ON HOMEOMORPHIC PIECEWISE-SMOOTH MAPPINGS AND THEIR APPLICATION IN THE THEORY OF GRID GENERATION

N.A.Bobylev*, S.A.Ivanenko**, A.V.Kazunin*

* Trapeznikov Institute for Control Problems RAS, Profsoyuznaya Str.65, Moscow, Russia

e-mail: bobylev@ipu.rssi.ru

** Computing Center of the Russian Academy of Science, Vavilov Str.40, Moscow, 117967, Russia

Piecewise-smooth mappings of homeomorphic domains in N - dimensional space are considered. Sufficient condition under which the mappings are homeomorphisms of corresponding domains is presented. The main result is the following.

Let Ω_0 , Ω be homeomorphic bounded domains in \mathbb{R}^N , and $\overline{\Omega}_0$, $\overline{\Omega}$ be their closures, and $\partial\Omega_0$, $\partial\Omega$ be their boundaries. Let a domain Ω_0 be subdivided to nonintersected subdomains Ω_i $(i=1,\ldots,m)$ such, as

$$\overline{\Omega}_0 = \bigcup_{i=1}^m \overline{\Omega}_i.$$

Let $f:\overline{\Omega}_0\to\overline{\Omega}$ be a continuous mapping which is C^1 - smooth on $\overline{\Omega}_i$. Restriction of the mapping f to $\overline{\Omega}_i$ is denoted by f_i $(i=1,\ldots,m)$. For every poing $x\in\overline{\Omega}_0$ let

$$J(x) = \min_{\substack{\alpha_1 \geq 0, \dots, \alpha_{i(x)} \geq 0 \\ \alpha_1 + \dots + \alpha_{i(x)} = 1}} \det \left(\sum_{i \in i(x)} \alpha_i f_i'(x) \right),$$

where i(x) is the set of all such indices i, that $x \in \overline{\Omega}_i$.

Theorem. Let f maps the boundary $\partial\Omega_0$ homeomorphically onto the boundary $\partial\Omega$. If J(x)>0 for every $x\in\overline{\Omega}_0$, then f is a homeomorphism from $\overline{\Omega}_0$ onto $\overline{\Omega}$.