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The work is devoted to construction of harmonic mappings of spatial do-
mains onto canonical ones in parametric space. This problem has great pra-
ctical interest, because it provides reliable method for mesh generation in spa-
tial domains. Construction of harmonic maps is realized by block analytical-
numerical method, which is based on decomposition of initial complez-shaped
region onto simple sub-domains (blocks) and on approximation of solution
in every block by a series of special functions having good approximation
properties and accurately satisfying the problem operator. Singular func-
tions can be used near boundary edges, which allows to describe harmonic
mapping behavior near angle elements of boundary accurately. The block
analytical-numerical method represents solution in analytical form, which is
convenient for fast reconstruction of the corresponding harmonic meshes.
Numerical evidences suggest that the presented technique is highly competi-
tive practical method for constructing harmonic maps and meshes.

1. Harmonic mapping

We consider the harmonic mapping from any region G C R? to the canonical
region in parameter space & = {&1, &, &}

AEP)=0, PeG. (1)

Such mapping & = £(P), described in (1), is widely used for constructing of
three-dimensional and surface grids in plane and spatial domains [1, 2].

The following regions can be regarded as canonical: unit box P = {E :
0<é& <1, k=1,2,3}, unit ball B={€:0 < (£ + & + £2)'/2 < 1}, plain
layer H; = {€: 0 < & < 1}, cylindrical layer C, = {€ : 1+ < (£24+£2)1/2 < 1}
or spherical layer B, = {€ : r < (€2 + &2 +£2)Y/2 < 1} (for doubly-connected
regions topologically equivalent to cylindrical or spherical layer).
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The unit box P is commonly used as an instance of the canonical region;
in this case it is easy to introduce curvilinear coordinates in the domain G:
the coordinates are the result of harmonic mapping i (P) of points P € G.
The coordinate surfaces {{¢ = 0} and {& = 1} will lie on the boundary of
the region 0G. Also in this case the hexahedral grid is easily introduced
as the set of coordinate surfaces {{; = const}. But the coordinates can be
computed as described above only in the case of simply connected domains.

We would like to take a more wide look on the problem, when not only
P can _be chosen as an instance of the canonical region in the parameter
space &, but also B, Hi, C, or B,.. This case is interesting because it can be
used for doubly-connected regions. The grid in G is introduced by applying
the harmonic mapping to the grid already constructed for B, H1, C;, or B,.

The harmonic mapping (1) is defined uniquely if there is a correspon-
dance between the original and canonical domain boundaries, which means
that the boundary condition of type one is specified for the equation (1):

&P =hP"), P edq. (2)

In some cases this correspondance should satisfy additional conditions. The
mapping from not simply connected domains, which are topologically equiv-
alent to cylindrical layer, onto the plane layer #; is an example where the
additional conditions can be introduced.

This paper describes the application of the block analytic-numerical
method for the construction of harmonic mapping &(P), i.e. for solving the
problem (1), (2). This method has been developed for a long time and it
is applied in boundary value problems of mathematical physics [3-7]. The
main feature of the method is the ability to represent the solution as the se-
ries of special functions which have good aproximation properties and take
into account the geometry singularities of the region boundary that is very
important when constructing non-degenerate grids.

The harmonic mapping is defined by the boundary conditions (2) which
can be specified in different ways for the same canonical domain. It is of
great interest for us to explore the influence of the singular elements of the
original region boundary on the mapping and also to study the properties of
harmonic mapping around singular elements which influence the resulting
grid.

2. System of basis functions

We consider a common solution of Laplace equation (1) (which is a special
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case of that for Helmholz equation, see [7]):

whtP P

W U(Qp)(z); (3)

B(P) = B(w,W,2) = 3 (~1)"
p=0

the point P = (w,w,2) € G is represented in the complex form with the
variables w = z+iy, W= z—iy, (a), = a(a+1) ... (a+p—1) is Pokhammer
symbol [8], u is the real parameter, U(z) is any real function of the variable
z. Let us represent Laplace operator in complex form with the variables w,
w and z and put formal series (3) into equation (1), after differentiating and
collecting members with equal derivatives U(?”) we obtain identity. The rep-
resentation (3) uniformly converges in confined domain G C {A < z < B}
and introduce solution of equaion (1) when |U)(z)| < M? < oo for any p.

The two factors influence on the common solution (3) — real parameter
1 defining the oscillation of the function in the plane {z = const} and plane
function U(z) which defines the behaviour of solution (3) along the axis z,
ie. ®(P) < {u,U(2)}; alot of known solutions of equation (1) which
are found by the method of separation of variables in different orthogonal
systems can be represented in the form (3).

For example, the power function U(z) = 2”~# corresponds to separated
variables system for the Laplace operator represented in spherical coordi-
nates P = (p, ¢, 0). This function can be represented in the form (3) as
follows:

O(P) = BL(p, ¢, 0) = Ay p* €9 P M (cos 0) = {p. 2" #}.  (4)

The exponential function U(z) = e* or U(z) = €%* in the representation
(3) correspond to the separated variables system for Laplas operator repre-
sented in cylindrical coordinates P = (r, ¢, 2):

®(P) = A, J,(r) e e < {u,ez}, A, T, (r) e? e {u,e”}. (5)

Here P #(t) are Legendre functions of the first type (see [8]) on the cut-
ting, J,,(t) are Bessel functions of the first type, I, (t) are modifying Bessel
functions, A, = 2#'(u + 1) where I'(¢) is gamma-function of Euler. The
representations (4), (5) can be directly examined, if we constitute in (3)
formulas w = re’?, W = re~*?, r = psinf, z = pcos and use definition of
Legendre and Bessel functions [8] by a series.

Let us point out that two functional subsystems, for ¢ = 0 and for
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U(z) = 1, can be naturally separated out of (3). They are used for the
solution of axis-symmetric and plane problems. The second subsystem is
the system of complex powers, i.e. wh <= {u,1}.

In some sense system (4) can be regarded as the simplest functional
system extracted from representation (3). The block method for problems
(1), (2) solution is based on this system (4); when v and p are integers the
system (4) becomes a system of (complex) spherical functions (see [9, 10])
up to the multiplier A,. We know that these functions form the complete
system in Lo-norm on the surface of any ball with the center in the origin
of coordinate system.

If we identify the function ®(P), defined by the series (3), by its sym-

bol {u,U(z)}, then differential features of functions ®(P) <= {u,U(2)}
derived from the definition of (3) are the following:

) N X X PP Pt R
w+1,U"

Relations (6) are checked directly by differentiating of (3); relation (7) is
derived from the complex representation of Laplace operator and (6). When
= 0 functions (3) are real. The formula (6), which is used for differen-
tiating of (3) when p = 0, is following from (7) after applying complex
conjugation.

The corresponding differential relations for ®# are derived from (4)
after placing the function U(z) = 2¥~* into (6) and (7):

aoL d o

L= -me, S =pdlT, u#0 (8)
o) __(V_N)(V_M—l) pt1
ow 4(p+1) & ©)

As we can see, the derivatives on z and on w for the functions (4) are
the same as for the power function. Apart from (8) and (9) the functions
(4) satisfy recurrent relations (which are checked by the recurrent relations
between Legendre functions [8]):

21/_1;;(1)” _V—p,—].

ko T a (ww + 22) ®*_,; B = wégj. (10)

I
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Relations (8) — (10) happen to be valuable when implementing the block
analytic-numerical method for solution of problems (1) and (2).

3. Theorem on representation of harmonic mapping

When v =n > 0 and g = m > 0 are integers, functions ®# become ho-
mogeneous harmonic polynomials (or spherical functions), which form the
complete orthogonal system in space Ls on the surface of any ball with
the center in the origin of coordinate system [9, 10]. Relations (9) allow
to decrease the power of these functions by differentiating. According to
(3), they can be represented in the form which allow to create the analogue
of these functions in the surface R® with power w”. Due to these features
it becomes possible to build the Taylor series for 3D Laplace equation
solutions, and to represent the harmonic mapping (1), (2) as the infinite
series of functions ®.

Theorem 1 (on convergence of 3D Taylor series). Let point Py € G
and B(Py) be a ball of some radius with center in point Py, which totally
lies in domain G. Then harmonic mapping &(P), defining by (1), (2), may
be represented in ball B(Py) as a convergent series (when v, u are integer):

EP)=E&Po) +Re DY 4, 04(P - Ry, (11)

v=1 p=0

when coefficients ﬁ,,u = {A,(,lu), A,(,2,2, A,(,:L)} are calculated by differential for-
mulas .
- 24, 9vE(P)

W W= dueosE |

(12)

here (52 is Kroneker symbol, 52 =1 when p =0, (52 =0 when p#0 .

Let us point out that relations (8), (9) allow to calculate easily any
differential combinations of functions (4) and thus they become valuable for
algorithmic implementation of (11). The block analytic-numeric method for
problem (1), (2) is based on formula (11) (for more information see [7]).

4. Singular functions

Let us consider spatial bihedral corner G = {P = (r, ¢, 2) : 0 < ¢ < 7}
and its harmonic mapping on the half space H = {£: & > 0}. We set up
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correspondence between boundaries of domains G and H in the form:
&(P)=Tm(z+iy)e ™2 &(P)=0, &(P) =2 (13)

This correspondence sets uniform grid on the both borders of dG. Note,
that formula (13) introduces some degenerate harmonic mapping of whole
space. We must entroduce into & nonzero harmonic function, which admits
zero value on the surface G, in order to define the true mapping.

Such functions are well-known in complex analysis of one variable; for
example, they were used as a basis for development of analytical-numerical
method for the plane Poisson equation solution, and they were explored and
widely used in [3-6]. These functions conform to the common representation
(3) when g = m/f. Relation Im 378 = 0 is derived from (4) when ¢ =0
and ¢ = 73, i.e. when on the surface of the bihedron.

So, the harmonic mapping of the bihedral corner G onto the half-space
is described by the following:

&(P) =Tm(z +1iy) e ™2, &(P)=Tm &/}(P), &(P)=2z (14)
Function (4) is used in (14) above with v = 1/8 and gy = 1/4. On the fig. 1
is shown the harmonic grid of the mapping (12) around the corner (left
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Figure 1: Harmonic mapping of the bihedral corner (in section z = 0)

picture) and the levels of the function & (P) = Im @i;g(P) in the section
z = 0 (axis z is directed towards the figure plane); the grid is uniform along

the axis z. On the right picture we see the effect of level lines concentration
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around the vertex of the corner. The effect is due to the existence of the
function ®# in the mapping when u < 1 (p = 1/8 = 2/3 < 1 because
B =3/2). From the formula (3) follows that the derivative in direction r is
approaching the infinity when p < 1:

oo

o rhL PV =H 5 00, r — 0,
r

i.e. functions ®¥ are singular when g < 1. This is the reason for the
isolines concentration effect. But in this case the effect does not result in
the appearance of the degenerate elements in the grid.

Under conditions (13) the mapping from G onto H is not unique, the
singular function ®# with some coefficient can also be included into the
equation for coordinate &; (P):

& =1Im {(a: +iy) e"i™P/2 4 A‘I’ifg}, & =1Im ‘I’ifga &=z (15
Formulas (15) also give the mapping of the bihedral corner onto H, however
the effect of isolines concentration will appear for the coordinate & (P) as
well. On the fig. 2 we can see the iso-levels of & (P) in section z = 0 with
A=-1, A=0and A =1. As we see, when A = 0 the angle between

Figure 2: Levels of coordinate & (P) around bihedral corner (in section
z=0)

the line & (P) = 0 and the border is equal to 45°, and when A # 0 it is
equal to zero (on the left and on the right of the figure). The lines become
more concentrated when approaching the corner. This effect happens for
any value of coefficient A, only the sign of the coefficient is important. This
behaviour of the function & (P) can result in appearance of degenerate ele-
ments in harmonic grid.
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Figure 3: Grid degeneration around the vertex of the corner

On the fig. 3 on the left the harmonic grid in the plane domain is
drawn, it contains the re-entrant corner. The zone around the corner is
shown on the right, it contains the degenerate quadrangle. The calculation
was made by the block analytic-numeric method based on functions (4)
when v = gy =m > 0 was integer.

The bihedral corner with two plane boundaries is one of the most fre-
quently encountered geometrical elements of spatial regions. For example,
test region G, which is subtraction Po\P; of two boxes where Py = {P :
0<z<2,0<yz<llandP ={P:0<2<1,0<uy,2<1/2}is
shown on fig. 4. In the neighborhood of the point M = {1, 1/2, 1/2} lie

Figure 4: Example of domain for harmonic mapping calculation
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three bihedral corners, which constitute the spatial trihedral corner — more
complicated geometrical element. In the neighborhood of each bihedron
(but out of neighborhood of the point M) harmonic mapping is described
by {®} .}, »=m/B, B = 3/2. They can contain singular functions {®4},
pn <l

The completness of the system {®),, }, 4 = m/fB, on the surface of

cylindrical sector C, g(L) ={P: /22 +y? <r, 0< o <7f, 0<z< L}
can be proved according to representation (3) and formulas (4) and (5).

Theorem 2 (on completness of function system). Let Cr (L) be
cylindrical sector by radius r, length L and angle w3, and let there exists
domain G D Cpg(L) such, that S1(e) = {P : \/z2+y? <r, p =0, ¢ =
B, —e < 2 < L+e} C G, ¢ > 0. Then system of functions {®},,,},
u=m/B, n,m > 0, is complete in space L2(0Cr3(L)) of harmonic in G
functions, which admit zero value on the surface Si(g).

5. General scheme of the least squares method on multi-block
structure

We consider the coverage of the original region by the finite block system
{Bi}, G = UBg, each of which is the simple-connected subregion of G.
Let the blocks By and B; be called neighbouring when By N B; # ¢
and let us assume that the intersection of the neighbouring blocks is
By =Bp,nNB Cd.

Let us divide the boundary of the block By on two parts,
0B, = Sék) U ka), where Sl(k) is the part of the given region border,
on which the boundary condition (2) is fulfilled, and S(gk) is a part of the

block boundary which intersects with the neighbouring blocks. According
to region coverage conditions the last part can be represented as the union
S = U Sk, Sk = 0B, NB;, of all parts of the block By, boundary, included
into all neighbouring blocks B;. So, the boundary of each block can be
represented as follows:

8By, = S =U S U ™, 16{1:3k03,¢¢}. (16)

On the fig. 5 there is an example of the region G = Py\P; coverage
by the spherical blocks By, constructed by intersection of the balls B(Fy) of
any radius and the region G itself. All region is covered by 14 blocks, only
5 of them (for keeping the figure clear) are drawn on the fig. 5.
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Figure 5: Subdivision on spherical blocks of 3D domain

—(k
We introduce a local mapping & ( )(P) in each block By and approximate
it by finite series according to theorem 1

= Re Z XV: A gu(p - py). (17)

v=0 p=0

For a number of blocks (we call them singular blocks) the harmonic
mapping near the edges of bihedral corners can be described with the help
of functions {®,, .}, 4 = m/B. In that case they should satisfy additional

conditions: 1) in some local coordinate system P = Q(P — P,), where Q
is the orthogonal mapping from class SO(3), region By takes the shape of

cylindrical section C, g(L); 2) surface S{k) of the block boundary becomes
surface S1 of bihedral corner C, g(L) in local coordinate system.

~(k
We approximate the local mapping & ( )(P) by the finite series with real
coeflicients for each singular block By according to theorem 2:

M) =) + Z Z S ™ ®f o (P), (18)

n=0 m=0

~(k
where fé )(P) is a solution of equation (1) which takes a boundary value
(2) on the surface ka).
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Local solutions are stitched together with the method of the least
squares [11] in La-norm, that accounts for deflection of the boundary value
with respect to the given function, and difference coordinate functions in
the adjacent blocks interlace area:

2

— min. 19
. (19)

2(0) 2

e® o+ [E) =8

(P') = R(P")

Realization of such approach of respecting the boundary conditions
together with stitching of local solutioins in blocks results in the need to
solve the system of linear equations, having block structure:

Aka+ZTlel:Hk; k:1,2,...Nsm, (20)
l

where Ay, is the Gram matrix of the system (4) used for k-th block, X}, is
the vector of unknown coefficients in the representation (17), (18), Ty; are
matrices, that provide for stitching of the local block solutions, Hy, is the
vector of boundary conditions in the block, Ny, — the number of blocks in
the structure. After reordering (20) the block system corresponds to the
sparse banded structure, with diagonal blocks dominating the matrices Ty;.
The system of equations (20) has good algebraic properties, and different
block analogues of direct and iterative methods of linear equation systems
solution can be applied for its solution.

6. Harmonic mapping of domain G = Py\P;

We apply the block analytic-numeral method described in part 5 for con-
structing the harmonic mapping of the reqion G depicted on fig. 4. We
would like make such a mapping on P for which the lower part of the area
containing the lug is mapped on the lower side of the parametrical cube P.
Let us determine the correspondence between the boundaries of regions G
and P; on sides {z = 2}, {y = 1} and {z = 1} let set the relations:

xT

gl(P): 57 £2(P):ya £3(P):za (21)
and on the lower surface containing the lug:

_x

&(P) =3

(1-y), &FP)=0, &P)=z(1-y). (22

On other sides {z = 0}, {z = 0} let us find the mapping between the plane
sides and the corresponding sides of the parametric cube by means of the
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same method with the help of plane functions ®/ and let take the resulting
mapping as the correspondence between the boundaries; relations (21), (22)
specify the boundary conditions everywhere except lines {1/2 <y <1, = =
0, z = 0} where we define the linear distribution & =1 — 2y. As a result

we get the coordinate grid depicted on fig. 6.
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Figure 7: Levels of {1, &2} and &3 in section z = 0.5

On fig. 7, 8 there are iso-levels of the coordinate functions near singular
elements of the boundary, we got these lines as a result of the computations.
On fig. 7 on the left there are levels of {£;, &2}, and on the right — levels of
&3 on the edge of the trihedral corner in the section ¢ = 0.5. We can see the
concentration of isolines close to the boundary point which results in the
appearance of degenerate hexahedrons in harmonic grid. Fig. 8 contains
the distribution of the function &3 (P) (left picture) on the circle with radius
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Figure 8: Singularities of harmonic mapping near trihedral corner
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r = 0.25 that touches the vertices M of the trihedron at the same angle
with all axes. Fig. 8 also shows the distribution & (P) (central picture) on
the plane which touches the edge y = 0.5, z = 0.5 and which is placed at
the angle of 45° with the axes y and z, on the right picture there is the
distribution of the levels of & (P) on the same plane. We can easily observe
the singularities of harmonic mapping near the trihedral corner.

7. Some harmonic mappings of doubly-connected domains

There is a need to use harmonic mappings of doubly-connected domains,
for example, for the problems in heterogeneous media [12]. On the left of
fig. 9 a rectangular cell including the ellipse is represented. This cell can
be used for modelling of two-periodical composite material. Such tasks can

G @C

Figure 9: Region with inclusion and the ring subdivision on blocks

also be efficiently solved with the help of block analytic-numeral method
because the method is based on coverage G = UBy of all domain by the
simply connected blocks. An example of separation of a ring onto blocks
implemented with the help of circles system covering the domain is shown
on fig. 9. The doubly-connected 3D domains can be represented as the
union G = UBy in a similar way. For this case the layers B,., C, or H;
should be chosen as the canonical region.
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Let us point out that the domain topologically equivalent to the
cylindrical layer can be mapped either onto C.., or onto H; with additional
jump condition & (Py) — &(P-) = A when turning of the inclusion. This
condition can be easily reproduced by the block method. However, it is
impossible to map the region which includes a 3D area and is topologically
equivalent to the sphere layer onto the plane layer #;; only B, can be
taken as the canonical region for this mapping.

The ambiguity in specification of (2) provides additional complexity
when doing the mapping onto B, C, or H;. The mappings from cylindrical
layer and sphere layer onto themselves demonstrate this problem:

L N 1 —e~ivo r? o
§1+z§2—(m+1y)[e Yo 4+ T2 ( _m2+y2)]’ =2 (23)
_ In (22 + y?) _ y In (22 + y?) _

=1- =g G=Awg(]) ot G =2 (24)

Formulas (23) specify the harmonic mapping of C,. onto itself, formulas (24)
specify the harmonic mapping of C,. onto Hi; the inner cylinder is rotated by
the angle @g; Arctg (y/z) is the multivalent function which has got a simple

Figure 10: Levels of mappings on H; and on C,

branch arctg (y/z). On fig. 10 we can see levels of coordinate functions &;,
& for such mappings. There is an interesting effect for the mapping (23)
which is not present for the mapping (24): when the value of the rotation
angle increases and when it becomes equal to ¢o = 2arccos(r) a singular
line moves away from the inner cylinder and the mapping stops being one-
to-one; this is very well observed on fig. 11 that contains the harmonic grid
corresponding to the increasing rotation angle. Similar effect is observed
for the mapping of a sphere layer onto itself.

The work was supported by Partner Project - EOARD No 2154.
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Figure 11: Image of polar grid under increasing rotation angle
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