The Integration of CAD Systems and Unstructured Mesh
Generators

S.P. Kopyssov, V.N. Rychkov, A. B. Ponomarev
Institute of Applied Mechanics UB of RAS,
222 Gorky St. Izhevsk, Russia 426001

{kopyssov,an}@udman.ru

1 Introduction

Finite element analysis begins with the problem statement and the geome-
try design. To make the computational grid it is necessary to describe the
geometry in one way or another, to generate the elements and to set the
boundary condition. The last distinguishes the computation model from the
geometric one. It is sufficiently difficult problem to form the input data for
mesh generator. As rule, decoding of graphic information files (*.dwg, *.sat,
*.igs etc) is used. In addition to graphic format support CAD systems have
the interfaces that enable to operate with the graphic objects programmati-
cally (programmer interfaces). Thus, it is rational to reuse graphic 3D design
to make the computational grid with help of any mesh generator met user’s
requirements.

The integration of CAD systems and object-oriented mesh generators is
examined in present work. The mismatch of their geometric kernels is the
main problem. Geometric kernel is the library of common mathematical
functions that describe and store 2D and 3D objects. Unlike CAD system,
mesh generator requires exhaustive geometric data included both solid and
surface definitions. CAD systems and mesh generators are brief reviewed
below and then the integration of Mechanical Desktop and GRUMMP mesh
generator is discussed.

2 Review of 3D Modeling Systems

There are many CAD systems (Computer Aided Design) [1]. Numerical
mathematics needs those of them that are intended for complex 3D design.
Geometric kernel and open interface are the main features of such CAD
systems. They allow CAD systems to be used in calculations.

1

2.1 Geometric Kernels

A geometric kernel is the main part of a CAD-system. The geometric data
the kernel of CAD-system operates is mainly destined to visualize complex
design. Now there are two widely used geometric kernels: Parasolid and
ACIS.

Parasolid is the most hide-speed object-oriented geometric kernel. Para-
solid provides solid and integrated surface design, tesselated and laminated
modeling. CAD/CAM-systems based on Parasolid: SolidWorks (SolidWorks
Corp.), SolidEdge and Unigraphics Modeling (Unigraphics Solutions Inc.),
IronCAD (VDS) etc.

ACIS is the object-oriented geometric C++ library, including wire-frame,
surface and solid models, wide range of geometric operations to design and
operate complex model. Besides, ACIS allows surface and solid models to join
to each other. Therefore ACIS takes priority of Parasolid intended to solid
modeling. CAD/CAM-systems based on ACIS: AutoCAD 2000, Mechanical
Desktop and Autodesk Inventor (Autodesk Inc.), IronCAD (VDS), T-FLEX
CAD (Top Systems) etc.

2.2 CAD Programmer Interfaces

CAD systems that widely used in the integrated systems have open program-
mer interface. CAD programmer interfaces are evolving constantly. Now
three stages can be picked up.

1. Library based on some descriptive or procedural languages (e.g. For-
tran). Such an interface was the first. To implement library on any
language it is necessary to rewrite all the code from beginning to end.
Furthermore, it is difficult to study new nonstandard descriptive lan-
guages unknown to programming society and it is complicated to use
the procedural languages, because CAD systems operate complex data
structures.

2. Object-oriented library (e.g. C++). Coding complex procedures suc-
cessfully such an interface solves the problem of data presentation.
Object-oriented technique is the unified and language independent way
of definition of CAD objects. Since object-oriented libraries don’t con-
cern the model of software system they can be reused only in the pro-
gramming language framework.

3. Component library (e.g. COM). Describing the model of software sys-
tem component approach provides the highest possibilities to reuse
software modules. Such an interface is flexible because it conforms to
object-oriented technique. Besides, it is language independent and able
to integrate with any applications. Leading CAD systems (SolidWorks,
AutoCAD) are componentware. For example, SolidWorks [2] is built
on COM technique [3, 4] and provided with C++ library.

2.3 Mechanical Desktop

Mechanical Desktop R6 (MDT) provides the tools to operate with solid Au-
toCAD models and with the models imported from different solid modeling
system. (MDT includes STEP, IGES and other translators) [5]. Import-
ing 3D model, MDT scans it through and translates separate items into the
parts. Some parts combined into one are considered as the assembly. Thus,
import results in the tree of drawing components based on non-parametric
solid. Basic MDT solids may be supplied with parametric solids: holes,
facets, junctions, frames etc. All the components may be edited with help
of AutoCAD and MDT tools. CAD systems have the tool to manipulate
the separate components: to move, to rotate, to range to copy etc. MDT
includes 3D Manipulator, which depicted on Fig. 1.
Mechanical Desktop provides:

e Improved solid modelling;

e NURBS-surface modelling;

e Refined assembly modelling;

e Automation and associative drawing;

e Data exchange with different CAD systems.

Besides, MDT may be reconfigured and reprogrammed and so there
are many applications coupled with it, which provides altogether through-
engineering from design to control programs. MDT is based on AutoCAD
object model, implemented on COM technique (Fig. 2). All the objects may
be grouped on two groups: environmental objects (Application, Document,
MenuBar, ...) and geometric objects (3DFace, 3DPoly, 3DSolid, ...). In-
terconnecting with the first group programmer may customize user interface;

3

EMechanical Desktop - [sborka_dwg] BEEl

ﬁ File' Edit View [Insert Assist Design Modiy Suface Pat Assembly Drawing Annotate ‘window Help | x|
[o=als(la:ms | e S0 AEBEBE 2|
|tcepns | eoprve i Phlaeseal
= = -
Model |'Sc:ene'-]'D'raw'|ng_I @
=-#PsB0RKA o
- o A &
a;
)]
g
B [|
g
e
% w
] }I\nx
cpO0oes |Bly w o
oo oo opscE® B0 @R 03
|[Blasssa~rooo|Bbedtr|ié ieEE o
| nwo0ms L~ Isn " HHOHNAE(MQ EE B @
Cormmand : 1=
Command : I
|Command: b
Jcommand: _‘_lJ _’J
[Taraet SEORKA] | SN&P! GRID| DRTHOIPOLAR DSNAR] OTRACK] LwTIMODEL

Figure 1: Mechanical Desktop Environment

the objects of the second one provides COM interface to ACIS geometric
kernel. For more detail, see [6].

3 3D Mesh Generators

Mesh generators are designated to create 2D and 3D discrete models (meshes),
which may be used in computation programs based on area discretization.
The sequence of operations is as following: entering the geometry data, cre-
ation of the mesh, mesh refinement repeated as many as necessary to an-
swer the limits imposed on mesh quality (maximum and minimum possible
element angles, average element size, aspect rations etc). Mesh generator
consists of the executive system and the geometric kernel.

[mprlicstion taket)

e — TEeERD
—
S oo
— Alncks | - Ainck !
l—i/ Databsse
[ModelSpace |
| ey |
I S & 7 7
i)
- Dimstylas = > F+H— oimaligrea +—
] Sroups — D F__ omonguar
I Coyars i 0 "
[—4 > —os
i CmRadisl |
)
I { Reisteredappication)
— SelectionSets — SelectionsSet)
{ Textstuies b Textstus) —(Leader —
1 EEs c r—— 5 e e
:
1 Giowis T T) T T
[wisweparts] < Wiswwport 2 Lo wime . 3
e
-~

[§ Toolaartem i)

Figure 2: AutoCAD object model

An executive system provides the interface to operate with mesh generator
in runtime: to set mesh quality parameters, to create and refine the meshes.

A geometric kernel is the integral part of mesh generators, but his main
purpose is to completely describe the geometry and to take all the necessary
data to perform a mesh generation algorithm.

3.1 The Generation of 3D Unstructured Meshes

Automatic mesh generation for complex two and three dimensional domains
has recently become a topic of intensive research. It is imperative that auto-
matic mesh generation tools be capable of generating quality finite element
meshes. There must be a balance between resolution of the boundary and
surface features and complexity of the problem. In addition, for problems

with isotropic physics, element aspect ratio must be small to minimize lin-
ear system condition number and interpolation error. On the other hand,
problems with anisotropic physics (for example, a shear layer in viscous fluid
flow) require highly anisotropic elements for efficient solution. A further level
of complication is that for some physical problems and applications, quadri-
lateral (2D) or hexahedral (3D) elements are preferred, even though filling
space with high quality elements is easier using triangular (2D) or tetrahedral
(3D) elements. For more detail, see [7, §].

3.2 Programmer Interfaces of 3D Mesh Generators

There are many mesh generators directed towards the applications and im-
plemented different algorithms of mesh creation. Reasoning from practice
user decides what mesh generator meets the requirements. Now the inter-
faces of mesh generators are on the first and second development stages,
so that the most suitable of them have an object-oriented interface and an
object-oriented geometric kernel. Component approach helps to create uni-
fied interfaces encapsulated any mesh generation library. Universal generator
component provides the connect to new generation library without any mod-
ifications of computation program. The work given realizes this approach.
As an example freeware object-oriented library GRUMMP is used.

As for the object interfaces of geometric kernels, they have to include the
total geometry data. For example, it is necessary to extend the interface
of element. Not only does element include the set of nodes, but it is to be
described by the wireframe (the set of edges) and surface (the set of faces).

3.3 GRUMMP

GRUMMP [9] is a set of libraries, written in C++, supporting unstructured
mesh creation and modification in two and three dimensions, and a set of
executables built on those libraries. The current publicly released version is
capable of automatically generating triangular and tetrahedral meshes from
polygonal and polyhedral input, respectively. GRUMMP determines ap-
propriate mesh element sizes from the geometry and generates well-shaped
elements, all with no user intervention. This library has the developed geo-
metric kernel, written in C++ (Fig. 3). First, to guarantee that GRUMMP
always generates high-quality meshes, algorithms by Ruppert (for two dimen-
sions) and Shewchuk (for three dimensions) have been implemented, which

YalMesh airfiesh

s = - =

Bdr30 L List=BdryPatch™ 2 BdryPolygon
h y
List<at® art

Figure 3: GRUMMP object model

produce meshes with provably well-shaped elements. These algorithms have
also been modified to allow better user control of element size and rate of
size variation.

Second, GRUMMP is being extended to allow user-defined definition of
local element size; the main application for this extension is solution-based
mesh refinement, which changes local mesh size based on a measure of solu-
tion error.

Real-world geometries are of course not all obediently polygonal and poly-
hedral. In practice, a software tool for industrial applications must generate
high-quality meshes from clean CAD data. To address this problem, the
GRUMMP implementations of Ruppert’s and Shewchuk’s algorithms will be
generalized to allow (more or less) arbitrary input data.

The current release of GRUMMP is version 0.2.0. This version consists
of executable programs:

e tetra generates three-dimensional tetrahedral isotropic unstructured
meshes, using Shewchuk’s algorithm modified for cell size and grad-
ing control [10];

e meshopt3d improves existing three-dimensional tetrahedral isotropic

unstructured meshes, using techniques developed by Freitag and Ollivier-
Gooch [11];

e coarsen3d produces a tetrahedral unstructured mesh with approximately
twice the local length scale of the input mesh, including directional
anisotropic coarsening of quasi-structured parts of the fine mesh.

When the simplicial mesh generation code is stable and robust, atten-
tion will turn to generation of mixed-element meshes. For this case, point
placement strategies are especially important to ensure that tetrahedra can
be combined to form high-quality hexahedra, prisms and pyramids. These
element types will be formed in a post-processing step.

4 The Integration of Mechanical Desktop and
GRUMMP

The integration of Mechanical Desktop and GRUMMP puts into practice
some ideas mentioned above

1. Switch from formatted files to programmer interface to exchange geo-
metric data.

2. Development of mesh producing interface to encapsulate any mesh gen-
erator.

3. Continuous process: design — problem statement — computation.

To discuss the details of the integration, object and functional models of
the integrated system are reviewed.

4.1 The Object Model of the Integrated System

The integrated system consists of following subsystems: MDT, unstructured
3D mesh generator GRUUMP, integrator and computation module. The in-
tegrator consists of COM-object encapsulated C++ library and VBA-project
connected with MDT. COM-object is the prototype of universal mesh gen-
erator component. In the future it is supposed to extend depending on what
mesh generator is to be integrated.

4.2

The Functional Model of the Integrated System

Integrator’s objects interact with each other by C++ and COM technique.
The interactions are described in the following way (Fig. 4).

1.

5

MDT and VBA-project are activated simultaneously. When drawing
(Fig. 5) is being opened VBA-project is extending MDT interface and
inserting new menu items to configure and run the mesh generator.

Mesh generator parameters are set.

In MDT environment the new document is opened to contain 3D mesh
that will be generated.

COM-object encapsulated GRUMMP library takes the pointers to the
geometric model. Then the MDT geometric model mapped onto the
generator geometric model. As a matter of fact it is converting between
two geometric formats. This case is possible because the two geomet-
rical kernels have equal power. COM technology and object-oriented
approach manage to avoid hard programming when data are converted
through the formatted files.

On the design mapped into the set of C++ objects mesh generator
produces the mesh.

COM-object takes the pointer to container drawing. Then the mesh
geometric model formed by mesh generator is mapped to MDT form
and copied into the container draft to visualize (Fig. 6).

Numeric parameters are assigned to elements on the 3D mesh. Thus
geometric mesh becomes computational grid.

Computational grid is sent at the input of computation module.

Conclusion

The integration of CAD-systems and mesh generators is the productive way
to get the data to compute. This is of major practical importance to develop

complex software systems. This approach is to be used in the context of

development of the high-performance finite-element application framework.
Acknowledgments This investigation was accomplished with support

of Russia Foundation of Fundamental Investigations (projects 99-07-90455,

02 -07-90265).

References

Mathematics and CAD. — M.: Mir, 1989, 264 p.

SolidWorks 2000 API.

Brockschmidt K. Inside OLE. 2-nd ed. — M.: Microsoft Press, 1995.

Rogerson D. Inside COM. 2-nd ed. — M.:Russian redaction, 2000, 400p.

Nagradova M. AutoCAD. Designer guide. — M.: Prometey, 1991.

AutoCAD 2002 Help.

7. Preparata F., Sheynos M. Computation geometry. Introduction. — M.:

Mir, 1989, 478 p.

8. Alies M.U., Kopyssov S.P., Varnavski A.I., Novikov A.K. The Construc-

tion of Voronoi’s diagrams and Delone triangulation in two and three dimen-

sions. — Preprint of ITAM UB RAS, 1996, 39 p.

9. Ollivier-Gooch C. GRUMMP Version 0.2.0 User’s Guide // Department

of Mechanical Engineering University of British Columbia, 2001, 26 p.

10 . Freitag L. A., Ollivier-Gooch C. Tetrahedral Mesh Improvement Using

Swapping and Smoothing // Int. J. for Numerical Methods in Engineering,

40, 1997, pp. 3979-4002.

11. Ollivier-Gooch C., Boivin C. Guaranteed-Quality Simplicial Mesh Gen-

eration with Cell Size and Grading Control // To appear in Engineering with

Computers, 2001.

ISRl o S

10

Addln Design : Mesh GRUMMP : Wi erts Palygons Boundary : | Surfacetdesh : {%olumetdesh
GRUMM AcadDocurment| AcadDocurment |_GRUMMP List<"ert*> | List<BdryPatch*s Bdry3D Surftdesh “oltdesh
e DUEd:geSwapping(\ung‘) : : : |

2. [Brading({double)

(i R

3. Iées olution(daubl

)]

4. QualMeasureflong

a. CreajteMesh(Design,iMesh)
: 5.1, GetMpdalSpace()

K L K T A

|_| : 5.2 :
: ; I:I 5.3, Bdry3D(WAMerts)

6.4 : | :
5.5, vAddPateh(Palygons) L|

)

S.E.ESurfMesh(&Eloun:Hary)

gi

57, VolMesh(Sulfaceleshy |

i

© 58 qEdgeSw'fappingAIIowed(Do'EdgeSwapping'

58 vlnitLiLengthScaIe(1.!Re€squti0n, 1.fGra§1ing)

5,40, Quality(Qualiéasurs)
5.11. GetModelSpage()

|

Figure 4: Mesh generating

11

Figure 5: The surface model

Figure 6: Unstructured tetrahedral mesh

12

