
Abstract of a paper
to be presented at the international workshop

“GRID GENERATION: THEORY AND APPLICATIONS”
Moscow, June 24-28, 2002

Computing Center Russian Academy Of Science

UNTANGLING AND OPTIMIZATION OF UNSTRUCTURED HEXAHEDRAL

MESHES

by

K. Kovalev(*), M. Delanaye(**), Ch. Hirsch(*)

kvk@stro.vub.ac.be
(*) Vrije Universiteit Brussel, Pleinlaan, 2, 1050 Brussels

(**) NUMECA Int., Av. Franklin Roosevelt, 5, 1050 Brussels

An effective method for untangling and optimization of hexahedral unstructured

non-conformal meshes is presented. The method has been developed as a part of the

Numeca new mesh generator (HEXPRESSTM). It is able to untangle invalid (concave)

cells and optimize valid but poorly shaped cells resulting from grid generation process.

The goal is to obtain a mesh with all concave cells.

The HEXPRESSTM grid generation process is based on a top-down approach and

includes several stages. First, an initial non-boundary-conforming mesh is created and

refined based on geometry particularities. The cells that fall outside or intersecting the

domain are trimmed out of the volume mesh. Next, the surface of the resulting staircase

mesh is projected on the domain boundary and layers of buffer cells are inserted between

the volume mesh and the corresponding surface mesh in order to obtain a nicely body-

conforming mesh. Concave and poorly shaped cells may occur during the projection step

and usually are concentrated near the boundary. The final stage is thus to apply the new

untangling and optimization tools to transform these cells in convex ones and recover the

mesh compatible with simulation. Optionally, layers of high aspect ratio cells for viscous

flow computations may be inserted.

The grid generator is coupled with a new flow solver, which aggressively adapts

the mesh based on local solution error estimation in order to obtain a mesh optimized for

the particular flow solution. Subdividing a concave cell may result in new cells with
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negative volumes. The latter are very undesirable for the robustness and accuracy of the

flow solver. That is why the automatic optimization procedure is necessary.

The untangling algorithm is based on the successive analysis and correction of

concave cells, via local untangling of sets of cells referencing a mesh node. The

algorithm employs the discrete analogy of Jacobian positiveness of a tri-linear mapping

of the unit cube onto a hexahedral cell [1]. This analogy decomposes the problem into

untangling of the tetrahedra that constitute one hexahedral cell. This subdivision is

however not unique and must be appropriately chosen to ensure the efficiency of the

algorithm. As a tetrahedron is a simplicial element, its untangling can be performed

simply by translating any of its vertices to a position that provides positive volume. The

condition of the Jacobian positiveness represents a linear constraint. An efficient way to

solve the untangling problem for the set of tetrahedra sharing one common vertex is

obtained by applying the simplex algorithm [2].

The optimization algorithm is also based on the quality analysis and optimization of

the sets of cells attached to a mesh node. Successive optimization of such sets containing

valid cells results in an overall mesh quality improvement. The local optimization of

hexahedral cells is performed via optimizing a variational functional for the set of

tetrahedra representing the cell. It is important that identical decompositions of a cell by

tetrahedra are used in both untangling and optimization. Indeed, in the scope of the

method this consistency requirement is necessary since only tetrahedra with positive

volumes are the only ones subject to effective optimization.

The efficiency of this new untangling-optimization approach will be demonstrated

in the paper by various example meshes representative of complex geometries of interest

for the industry.
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