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Abstract 

An effective method for untangling and optimization of hexahedral 
unstructured non-conformal meshes is presented.  The method has been 
developed as a part of the Numeca new mesh generator (HEXPRESSTM). 

The untangling algorithm is based on the successive analysis and 
correction of concave cells, via local untangling of sets of cells referencing a 
mesh node.  The problem of untangling a hexahedral cell can be decomposed 
into untangling of the tetrahedra that constitute the cell.  This subdivision is not 
unique and must be appropriately chosen to ensure the efficiency of the 
algorithm. 

The optimization algorithm is also based on the quality analysis and 
optimization of the sets of cells attached to a mesh node.  Successive optimization 
of such sets containing valid cells results in an overall mesh quality 
improvement.  The local optimization of hexahedral cells is performed via 
optimizing a variational functional for the set of tetrahedra representing the cell.  
It is important that identical patterns for decomposition of a cell into tetrahedra 
are used in both untangling and optimization. 

The results of applying the methods to various test cases including many 
complicated geometries of interest for industry.  Some of the advantages and 
disadvantages are discussed. 

Keywords: Mesh generation, unstructured, hexahedral, optimization, 
untangling, mesh quality, Jacobian positiveness. 

1 Introduction 
Automatic generation of unstructured meshes sometimes produces meshes with 

badly shaped and inverted elements.  The case is even worse for hexahedral meshing 
because of the high flexibility of an hexahedron to become extremely distorted and its 
intrinsic difficulties of generating such meshes for complex configurations.  Presence of 
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invalid elements in the mesh may lead to major breakdown of the simulation algorithm.  The 
development of quality improvement a posteriori tools is of prime importance. 

Meshes consisting solely of simplicial elements (triangles or tetrahedra) are most 
likely to have their quality improved.  This is due to existence of a linear mapping of the 
uniform triangle or tetrahedron onto an arbitrary triangular or tetrahedral cell.  It enables one 
to detect poorly-shaped cells by evaluating the Jacobian of the corresponding mapping.  The 
linearity is of extreme importance because the Jacobian of a linear mapping is constant.  
Therefore, evaluating the Jacobian of the mapping unambiguously answers the question 
whether or not a mesh element is inverted, i.e. has non-positive volume. 

However, the situation for computational meshes consisting of non-simplicial 
elements is different.  Particularly, no linear mapping exists for hexahedral elements to 
transform them onto the canonical element.  Instead, the mapping between a unit cube and a 
hexahedral cell is trilinear and has complicated behavior throughout the cell.  Also, no 
convexity relations can be effectively exploited because faces of a hexahedron are generally 
not planar and can be folded even when all 8 corners are convex.  This makes the task of the 
quality improvement for hexahedral meshes much more complicated, as compared to 
simplicial and even quadrilateral meshes, because simple convexity relations can be easily 
established for the latter. 

An effective method for untangling and optimization of hexahedral unstructured 
non-conformal meshes is presented in the paper.  The method has been developed as a part 
of the NUMECA new mesh generator HEXPRESSTM.  It is able to untangle invalid 
(concave) cells and optimize valid but poorly-shaped cells resulting from grid generation 
process.  The goal is to obtain a mesh with all convex cells. 

The HEXPRESSTM grid generation process is based on a top-down approach and 
includes several stages.  First, an initial non-boundary-conforming mesh is created and 
refined based on geometry particularities.  The cells that fall outside or intersecting the 
domain are removed from the volume mesh.  Next, the surface of the resulting staircase 
mesh is projected on the domain boundary and layers of buffer cells are inserted between the 
volume mesh and the corresponding surface mesh in order to obtain a body-conforming 
mesh.  Concave and poorly shaped cells may occur during the projection step and usually 
are concentrated near the boundary.  In the final stage, new untangling and optimization 
tools are applied to transform these cells to convex ones and recover a mesh of high quality.  
Optionally, layers of high aspect ratio cells for viscous flow computations may be inserted. 

The grid generator is coupled with a new flow solver, which aggressively adapts the 
mesh based on local solution error estimation in order to obtain a mesh optimized for the 
particular flow solution.  Subdividing a concave cell may result in new cells with negative 
volumes.  The latter are unacceptable for the reasons of robustness and accuracy of the flow 
solver.  That is why the automatic optimization procedure is necessary. 

The paper is organized as follows.  Section 2 describes the details of the untangling 
method applied to the hexahedral meshes.  The problem is formulated and the solution 
procedure is described.  Section 3 is devoted to the optimization of the hexahedral 
unstructured meshes.  A detailed formulation of the problem is given and the guidelines  to 
solve the problem are described.  Section 4 presents some results of the untangling and 
optimization methods, discusses advantages and disadvantages of these approaches. 
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2 Mesh Untangling 

2.1 Problem statement 

We formulate the problem of untangling of an unstructured hexahedral mesh as 
follows: 
 
Given: Unstructured hexahedral non-conformal mesh with fixed boundary.  Let 

{VI} be the set of internal non-hanging nodes of the mesh, {VB} - the set 
of non-hanging boundary nodes.  The nodes from {VB} are not allowed 
to move. 

To find: The new set of positions for the nodes from {VI}, such that none of the 
cells in the mesh are concave, while the topology of the mesh is 
preserved. 

 
A node is called hanging if it results from refining a mesh edge into two edges or a 

face into four faces.  The geometric position of a hanging node is determined by the 
positions of the vertices of the corresponding edge or face (Figure 1). 

 

Figure 1:  The four black nodes are the hanging nodes belonging to edges.  The red node is a 
hanging node belonging to a face. 

A cell is called concave if at least one of the tetrahedra constituting1 the cell has 
negative volume (Figure 2).  A cell is called concave with respect to a node if at least one of 
the tetrahedra constituting the cell and referencing this node has negative volume. 

Due to multiple topological and geometrical limitations and dependencies the 
problem of global mesh untangling is too complicated to solve implicitly.  Instead, it is 
decomposed into untangling of a number of sub-meshes with only one internal node.  The 
problem is solved iteratively.  The cells that surround each non-hanging node, at least one of 
which is concave with respect to the node, are successively untangled at each iteration. 

                                                                 
1 The pattern of subdivision of a cell into tetrahedra must be chosen a priori 

(see section 3.2). 
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Figure 2:  The cell on the left is concave because the volume of the tetrahedron abcd is 
negative (vertex b is behind the triangle acd).  It is concave with respect to the vertices a, b, 

c, d.  Unlike the convex cell on the right, for which the same tetrahedron has positive 
volume. 

Iterations are repeated until either no concave cells remain in the mesh or no 
concave cells can be untangled anymore.  The problem of local untangling can be 
formulated as follows: 
 
Given: An arbitrary non-hanging node N belonging to {VI} and the ball of 

surrounding cells Ball(N). 
To find: The new position for N, such that none of the cells in Ball(N) are 

concave. 
 

Ball( Node ) is the set of all mesh cells that reference Node.  Node cannot be 
hanging.  Kernel( Ball( Node ) ) is a sub-region of Ball, such that if and only if Node is 
positioned at any point belonging to Kernel then all Ball’s cells are non-concave with 
respect to Node (Figure 3).  The notation (ball of mesh elements, kernel) is similar to that 
employed in 6. 

 

Figure 3:  Ball(Node 0) contains 4 cells (left); Kernel (shaded region) results from 
intersection of the convexity regions of each cell bounded by the dashed lines of the cell’s 

color (right). 
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The two-dimensional example demonstrates the idea of untangling for the case of 
quadrilateral 2-D meshes (Figure 3).  The cells around the node N represent the 
corresponding ball - Ball(N) and the shaded region limited with dashed lines represents the 
kernel - Kernel(Ball) of the ball.  Placing the node N at any location inside Kernel(Ball) 
guarantees convexity of Ball(N), provided that the volume of Kernel(Ball) is positive.  
Negative volume of a kernel indicates that no valid convexity region exists and the 
untangling problem has no solution.  Zero kernel volume indicates that the kernel is 
degenerate, i.e. it is collapsed to a point, a line segment, or a flat polygon (in 3-D only). 

2.2 Algorithm 

The simplex method 2 is an effective tool for solving local untangling problems.  
The method is generally used for solving linear optimization problems.  If a linear function 
to be optimized on the set of N independent variables is given and a series of linear 
constraints for these variables is specified, the simplex method is capable to find the solution 
if it exists.  The solution is always a point at the intersection of the linear constraints, 
because a linear function defined on a bounded domain can only reach its maximum at the 
boundary. 

If the solution does not exist, it may be due to two possible reasons.  First, the region 
bounded by the linear constraints may not be necessarily enclosed and, therefore, it is 
possible that the function reaches its maximum at the infinity.  Second, the region bounded 
by the constraints may be empty. 

The solution of the untangling problem must be a new position of the node, such that 
no concave cells remain in the ball.  In order to properly set up the simplex problem, the 
series of linear constraints must be established and the optimized function must be defined.  
Each cell of the ball provides certain number of linear constraints (see Figure 3). In this 2-D 
illustration each quadrilateral cell can be subdivided into 2 triangles by each of the 2 
diagonals.  Each of these 4 triangles must have positive volume in order to guarantee 
convexity of the cell.  The condition of volume positiveness of a triangle can be expressed 
by the coordinates (x,y)0,1,2 of its vertices as follows: 
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This expression is linear with respect to any of the vertex coordinates.  Therefore, as 

only 3 of 4 triangles constituting the cell reference the central node of the ball, 3 linear 
constraints result from each cell.  In 3-D the number of constraints per cell depends on the 
pattern used to decompose the cell into tetrahedra: each tetrahedron provides one linear 
constraint.  The choice of the decomposition pattern is addressed in section 3.2. 

As we are only interested in the kernel itself, the choice of optimized function can be 
almost arbitrary.  However, the gradient of the optimized function must be non-zero, 
otherwise no solution will be found.  The new position must be located strictly within the 
kernel.  If the point that results from the solution is located at the kernel boundary, it means 
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that at least one cell referencing the node will be in an undetermined status between concave 
and convex.  If this situation arises due to the kernel degeneracy, it is treated as “no 
solution”.  In all other cases, when the kernel is not degenerate, it is always possible to find 
a point located strictly within the kernel.  This is achieved via combining several solutions 
that employ different optimized functions. 

3 Mesh optimization 

3.1 Problem statement 

The problem of optimization of an unstructured hexahedral mesh can be formulated 
similarly to the untangling problem: 
 
Given: Unstructured hexahedral non-conformal mesh with fixed boundary.  Let 

{VI} be the set of internal non-hanging nodes of the mesh, {VB} - the set 
of non-hanging boundary nodes.  The nodes from {VB} are not allowed 
to move. 

To find: The new set of positions for the nodes from {VI}, such that the mesh 
quality, measured in a certain way, is higher than the quality of the 
initial mesh. 

 
It is rather complicated and time-consuming to apply optimization directly to the 

entire mesh.  However, as the overall quality measure is contributed by every mesh cell, it is 
convenient to optimize the entire mesh by applying optimization to arbitrary limited sets of 
mesh cells with fixed boundary. The latter condition is necessary to prevent sub-mesh 
modifications from affecting the exterior mesh.  In the scope of this work, optimization is 
applied to the balls of cells around each internal non-hanging mesh node.  Therefore, the 
local optimization problem can be formulated as follows: 
 
Given: An arbitrary non-hanging node N belonging to {VI} and the ball of 

surrounding cells B(N). 
To find: The new position for Node, such that the total quality of the cell in B(N) 

none of the cells in Ball(Node) are concave. 
 

The procedure is applied iteratively to the entire mesh until the increase in quality 
per iteration becomes lower than some threshold value. 

3.2 Algorithm 

The quality of a mesh cell is represented by the deformation energy density 
functional of the trilinear map between a unit cube and an arbitrary hexahedral cell 1: 
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The global functional value is contributed by each mesh cell.  The functional of a 

cell, is the sum of the functional values computed separately for each tetrahedron 
constituting the cell.  The decomposition of a hexahedral cell into the set of tetrahedra must 
be such that optimizing these tetrahedra would result in overall improvement of the cell 
quality.  The decomposition suggested by Ivanenko in 1 (Figure 4) was chosen because it 
provides proper discrete analogue of the Jacobian of a hexahedral cell.  As it was mentioned 
in section 2.2, the same decomposition is used in both untangling and optimization 
procedure. 

 

Figure 4:  The hexahedron is decomposed into 24 tetrahedra, 2 tetrahedra correspond to each 
of 12 edges.  For instance, red and blue tetrahedra are assigned to the edge 01. 

An arbitrary ball of cells around a mesh node is optimized as follows.  The direction 
of the highest gradient is identified as a search direction.  The local minimum is now located 
on the line passing through the current node position and oriented along the search direction.  
Afterwards, a 1-D minimization problem is solved to find the location of the minimum and 
the node is repositioned.  Figure 5 shows functional (1) plotted across an arbitrary straight 
line that passes through the kernel of a ball of cells.  The functional becomes infinite at the 
positions where this line intersects the linear constraints.  It means that optimization can 
never move a node behind any of the linear constraints and, therefore, a concave cell 
remains concave and a convex cell remains convex after optimization. 

In practice, a combined untangling/optimization approach is implemented in the 
HEXPRESSTM mesh generator.  First, concave cells are being untangled until no node can 
be displaced to produce new convex cells and after that, all convex cells are being optimized 
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for several iterations.  This combined procedure is repeated either for several times or until 
the mesh gains acceptable quality. 

 

Figure 5: Functional plotted along a straight line intersecting the kernel of the ball (double 
black line on the left) has infinite barriers at intersections with linear constraints. 

4 Results 
The combined untangling/optimization approach was tested for various test cases in 

order to demonstrate its applicability to the geometries of industrial interest.  The 
unstructured hexahedral mesh was generated in the exterior domain of the geometric 
configuration of a missile shown in Figure 6. 
 

 

 
Figure 6:  The geometry of a missile (courtesy from Aerospatiale). 

Before the untangling/optimization step is performed, the mesh contains a 
significant percent of concave cells, some of which are highly distorted or have negative 
volume.  Typically, these cells are concentrated near the surface of a model, especially in the 
vicinity of topological edges.  Figure 7 shows the concave cells around one of the missile’s 
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wings.  The quality of concave cells ranges from rather acceptable up to totally distorted.  
The latter may even have negative volume.  Figure 8 illustrates a close-up of a cluster of 
concave cells located near one of the rear wings of the missile.  The distribution of quality of 
poorly-shaped cells shows that some of them are very distorted and a quality improving 
procedure is necessary. 

   

Figure 7:  Concave cells are typically concentrated around topological edges of a wing of 
the missile (left).  The corresponding surface mesh is shown on the right. 

 

Figure 8:  An example of a cluster of concave cells (left).  On the right – the fragment of the 
cell quality distribution in the range between 0 and 20 degrees. 

The described in the previous sections combined untangling/optimization approach 
is applied to the missile mesh as a final step of the generation process.  The untangling 
sweeps and optimization iterations are combined in a complex sequence to make them as 
efficient as possible.  This step has transformed 100 % of concave cells into convex ones.  
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Figure 9 compares the quality distributions for the mesh before and after optimization.  It is 
worth noticing that only 3 cells (as compared to 205 initially) with dihedral angle lower than 
20 degrees remain in the mesh.  The optimization step consumes approximately the same 
CPU-time as the other steps. 
 

 
Figure 9:  Quality diagrams of the missile mesh before (left) and after (right) quality 

improving step. 

Test-case The total 
number of cells 

Concave cells before 
optimization 

Concave cells after 
optimization 

1 54864 153 0.279 % 0 0.0 % 
2 72764 86 0.118 % 0 0.0 % 
3 75070 120 0.160 % 0 0.0 % 
4 98056 299 0.305 % 1 0.0010 % 
5 115662 246 0.213 % 2 0.0017 % 
6 125477 161 0.128 % 0 0.0 % 
7 198362 338 0.170 % 0 0.0 % 
8 235370 497 0.211 % 0 0.0 % 
9 265913 884 0.332 % 13 0.0049 % 

10 301298 901 0.299 % 6 0.0020 % 
11 440678 1344 0.305 % 7 0.0016 % 
12 497672 3292 0.661 % 0 0.0 % 

Missile 559169 5664 1.013 % 0 0.0 % 
14 773268 2633 0.341 % 0 0.0 % 
15 1130575 2205 0.195 % 24 0.0021 % 

Table 1:  The comparison of the populations of concave cells before and after optimization 
step for various test-cases. 

This example demonstrates successful application of the untangling/optimization to 
the meshes generated around complex geometries.  Table 1 gives a good picture of the 
average efficiency of the untangling method.  It represents a set of several industrial 
complex geometries that were used to test and validate the untangling/optimization module.  
The cases are sorted by the total number of cells in a mesh.  The table demonstrates that for 
relatively small test-cases, nearly or exactly 100 % of concave cells are being fixed.  For 
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larger meshes it is not so easy but the percentage of the concave cells remaining in a mesh 
after untangling/optimization step is very low and ranges between 0.001 and 0.005 %. 

5 Conclusions 
The paper presents a new approach for the quality improvement of hexahedral 

meshes based on low-cost simplicial untangling algorithm and optimization method.  The 
results prove the efficiency of the combined approach at relatively low computational costs.  
Only the optimization part of the combined approach takes significant amounts of 
computational time, untangling, on the contrary, is very fast and cheap.  It can not only 
untangle concave mesh cells but also improve their quality without optimizing them 
directly.  This allows to save computational time. 

We conclude that the combined approach is capable of improving the quality of 
meshes more efficiently than stand-alone optimization tools or optimization-based 
untangling algorithms 4.  The main advantage of the combined approach is that similar mesh 
quality improvement can be achieved for shorter computational time as compared to pure 
optimization-based approaches.  This is because the fast untangling method described here 
typically takes care of at least 80-90% of concave cells in a mesh before any optimization is 
applied. Therefore, the method usually untangles a majority of concave cells in a mesh very 
quickly, therefore providing valid meshes for minimum time. 
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