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Requirements for a computer laboratory as for a system of physical processes
modellingon PC are stated. Possibilities for computer laboratory for heat
and mass transfer problems are described. It includes modelling of forced,
natural and thermocapillary convection in ordinal and porous medium. A
modulation of a body force is supplied aa well as a spatio-temporal body
force behaviour, corresponding to space flight conditions. Applications in-
clude modelling of heat and mass transfer during crystal growth. System
is approved on numerous test problems, including monotone and oscillating
loss of stability, and could be considered as a certified new tool for train-
ing and study of general phenomena in heat and mass transfer, effectively
extending handbooks possibilities.

1. Introduction

A solution of Navier-Stokes equations is one of a fundamental problem of
modern mathematics and mathematical modelling of such systems is still
some kind of art. While solutions of classical basic problems in fluid me-
chanics are governed by few non-dimensional parameters, a use of general
packages of computational fluid dynamics for such problems study is con-
nected with a need of large number data definition: region geometry, fluid
properties, initial and boundary conditions, as well as a use of an arduous
scheme: preprocessor-solver-postprocessor. Developed on intuitively clear
for hydrodynamists principles, computer laboratory allows to make essen-
tially easier and shorter a path from problem statement to results.

2. Computer laboratory: challenges and possibilities

Computer laboratory is based on a long-term experience of mathematical
modelling of heat and mass transfer processes on a basis of Navier-Stokes
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equations in Boussinesq approximation [1, 2] and is treated as software
modelling system COMGA for PCs [3-5].

A concept of computer laboratory includes possibilities to state and to
solve general and classical problems of forced, natural and thermocapillary
convection in both dimensional and non-dimensional terms, effective algo-
rithms, allowing to make calculations in a real user time, in a combination
with a visualisation, making an impression of a real laboratory experiment,
an approbation on known solutions and international tests, a wide database
of solved problems, a full access to a solution, friendly user interface.

COMGA includes possibilities of a solution of 2-D and axisymmetrical un-
steady convective problems in rectangular enclosures, including modelling of
Rayleigh-Bénard, Rayleigh-Taylor and Marangoni instabilities. A problem
statement covers numerical models of essential number of papers for last few
decades. A developing solutions database that confirms published experi-
mental and numerical results in a combination with computer laboratory
compose a basis for expert system in heat and mass transfer.

3. Problem statement
3.1. Governing equations

The unsteady Navier-Stokes equations in a Boussinesq approximation with
equation of heat transfer and impurity are [1]:

divV = 0 (1)
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where ‘7, P, T,C, g(t), t - correspondingly are velocity vector, dynamical
pressure, temperature, impurity concentration, body force vector and time.
For modelling of space flight conditions a portable coordinate system, con-

nected with space vehicle, is a non-inertial one and the motion equation (2)
becomes

208



v o 5 das
O+ (V) = VP +uAV 47 x % 4 (5,7 4 geCyii(t),  (3)

where 7, &, 7i(t) - are a point 3-D radius-vector relative to portable coor-
dinate system, an absolute angular velocity of portable coordinate system,
and full acceleration in a point, being calculated as
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where p., R, @(t) are Earth’s gravitational parameter, geocentric radius-
vector of a center gravity of a space vehicle, aerodynamic force [6].

For a porous anisotropic medium the Boussinesq-Darcy equations are used.
3.2. Boundary conditions

Boundary conditions includes Dirichlet, Neumann and mixed boundary con-
ditions for temperature and concentration. A region boundary is non-
penetrative, a condition for tangential velocity corresponds either to an
immovable or a driving lid or to a free surface with surface tension as linear
function of temperature and concentration.

3.3. Body force modulation

The body force, being acted on fluid, is a combination of a permanent
arbitrary directed part, harmonic vibrational and rotational parts and pulse
part. The components of the body force could be read from a file.

4. Numerical model

For a solution of the equations a finite volumes method on staggered non-
uniform meshes is used, it bases on explicit Chorin’s projection method [7,
8] or semi-implicit SIMPLE scheme [9]. For solution of Poisson equation for
pressure either an iterative method of successive over-relaxation (SOR) or a
direct method based on combination of splitting and fast Fourier transform
(FFT) in one of directions. An approximation of convective terms includes
central differences, schemes with numerical viscosity of first order (upwind
and hybrid) and of second order QUICK [8].

5. A use of computer laboratory

5.1. Problems classification
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Problem statement in terms of computer laboratory is being realised either
in terms of general model when one need to choose equations to solve, re-
gion geometry, fluid properties, boundary conditions, or by a choice of one
of classified problems and a statement of few non-dimensional governing
parameters. For classical Rayleigh-Bénard problem of heating from be-
low there are three such non-dimensional parameters: aspect ratio, Prandtl
number, Rayleigh number; other data will be defined by system. Definitely,
the second approach is much more attractive and system efficiency is defined
by a number of classified problems.

Problems classification includes:

e Forced convection

Lid driven cavity

Top- and bottom-lids driven cavity

Natural convection

Vertical layer with side heating
Horizontal layer with side heating

Rayleigh-Bénard problem

Thermoconcentrational convection

Layer structures (side heating)

Layer with bottom heating
e Marangoni convection

Pearson’s problem
Layer with side heating
An interaction with natural convection

Double Marangoni diffusion

Convection under body force modulation

Layer rotation (natural convection)

Layer rotation (thermoconcentrational convection)

Directional solidification
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Moving front model
QSSM model

e Czochralski crystal growth

5.2. Example of use

A use of computer laboratory allows under simple examples to understand
qualitive properties of liquid systems described by the Navier-Stokes equa-
tions, such as non-linearity, non-unique behaviour, loss of solution stability,
hysteresis. As an illustration a study of a forced isothermal flow in a cavity
with two oppositely moved top and bottom lids [10, 11] could be considered.
There are two governing parameters in this problem: aspect ratio of cavity
(H/L) and Reynolds number (Re) of moving lids.

Three different regimes of fluid flow are shown on fig. 1 for H/1=2, Re=100 (a)
Re=3000 (b, ¢). At low Reynolds number Re=100 (fig. 1a) a fluid flow with
two separate vertices of ”sand-glass” type is realised. With increasing of
Reynolds number up to 1700 two vertices are united into one main vertex,
as on fig. 1b, with presence of two additional vertices of opposite direction.
With consecutive decreasing of Reynolds number the one-vertex structure
will remain down to Reynolds number equals 300, and then transforms into
two-vertices structure again. So, within Reynolds number 300-1700 there is
a hysteresis of solution: a type of solution depends on a path of parameter
change. For Reynolds number equals 3000 one could obtain also another
stable solution of a problem - non-symmetrical (fig. 1c). Its range existence
is also limited by a value of Reynolds number from below - back transform
to symmetrical state occurs.

5.8. Visualisation

Visualisation of physical processes occurs concurrently with modelling; pro-
cess development could be seen on one of virtual screens, at each of them
arbitrary number of windows could be created. Visualisation includes draw-
ing of isolines, graphs of sections and time dependencies, fields of velocity
vectors, animation of motion with test particles, creation of animated pic-
tures, compatible with Internet-browsers.

5.4. Programming and system

Computer laboratory is developed in C++ in MS Visual Studio environ-
ment with a use of MFC library for user interface. That provides system
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functioning in MS Windows-9x/NT/2000/XP. For treatment of different ap-
plied models of fluid mechanics a mechanism of object-oriental C++ classes
is used. Classes provide encapsulation (data hiding), inheritance, polymor-
phism (overdetermination and virtual functions). A structured database
with modelling results and a public version of computer laboratory for tests
reproduction is supplied in Internet [12] and could be used for a practical
work treatment on numerical heat and mass transfer.

5.5. Union with laboratory experiment

Computer laboratory could be also effectively used in a combination with
laboratory experiment, for example, for photoinduced soluto- and thermo-
capillary convection [13, 14], thermodiffusion [15] or physical convective
practical work [16]. System could serve also as a tool for online analysis
of gravitational sensitivity of heat and mass transfer processes on space
station [6].

6. Tests description

During system development a special attention was paid for accuracy of
numerical solutions. As except physical problem statement one needs an
assignment of numerical parameters, a choice of which is very difficult to for-
malise, a test problems database is created where optimal numerical param-
eters is assigned. The tests allow to provide modelling within few minutes
and could serve as a reference for close problems solution. Tests include a
study of convergence of solutions on meshes and time steps, correspondence
to international CFD tests [17-20], correspondence to data on monotone
and oscillating stability loss of flows, obtained by solution on stability on
eigenvalues.

6.1. Side heating in o square cavity

That is the first international test on numerical hydrodynamics [17] that
corresponds to fixed temperature difference on vertical walls and adiabatic
horizontal walls. In table 1 there is a comparison of a stream function
maximum and Nusselt number on varied meshes with results in [17] (a dif-
ference in % are shown in brackets). On fig. 2 isolines of temperature and
stream function for Rayleigh Ra=10" are present. For a linear distribution
of temperature on horizontal walls a critical value of Rayleigh number, cor-
responding to oscillating loss of stability, equals to 1.7 - 108, that is close to
an interval for critical Rayleigh number 1.8 + 2.3 - 10% cited in [21].
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6.2. Crystal growth

On fig. 3 a test result on directional solidification in presence of passive
impurity, corresponding to calculation [22], Gr=5000, Pr=0.015, Sc=10,
k=0.087, vy=0.2 are present. On fig. 4 test results for an idealised Czochral-
sky crystal growth [19, 20, 23] for forced flows (a, b) and natural convection
(c, d) cases are present.

Conclusions

Computer laboratory for modelling of heat and mass transfer is a principal
new certified tool for study, training, results accumulation and presenta-
tion. Developing solutions database, bibliography and computer laboratory
compose bases of expert system in heat and mass transfer.
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Fig. 1. A fluid flow structure (stream function) ina cavity H/L=2 with top
and bottom moving lids for Reynolds number Re=100 (a) and symmetrical
(b) and non-symmetrical (c) flows for Re=3000.

Table 1. A comparision of stream function maximum and Nusselt number
for different meshes with results [17] for H/L=1, Prandtl number Pr=0.71,
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Rayleigh number Ra=10°.

Mesh || maz Nu
21x21 18.024 / 7.61 | 10.518 / 19.29
41x41 16.979 / 1.37 9.052 / 2.67
81x81 16.801 / 0.30 8.854 / 0.42
161x161 | 16.802 / 0.31 8.829 / 0.14
[17] 16.75 8.817

Fig. 2. Isolines of temperature (left) and stream function (right) for flow
ina square cavity with side heating for H/L=1, Pr=0.71, Ra=10".
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Fig. 3. Isolines of impurity concentration in a melt (left) and in a crystal
(right).
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Fig. 4. Isolines of stream function for cases A3 (a), B2 (b), C2 (¢) and
temperaturefor case C2 (d) of [20].
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