmUHOO < T’lg%o ||U ,PQZmUHOO QhCMl(gE)SNP ||U Pﬂhu”OO
and
: h _ . h
'nlg%o e = Pﬁﬁmu”m N Qh:Ml(IKIZE)SNP Il = Pa, ulleo-

Since the total number of the conformal connectivity tables for fixed X° is
finite, there exists a conformal triangulation 23° with nodes X;° minimizing
|lu — ’Pghuﬂoo such that

h _ . _ Dph
lu=Phetlloe = inf - u=Ph,ull.

The theorem is proved.
Note that the interpolation operator Ighzh satisfies assumptions of Theorem 3.

Therefore the optimization problem (2) with P{ = Z{ has a solution which
is not necessary unique.



3 Error estimates for optimal meshes

Let function u € C?(2) have a non-singular Hessian H (x) = {Hps(z)}5 1,
i.e., detH (z) # 0 for Vz € Q. Since the Hessian is symmetric, the spectral

decomposition of H is possible for any x € €,

(A0
H=W W,
0 Mo

where W is an orthonormal matrix and |A;| < |Ag|. It is clear that \; # 0 and

H| =W Al O
0 [Aof

defines the continuous metric on €. Let [Q| gy be the volume of € in this
metric. Then, the following a priory error estimates for the P, interpolation
operator hold.

Theorem 4 Let Ny > 0, u € C*(Q) and |H| be a metric generated by the
Hessian of u. Furthermore, let 2y, be the optimal mesh, and for any element
e € Qy, the following estimate holds:

|Hps — He,pslloo,e < q|M(HC)|[/2, 0<q¢<1, ps=1,2, (5)

where q is a constant, x, = arg max |det(H (z))|), and H, = H(z¢). Then

2 A jolly =

T < lu = T o < Cs(g) =

Ci(q) N, S || Qhu” < Cs(q) N, (6)
where C1(q), Co(q) depend only on q.

The proof may be found in [3,8]. A straightforward corollary from this theorem
is that for a projector P satisfying

lu — PG, ulloo < Cllu— I3, ullos (7)

the inequality (6) implies

o [ H
= P, ulleo < COxa) 3= (®)



It is pertinent to note that error estimates (6) are in perfect agreement with
Tichomirov’s result [4]: for any discrete space V}, and Q € R?

. . 1
inf sup inf ||u — vplleo = Ny
Vipidim Vi, <Np llull2, o=1 vp €V

4 Quasi-optimal meshes as approximations to the optimal mesh

Since the exact solution is unknown, the error |Ju — P ul| can not be esti-
mated. Therefore, the optimization problem (1) has to be replaced by another
optimization problem whose solution at least approaches the solution of (1). To
this end, we introduce concepts of a mesh quality and a mesh quasi-optimality.

Let Q(€2,) be an easily computed quantitative characteristic of mesh €, such
that 0 < Q(Q;) < 1. We shall use the definition of Q(2,) proposed in [6]. Let
a predefined number of elements N be given, G(z) = {Gps(z)}2 ,_ 1, © € R?,
be a continuous metric in €2, and x. € e be a point in triangle e where
|det(G(z))| attains its maximal value. We set G, = G(z.) and define the area

of this triangle and the length of its edge l. € R2 (in metric G) by
lele = le|(det(Ge))?  and  |it|g = (Gele, )"/,

respectively, where |e| is the triangle area in the Cartesian coordinate system.
Denote the sum of lengths of edges of triangle e measured in metric G by
|0e|g- Let |Q]e be the total area of the computational domain measured in

metric G,
e =Y lela-

eEQh

Following [6], we define Q(2;) as follows:

e€Ny, ‘a €|é 3h*

Q) = minQe) with Q(e) = 6v/2 |€|GF(|86|G) (9)

where function F(-) and the average length of a triangle edge h* (in metric
G) are given by

F(z) = (min {ac, i} (2 — min {x, i})):i and A" = Zi|/§§2;\|7:’

respectively. Hereafter we shall use notation Q(G, Nr, §25,) instead of Q(2)
to emphasize its dependence on the metric G and the predefined number of




elements Nrp. It is easy to check that 0 < Q(G, Nr, Q) < 1 and the maximal
value is attained when all mesh elements are equilateral (in metric G) triangles
with the edge length h*. We refer to Q(G, Nr, €,) as the mesh quality with
respect to the metric G and the number of elements N;.

Definition 5 Let G be a continuous metric and Nt be a given integer. The
mesh )y, is called G-quasi-optimal if there is a fixed positive constant Qg such
that Qo = O(1) and

Q(G, Nz, Q) > Qo.

Definition 6 Let u € C?(Q) and |H| be a metric generated by the Hessian
of u. For the given function u and a given integer Nr, the mesh Qp(Nr, u) is
called quasi-optimal if it is |H|-quasi-optimal.

A quasi-optimal mesh satisfying Q(H, Nr, §2;) = 1 may not exist because of
restrictions imposed by the boundary of 2. Fixing @)y < 1 relaxes the above
constraint. On the other hand, due to Q(H, Nz, ;) < 1, the number of
mesh elements NV (€,) in the | H |-quasi-optimal mesh may differ from Np but
approaches it when @y — 1.

The quasi-optimal meshes (QOMs) have been studied in [3,8]. It turns out
that in certain cases the QOM is an approximate solution of optimization
problem (1).

Theorem 7 Let Nr > 0, u € C?(Q) and |H| be a metric generated by the
Hessian of u. Furthermore, let Q(Np, u) and Qu (N, u) be the quasi-optimal
and optimal meshes, respectively, and e* € QU be the element where ||u —
IghzhuHoo is attained. Let for both any element é € Qy, and the element e* € Q,
the following estimate holds:

”Hps - He,psnoo,e <g|M(H.)|/2, 0<g<l, ps=1,2, (10)

where q is a constant, x. = arg max |det(H (z))|), and H, = H(z¢). Then

lu =I5, ulleo < C(Qo,q) llu — I, ullos, (11)

where C(Qo, q) is a constant depending only on q and Qq from Definition 5.

The proof may be found in [3]. A straightforward corollary from this theorem
is that for the projector Pf; satisfying (7), formulae (6) and (11) imply

- ;s
I = P, ulloe < CC0)C(Qo 0)— = (12)



5 Double differentiation on optimal and quasi-optimal meshes

Obviously, the Hessian H(z) is an unknown function. In computations we
use its approximation H" recovered from the discrete solution Pghu. In the
following, we describe briefly Hessian recovery algorithms [5,6] and advocate
the replacement of H (z) by its discrete counterpart H".

Let u” = P§ u be a discrete function from P;(€). The discrete Hessian
H" = {H] 1275 1, H, € Pi(), is defined as follows. In interior mesh node
a;, the Hessian entries HZ’,’S(ai), p,s = 1,2, are defined by

out ot
J Oz O,

/Hh (a;)v" dz = — dr Yo" € P(0;), v" =0 on 00;,(13)

where o; is the union of triangles sharing the node a; (superelement). At
boundary node a;, values of Hgs(a,-), p,s = 1,2, are weighted extrapolations
from the neighboring interior values [9]:

/goal thx

/w(ai) ( > so(aj)) dw,

o; llj ¢6Qh

H" (a;) = (14)

where ¢(a;) denotes the nodal basis function from P;(2,) and f{gs stands for
the finite elements function defined by (13) and vanishing on 0€,.

Theorem 8 Let Ny > 0, u € C*(Q), u* = P§ u, H be the Hessian of u,

and H" be the discrete Hessian recovered from u® according to (13)-(14).
Furthermore, let for any superelement o € 2y, associated with a mesh node a
the following estimates hold:

”Hps - Ho,psnoo,c < 5a (15)
|H1’;ls(a) - Ha,p8| <g, (16)

where H, = H(z,) and xz, = arg max |det(H (z))|). Then for € and 6 suf-

ficiently small with respect the minimal eigenvalue of |H,|, the |H"|-quasi-
optimal mesh Q, (Q(|H"|, Nr, Q) > Qo) is also | H|-quasi-optimal:

Q(|H|, Nz, Q) > CQq

with constant C' independent of Ny and ||u||2,0.



The proof may be found in [3]. The theorem states that under certain assump-
tions, the sufficient condition of | H|-quasi-optimality is | H" |-quasi-optimality.
The assumption (15) implies small variations of the Hessian on any superele-
ment o and assumption (16) is the requirement of nodal-wise approximation
for the Hessian. The latter assumption does not always hold true in practice,
since it is implicative of a small gradient error for v". The small gradient er-
ror is not typical for the functions with singularities. In order to resolve the
problem of the discrete Hessian recovery for non-smooth functions, we suggest
another definition of the discrete Hessian which satisfy (16) in a weaker norm
[10].

The alternative definition of the discrete Hessian is based on the following
formula:

/H vdm—/u O d:c—/u@ndt Vv € C?*(o), v =0 on do,(17)
J bs _G Oz 0z, p or, 7 T ’

where p, s = 1, 2. Representation (17) has an important advantage over (13). It
defines the Hessian through the function value excluding function derivatives.
Its main drawback is higher smoothness of the test functions which imposes
restrictions on the shape of o, and, as a consequence, on the triangulation, in
the case of a discrete Hessian recovery.

Definition 9 A triangulation QU satisfies the condition A, if for any interior
superelement o; there ezists an affine mapping F; = S; o R; s.t. Fi(o;) is a
shape reqular superelement with the diameter 1. Here, S; and R; denote scaling
and rotation matrices, respectively.

We notice that not all triangulations satisfy condition A. A two-dimensional
mesh with two anisotropic neighboring triangles whose axes of stretching are
orthogonal, is a simple example. Adaptive triangulations, however, do satisfy
condition A. The condition A does not imply shape regularity for any trian-
gle. Rather, it requires a local similarity of triangle shapes. Thus, adaptive
anisotropic meshes satisfy the condition A.

Let a; be an interior node of a mesh €2, and o; be a corresponding superele-
ment. Let B; be the largest ball centered at F;(a;) and inscribed in F;(o;).
Due to the shape regularity of F;(o;), the radius R; of B; is O(1). Introducing
the polar coordinates with the origin at F;(a;), we define a smooth function
o = 1 —r?/R2 on B;. A span of functions v = aF; }(#;), @ € R!, define
a space of local test functions V;. We notice v € V; implies that its support
B; = F; Y(B;) satisfies |B;| < |o;| and v € C*(B;), v =0 on dB;.

Now, we are ready to recover the discrete Hessian H)), € Py(Q) in interior



mesh node a;. The Hessian entries Hgs(ai), p,s = 1,2, are defined by

U
0,0y 0T,
B; 0B;

O*vh 0
/Hgs(ai)vhax = w9y — /uh ° n,0t, Yo" € V. (18)
B;
There exist triangulations where not all components of the Hessian may be
recovered by the Green’s formula (17). Therefore, at the boundary nodes, the

values of the discrete Hessian H" are the weighted extrapolations given by
(14).

As we already mentioned, the condition A is a natural restriction to the shape
of the superelement o;. In order to establish a convergence of the discrete Hes-
sian to the differential one, we have to impose additional restrictions on the
mesh triangles. We recall that according to the condition A, for any superele-
ment o; there exists a pair of operators (rotation R; and scaling S;) whose
combination transforms the superelement into a shape regular one. Therefore,
for any triangle A C Q" (superelement o C Q") there exists a rotation opera-
tor Ra (R,) such that the image Ax = Ra(A) (0g = R, (o)) may be scaled
along the coordinate axes to get a shape regular element. For the rotated sim-
plex Ag it is natural to introduce its sizes, hg = Jmax () —(y)kl, k=1, 2.

The same definition is applicable to the rotated superelement or. We notice
that the rotation operator does not affect the best P, approximation of the
function u:

ur = Ra(u), ur =u(Ra(x)).
We recall that the best P, approximation is defined as

/(u—a)dxzo, /8a(u—ﬂ)dx:0, Vol =1, (19)

A

where o = {1, s} is the multiindex, oy, = 0, 1.

Definition 10 For a given function u € W'P(Q), a triangle from a triangu-
lation satisfying the condition A, satisfies the condition B, if there exists a
constant Cg > 0 such that

iy ell0" um = TRy < O g Wl0%(um = ¥R gty (20)

where

d
a . __ Qg
hR «— H hR’k.
k=1

The condition B requires isotropic distribution of the gradient error due to
the best P, approximation (19) of a function v € W?(Q2). It implies neither

10



minimal nor maximum angle conditions. Rather, it requires the triangle A to
be adapted with respect to the local behavior of the function wu.

Definition 11 A triangle A from a triangulation Q" satisfying the condition
A and a function u € WP (Q) satisfy the condition C, if there exist a constant
Cc > 0 such that

%10 (ur — wR)lIry(an) < Cehiy’, ol =1, > 0. (21)

The condition C requires convergence of the best P, approximation u towards
the function v on A. Actually, it implies a higher than W1?(Q) smoothness of
u. We do not specify a space of smooth functions here since the appropriate
class varies widely depending on the application.

Both conditions B and C assume a certain relationship between the mesh and
the function. The triangles of the mesh must provide an isotropic distribution
of the error (20) due to the best P; approximation as well as its convergence
towards u (21) if u possesses a little additional smoothness. It is clear that
not all the meshes complying with the condition A, satisfy conditions B and
C. However, meshes adapted to the function do match both B and C.

Theorem 12 Let a function u € W'2(Q) N W2Y(Q), p > d, and an interior
superelement o; satisfying the Conditions A, B, C be given. Furthermore, let
on o; the differential Hessian H deviates slightly from its mean value:

||Hps - Eps”Ll(m) S 57 b,s= 172 (22)

Then, the discrete Hessian recovered by (18) from the piece-wise linear inter-
polant If}iu converges to the differential Hessian:

1 Hps = Hpillzu(z) = 6+ CCloi| ™7 min he ). (23)

Moreover, the following estimate holds

1Hys — Hpllz(sy ~ 6+ CpCo min hi[”. (24)

The proof may be found in [10]. We remark that the estimate (24) implies the
local convergence of the discrete Hessian in the weak norm as the number of
triangles in the mesh tends to infinity. Indeed, for any triangulation adapted to
a function with a non-singular Hessian max minthi’k — 0 as N (Qp,) — oc.

J; =1,..,
The importance of the theorem is that it is the first (to our knowledge) result
where the local convergence of the recovered Hessian is shown on an anisotropic
meshes and for functions with singularities.

11



Conclusions

Several theoretical issues related to optimal triangulations have been reviewed.
The collection of the results give an insight into the asymptotic properties of
the optimal and quasi-optimal triangulations as well as the recovery of the
discrete Hessian.
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