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Distortion measures and global condition number

It is generally agreed that a grid cell in the finite element method can be
described as an image of the mapping of some ”ideal” domain. It is generally
agreed as well that this mapping should be nongenerate. However more
refined estimates require analysis of the properties of these local mappings.
There are exist many methods for evaluation of the mapping quality based
on the so-called geometric quality measures, the best known one being the
minimal angle criteria for triangular finite elements in 2-D.

In the present work we consider the characterization of the local map-
pings based on the analysis of algebraic properties of the Jacobi matrices.
The basic requirements for the quality measures can be formulated as fol-
lows:

1) The ability to quantify the deviation of finite element cell from ”ideal”
cell (say cube or unilateral simplex) in terms of shape and size;

2) constructivity, i.e. the possibility of practical creation of finite element
grids satisfying the quality criteria;

3) simplicity;

4) maximum principle.

The last property means that satisfying the quality criteria in a finite set
of "measurement points” or ”quadrature nodes” for special classes of map-
pings common in finite element analysis should be enough to obtain uniform
quality estimates of the mapping. In fact property 4) provides the relation-
ship between the cell quality measure, which is discrete characteristics, and
the mapping quality measure, which is continual characteristics.

It is convenient to define the quality measure as a dimensionless function
in a sense that it is equal to 0 for a degenerate cell and is equal to 1 for the
cell with given volume and shape. The inverse of this measure obviously
belonging to the range [1; 00) will be called below the distortion measure.

Let us consider a spatial nondegenerate mapping defined by

r=r(,....&), r=(21,...,20)", (1)
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which maps an ”ideal” domain D, say the unit hypercube, in the logical
coordinates {&i,...,&,} onto domain 2 in physical coordinates.
In order to describe the above mapping we will use the following nota-

tions: 5
T
S:(g17"'7gn)7 glzga

K3
where S is Jacobi matrix of mapping (1) and g; are the covariant basis
vectors. Let us introduce the matrix H = H (&), det H > 0, quite arbitrary
at this point, such that HT H has the sense of "accompanying” metrics
defined in the logical space and let

A=H1sT.
Let us introduce the following scalar functions of matrices
n/2

1 (detA v _ (ftr(AAT))
u) =5 (S8 ), s =

where u(A) is the volumetric distortion measure of mapping (1), 8(4) is the
shape distortion measure of mapping (1) and v is the constant volumetric
factor. The function ﬁ% is actually the shape distortion measure introduced
by Reshetnyak [3] in the context of the theory of mappings with bounded
distortion.

Using the above functions it is possible to define the overall distortion
measure as follows [2]

Ey(A) = 0p(A) + (1 - 0)5(4), 3)

where 6 is a parameter, 0 < 6 < 1. An important property of function
Ey(A) is that it is possible to obtain the following minimax bounds on the
eigenvalues of matrix AA” when the distortion measure Ey is bounded from
above [2]

1
unl < AAT <T%n], T = = v >0, (4)

which is crucial property of mappings in grid generation [1].

And vice versa, uniform eigenvalue bounds for matrix AAT allow to
obtain uniform upper bound of distortion measure Ey. It is also important
that in the limiting case of ideal mapping when Ey(A4) = 1 we get v =
1, T =1.
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We will call the value '/ by the isometric condition number or global
condition number which underlines the fact that the bounds (4) are valid
for all admissible values of &;.

Amoung the mappings (1) the most interesting are those which mini-
mize the ratio I'/v, while satisfying specified boundary conditions or other
constraints.

The distortion measure Ey satisfies the criteria 1)-3) formulated above.
We will show that it is also complete in the above sense when the low order
isoparametric finite elements are considered.

The algebraic properties of the distortion measure

Let us introduce the following definitions:

1) Let us call by the "boolean” partition of unity matrix into k parts
the set of matrices Iy, ..., I; with the following properties: every matrix
I7 is a diagonal matrix with only zero and unity elements and the sum of
these matrices is equal to unity matrix Zle Iy = 1. The lower index for

matrix I shows its position in the set, the upper index shows the partition

number. There are k™ different ”boolean” partitions of unity n x n matrix
into k parts (number of words with length n from the alphabete with length
k), hence v € {1,2,...,k"}.

2) Let us call by the k-ary composition of matrices Si, ..., Sy the matrix

k
S, =Y_8;I,
j=1

which corresponds to some ”boolean” partition v, i.e. S, is the matrix with
i-th column being the i-th column of any matrix from the set Si,...,Sk.
The number of such “composite” matrices is equal to k™ as well.

Using these definitions we can formulate the following theorem

Theorem 1 Let for any m-ary composition S, = Z;nzl S;IY of n x n ma-
trices Si,...,Sm the following inequality hold

FEy(S,) < C, det S, > 0.
Let

m k
S= SiAj, D A =1, A;>0, (5)
j=1 =1

where A; are the diagonal matrices, then
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moreover, there exist the coefficients a, > 0, ET:I a, =1, such that

B:(S) < 3" a, B S). ™)

The proof of this theorem is rather cumbersome and is omitted here for the
sake of brevity.

This theorem has the following important implications. If the Jacobi
matrix of a mapping can be presented in the form (5), then the m-ary
composition provides the set of “composite basises” or “quadrature points”
where the distortion measure should be bounded from above to guaran-
tee uniform mapping distortion bounds which is essentially the maximum
principle 4).

Variational principle for maximum-norm minimization
of distortion measure

In [2] it was suggested to introduce the parametrized feasible set F(t),
consisting of mappings with the quality above a threshold value ¢ via in-
equalities

det A >0, Eg(4) <1/t (8)

Then F(0) denotes the set of nondegenerate mappings and F(1) is the
isometric mapping. The practical implementation strategy for the mini-
mization of Ey(A) is to construct such functional which after discretization
has an infinite barrier on the boundary of the feasible set 0F(t) and then
to ”contract” this set which means to find the grid with maximum possible
quality measure t = tax.

Let us consider the following minimization problem [2]

argmin /D F(A)d, (9)
where

4(4)
det A — tg(A)

F(A) =1 —t)detH (10)

#(A) = (1-16) (%tr(AAT)) : + g (v + ,0<0<1.

Volumetric factor is given by

v = / det Sd¢/ / det Hde,
D D
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when the volume of the domain  is known, otherwise v is specified apriori.
The minimization problem (9), (10) makes sense inside the feasible set
(provided that this feasible set is not empty) defined by inequality

det A — th(A) > 0. (11)

Discretization of the functional in the 3-D case

In order to discretize functional (9) the conventional finite element pro-
cedure is applied where local mapping in each cell is assumed to be linear
or polylinear one.

We consider only 3-D case when n = 3. Suppose that the valid con-
nectivity structure of the grid is defined by N, grid cells. In the cell with
number c¢ let us denote the vector of all cell vertices by

RY = (x",x2",x3"), XL e R,

where N, is the number of vertices in the single grid cell.

If the cell D, is defined by the ordered set of N, integer numbers
v1(€), -..,vn.,(c), which are the pointers to the cell vertices in the total
list of the grid nodes, then the following equality holds

i ' 1, j=vwic) Ney x N
i i S - J i o XNy
X‘C_RCX ) Rc_{r’u}a T” { 07 j:/é’l}i(c) ’ RCGR .
Using the above notations the discrete counterpart of problem (9) can be
formulated as follows: find the vector R as the solution to the following
minimization problem

Nc N‘Z
R = argmritnIh’ Th = Zl (;1 F(A) a0 T4a(0) (12)
c=1 qg(c)=

A = (aj,an,as3), ai|q(c) = H;(Z;QQ(C)RCXZ'.

Here subscript g(c) denotes g-th ”quadrature node” for the integral over cell
D, N, matrices (4(c) actually describe the discretization of the functional

(9) on each element and Eé\&):l Oqc) = 1, 04e) > 0.
The feasible set F"(t) is defined by N.N, nonlinear inequalities

det A — t¢(A)|q(c) >0, (13)

Volumetric factor v is specified apriori or is defined by

Nc Nc
U=Z/D detSdg/Z/D det Hd¢,
c=1 c c=1 ¢
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when the volume of computational domain is known.

In order to account for boundary conditions we seek R as follows: R =
(I — B)Ry + BRyy,, where B € RY»*™> is the diagonal matrix with the
entries b;;, such that b; = 1, if the i-th node of the gride is internal one,
i.e. its coordinates are unknown, and b;; = 0, when ¢-th gride node lies on
the boundary and is fixed. R;,, Ry are the unknown vector and the given
vector satisfying the boundary conditions, respectively.

4.1 Tetrahedral cells

The mapping of the “ideal” tetrahedron with vertices 11,15,15,14 in logi-
cal coordinates onto the tetrahedron with vertices vy, va, v3, vy in physical
coordinates is linear and can be written via the natural coordinates [4] re-
sulting in the following equality

1 1

wl _(1 1 1 1 )(1 11 1)‘1 & 14)
zz |\ vi V2 V3 Vg L 1o I3 L & |

z3 &

Basis vectors of such a mapping are constant and, consequently, function Fy
is constant. If Ey satisfies (8) the local estimates on v, T for this mapping
are obviously true. However if 1/t is uniform upper bound for distortion
Ey of every tetrahedra present in the grid then 7, I' represent the global
condition number of the grid.

L

Figure 1: Equilateral tetrahedron and rectangular tetrahedron inscribed in
unit cube. Covariant basis vectors are shown in bold

For example, if we consider equilateral tetrahedron in logical space as the
ideal one (see Figure 1(left)), then the covariant basis vectors of mapping
(1) are written as

(V3+vs—vi—va).

N | =

1 1
g1 = 5 (Vo tva—vi—vy), g2 = S(VotVva—vi—V3), g3 =
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Quadrature rule in this case looks as follows

-1 1 1 -1
Q=5 -1 1 -1 1] N=Lo=1 (15)
-1 -1 1 1

For rectangular corner tetrahedron (see Figure 1(right)) we get

81 =V2—Vy1, 8 =V3 —V1, 83 =Vy4—Vy,

-1 10 0
Q= -1 010 )|, N=1,0,=1 (16)
-10 0 1

PES S
~

Figure 2: Prescription of target shape for tetrahedra via composition of
mappings

If the target shape of the tetrahedron is not one of the above basic
ones, then we should introduce the matrix H as the Jacobi matrix for the
mapping of the ideal tetrahedron onto target tetrahedron. This mapping is
again defined by equality (14) so H is written as follows

g_((1 1 1 1 11 1 1\
- Wi Wy W3 Wy 11 12 13 14 ’
2:4

i.e., H is obtained from 4 x 4 matrix by eliminating first row and first
column. Here wy,...,wy are the Cartesian coordinates of the vertices of
target tetrahedron. When the target shape is specified the discrete func-
tional does not depend on the choice of ideal tetrahedron in logical space
and the simplest expressions for the functional are obtained when the rect-
angular corner tetrahedron is chosen as the ideal one. Then the matrix H
is defined simply as

H=(wy—wi wWz—w; Wy—W; )
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So, when, for example, the equilateral tetrahedron is the target shape we
get

110 1 1 1 -1
H=101,H—T=5 -1 1 1
01 1 1 -1 1

4.2 Hexahedral cell

The trilinear mapping of unit cube on the hexahedral cell with straight
edges can be written as follows

1
K66 s) = _Z Q-&a) a1 - g0 - &) Fekr,4,k), (17)

%,5,k=0

where r(i, j, k) denotes the vectors of coordinates of the cell vertices in the
lexicographic numbering and 0 < &; < 1.

It can be shown that the Jacobi matrix of trilinear mapping can be
written as follows

S=> Sala, Aa >0, Y Ay =1,

where every A, is a diagonal matrix and sum contains 4 different terms. The
above equality is simply the matrix formulation of well known fact that each
basis vector g; of trilinear mapping is constant on the edges §; = 0or §; =1
and is linear combination of edge basis vectors of the same family inside
trilinear cell.

In order to apply theorem 1 and thus to evaluate the distortion measure
of trilinear mapping it is sufficient to evaluate the Ey(S) on 64 different
composite matrices S, = > o Sall. The vectors constituting the columns
of composite matrices are shown in bold on figure below:

5 7

I 11 117 v

1 2

Figure 3: Construction of composite matrices for trilinear mapping

The remaining 60 triples can be obtained from the above ones by rotation
and reflection in logical coordinates (when reflecting the orientation should
be changed to retain right basis).
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The exact expressions for matrices @ for approximation, based upon
N, = 64, can be easily obtained from (17). For example the columns of
composite matrix Sy are given by (see Figure 3,I)

g = 11-7T0 1 (-1 1000000
g = 1‘2—1‘0,62:2—7 -1 010 00 0O
g3 = Iy —TIyp -1 0 0 01 0 0 O

Here it is assumed that the numbering of cell vertices on Figure 3 is related
to triple indexing in (17) via

ryiv2j+k =1(i,5,k).

Composite matrices shown on figure above constitute the quadrature
rule with following weights

1 1 1 1

o] = 2—7, grr = ﬁ’ orir = m, grv = ﬁ’

which guarantees the patch test property for resulting approximation.

The target shape specification for hexahedron is more complicated com-
pared to tetrahedra. It can be done as well via composition of mappings
and matrix H. However for the sake of compatibility H by itself should
be the Jacobi matrix of trilinear mapping so its entries are the functions of

517 527 53-

4 e

Figure 4: Prescription of target shape for hexahedra via composition of
trilinear mappings.

The most natural way for hexahedron shape prescription is to construct
the same set of elementary composite matrices H, for H and consider the
distortion measures of matrices H o 15’,, as the distortion measure of devi-
ation from target shape given by Ey(H(£)71S(¢)). There is a hypothesis
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which is not proved yet, this research is under way, that theorem 1 can
be generalized to cover the presence of matrix H(§). Obviously theorem
1 is true when H is constant on the cell, however in this case the target
cell shape is just affine cell which severely restricts the class of allowable
deformations.

In order to reduce computational costs one should use simplified approx-
imation of cell distortion based on some set of quadrature rule. For example
one can use approximation based on 8 quadrature points in the hexahedron
vertices and one central node, or even the simplest approximation consist-
ing of 4 tetrahedra per trlinear cell, which is barely enough to fix the target
shape of hexahedral cell.

The same reasoning can be directly applied to the general case of poly-
linear mappings covering quadrilateral cells, prisms and various low order
finite elements in higher dimensions. Jacobi matrix for all these mappings
can be shown to take a form (5).

The important consequence of theorem 1 for distortion measure Ejy is
that the recursive subdivision of the hexahedron into smaller ones induced
by uniform subdivision of cube into smaller cubes cannot increase the upper
bound on distortion provided that coefficient v is changed in consistent
manner.

Thus with uniform grid refinement the global upper bound for distortion
measures of all grid cells can not increase which in turn means that the
global condition number remains bounded.

Solution technique

In order to solve the discrete minimization problem (12) we use precon-
ditioned gradient method coupled with a line search technique. The key
ingredient of this algorithm is the choice of nonlinear preconditioning and
the solution technique for linear systems arising in resulting implicit method.
To this end we use an approach suggested in [6], where symmetric positive
definite approximation of Hessian matrix of functional (12) was constructed
analytically and efficient and robust iterative linear solver from [5] was used.

Let us define the following matrices

2
Py = 91

B 83?631'

Since the target functional possesses the strong ellipticity property we get
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P;; = P > 0. The reduced Hessian matrix of (12) is assembled as follows

i Hiu 0 0
H= 0 Hy O ; (18)
0 0 Hs
N. N,
Hi=I-B+Y> Y 040BRIQY ., PiQyoR.B (19)
c=1 g(c)=1

It is obvious that # = HT > 0 inside the feasible set. If at least one
vertex is fixed (i.e. there exist b; = 0) then H > 0 on any feasible grid.

5.1 Procedure for grid untangling

In order to construct a feasible solution we suggest to use penalty formula-
tion, which is based on technique [6], and can be written as follows:
find the solution of the following minimization problem

R= lim_ argminZh,
e—el, E2€] R
N. Ny
- #(A) + betr(AAT
Ig :Z Z fE(A)|q(c)Uq(c)7 fe(4) =detH ) ( ) )
=1 g(c)=1 Xe(det A)
o ) (20)
ailye) = Hy)Qu Xty Xt = ReXY,
1
xs(q)=%+§ e2+¢% g=detA (21)

and ¢; > 0 is sufficiently small.

Here b > 0 is the constant. The additional term is introduced in order
to avoid the situation when reduced Hessian of the functional # has zero
rows and columns. This term was not necessary in the plane case.

The iterative solution scheme for this problem looks as follows:

Choose initial guess RO,

fork =0,1,2,...

exr1 = (e, RY)
find minimization direction P¥ = —#{_ 1V}

solve approximately 7, = argminZ (R* + 7P¥),  (22)
Rk+1 = Rk + TkPk

if qmin(Rk) > 0, then ex41 = &, stop.
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Here gmin(R) is the minimal value of ¢ = det A over all quadrature nodes
of all grid cells R, e, = 109, function v is defined as follows

v(,R) = \/Eg + 0.04(min(gmin(R),0))2.

The minimization problem for the function of single variable (22) can be
solved using the finite choice from the set 7 € {1,271,... 27N} where
N, = 32.

The reduced Hessian matrix #, is defined by equality (18), where in the
expression for H;; the matrix P;; is replaced by P, defined below

3 62f5 XE i 40T
ii_BaTa +—detH¢a

The matrix 7. has the same properties as H but still is positive definite (or
semidefinite) for any unfeasible, i.e. “tangled” grid. The validations of this
untangling procedure are considered in [6], [7].

5.2 Procedure for contracting the feasible set

Let us consider the solution of the following minimization problem

= in Zh
R arg min (t),

$(4)
det A —tgp(A)’

(23)

N
Z Ao ae), FA) = fo=(1—t)det H

HM?

=T i i i
ailg(c) = Hq(C)Qq(C)XC, X! =R.X",

As an initial guess we choose a nondegenerate grid from F(0) and we set
to = 0.

In order to contract the feasible set F(t) the following iterative solution
scheme is suggested:

fork =0,1,2,...
find minimization direction P¥ = —H~'VZ"(t;)
solve approximately 7, = argminZ"(t;)(R* + 7P*), (24)
T
R¥ = RF 4+ Pt = (1 — dt)tmin(RF)
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Here
det A

tmin = mMin ——— )
a(c) ¢(4)
q(c)
and delay dt is computed using the norm of the gradient of the functional

Th(ty,).
Numerical experiments
1. The domain shape recovery for given deformation field. Sup-

pose that the mapping of rectangular domain in logical coordinates onto
the target domain is given by equality

(R + &) cos (L;f‘ sin <p)
w(i,6,8) = &+ (L—&)cosy - (25)
(R + &) sin (% sin cp)

Then the pointwise deformation is given by shape control matrix H =
ow dw Ow
(3& ? 8627 353)'

Suppose that the initial guess is the uniform grid in the rectangular
domain 0 < x3 < L, 0 < 9,23 < 1, while the target domain described by
the above mapping has a spiral shape. We chose R=1, ¢ =«/3, L = :17;:}2
for the spiral with two turns. The idea of this test is to reproduce the shape
of the domain using distributed deformation field.

Using the simplest approximation of functional based only on 4 tetra-
hedra for hexahedral cell and prescribing the target shape for each of this
tetrahedra via exact tetrahedra shapes computed from (25) we achieve exact
shape recovery.

it
L2755
L7 i
%004 4
2s0y 4

I71
Figure 5: Stages of exact shape recovery (from left to right)

However when the deformation is defined by constant matrix H on each
hexahedral cell the final domain had a shape of spiral with only one and a
half turns.
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This simple example illustrates the importance of proper target shape
definition for hexahedra which also plays a key role in the solution of such
problems of mechanics as the shape recovery from stressed state and the
springback.

2. Grid untangling test. We consider a mapping of unit cube with
uniform grid in logical coordinates onto the cube of the same size when
smaller cube inside is rotated around z3 axis on the angle a. The points
inside smaller cube are fixed hence the computational domain is in fact a
cube with a rotated cubic hole inside. All nodes on external and internal
cubes are fixed and present the uniform square grids. By “zero initial guess”
below we mean the tangled grid with zero values of internal vertices and
correct boundary values.
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Figure 7: a = m/2

The untangling works fine for the configuration shown on Figure 7 where
a = 7/2. In this figure on the left we show the coordinate surface &3 = const
passing through the cube center and the grid on the cube boundary. On the
right it is shown the “beam” made from the chain of the hexahedral cells.
The trilinear mapping inside each grid cell is nondegenerate.

In the case @ = m when started from zero initial guess the untangling
procedure was locked in the situation showed on Figure 7. Note that the grid
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is badly folded. In this example feasible set is the union of disjoint connected
subsets. Moreover, with grid refinement the number of such disjoint subsets
increases. In this case the untangling procedure was not able to “choose”
between clockwise- and counterclockwise rotated solutions. This example
requires further investigation but it seems to indicate that we have the
stationary point of discrete functional (20) outside the feasible set.

However if we take as the initial guess the feasible solution of the same
problem with 7/2 < a < m, which is still unfeasible for @ = 7 then the
untangling procedure successfully builds nondegenerate grid.

Figure 9: a = m with nonzero initial guess

Note the presence of severely distorted hexahedra in the grid shown on
Figure 9. The trilinear mapping in all grid cells is nondegenerate, however if
one splits some hexahedra into tetrahedra using standard splittings into 5, 6
and other numbers of tetrahedra, then the signed volume of some tetrahedra
will be negative. This is true in particular for very thin hexahedra shown
on Figure 9, right. This problem looks very simple but it is enough to break
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down the simplified approximation methods for hexahedral cells based on
simplified quadrature rules or splitting into tetrahedra, especially on coarse
grids. Only the slowest method based on the approximation based on 64
composite basises was consistently and reliably providing the desired results.

Conclusions

The maximum-norm optimization technique for spatial mappings was
used to control the properties of the local mappings in the finite element
method, in particular in the case of hexahedral cells.

Global grid untangling procedure was tested on hard 3-D examples
demonstrating ability to work in black box mode and high level of robust-
ness.

References

[1] S.K. Godunov, V.M. Gordienko and G.A. Chumakov. Quasi-isometric
parametrization of a curvilinear quadrangle and a metric of constant
curvature. //Siberian Advances in Mathematics. 1995, V.5, N.2, P.1-20.

[2] V.A. Garanzha. Barrier variational generation of quasi-isometric grids.
//Comp. Math. and Math. Phys. V.40, N.11, 2000, PP.1617-1637.

[3] Reshetnyak Y.G., Mappings with bounded deformation as extremals
of Dirichlet type integrals - Siberian Math. J., 9, 1968, 487-498.

[4] G. Strang, J. Fix Analysis of finite element method.// Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[5] Kaporin I.E. On preconditioning conjugate gradient method when solv-
ing discrete counterparts of differential problems.// Diff. Uravn. 1990.
V.26. N.7. PP.1225-1236.

.A. Garanzha, I.LE. Kaporin. Regularization of the barrier variationa.

6] VA.G ha, IL.E. K in. Regularizati f the barri iational
grid generation method.// Comp. Math. and Math. Phys., 1999. N.9.
PP.1489-1503.

[7] V.A. Garanzha, Max-norm optimization of spatial mappings with ap-
plication to grid generation, construction of surfaces and shape design.
2001, these Proceedings, PP. 61-74.

60



