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Abstract

Nondegeneracy criteria for three-dimensional grid cells are found for hex-
ahedral cells which are given by eight corner points and generated by the
trilinear map from a unit cube to a region defined by these points. The
criteria include both nondegeneracy conditions and a special numerical al-
gorithm for testing the Jacobian of a trilinear map on its positivity when
sufficient nondegeneracy conditions are not satisfied. Formulas of the Jaco-
bian of the trilinear map and a cell volume are obtained.

Introduction

Numerical solutions of partial differential equations in three dimensions of-
ten use hexahedral cells composing a computational grid. The most popular
choice [1] for constructing hexahedral cells for given eight corner points is
based on a trilinear map from a unit cube to a region defined by these
points. After the grid is constructed, it is first of all verified whether the
grid is unfolded or not. The nondegeneracy is a common requirement to a
computational grid and, hence, a major objective of grid generation algo-
rithms, so both a mathematician developing a grid generation method and
a practicing engineer must care about this. Such test is very important, es-
pecially, in three dimensions when a visualization of a grid is complicated.
In a number of works (see, for example [2, 3, 4]) attempts to find nonde-
generacy criteria for trilinear cells have been undertaken. In [5] conditions
of nondegeneracy were found. They were briefly presented in [6]. In this
paper, the criteria of nondegeneracy are suggested.

In Section 1 of this work, the criterion of nondegeneracy of cells is formu-
lated in terms of positivity of the Jacobian of the transformation used for
generation of cells. Formulas of the Jacobian of trilinear map are obtained

1This work was supported by the Russian Foundation for Basic Research, projects
N99-01-00326, 00-15-96042.
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in Section 2. In Section 3, nondegeneracy criteria are given for trilinear
cells: both necessary and sufficient nondegeneracy conditions found in [5]
are given, new necessary nondegeneracy conditions are also suggested, and
a special numerical algorithm for testing the Jacobian of a trilinear map on
its positivity for the cases of nonfulfilment of sufficient nondegeneracy con-
ditions is described. The results of testing hexahedrons randomly selected
by the computer are presented.

In Section 4, a new formula of a volume of a cell is derived. Formulas of
a volume of a cell published in [1, 7] are rather complex and demand a
large amount of computations. Efficient volume computation and another
formula of a cell volume were suggested in [8]. The formula given in this work
is similar to [8], but requires computation of volumes of ten tetrahedrons.

1. Generation of ruled hexahedral cells

Let eight points Ziyinis = (2] iyi50 2o <igiar Zininis)r 11,%2,03 = 0,1 be given.
The trilinear map
z(y) = aggo +ai00y" + ao10y” + ago1y’ +
+ aney'y’ +ainy'y’ +aoy’y’ +amy'y’y (1)

of the unit cube P = {y = (y',42,%®) : 0 < ¢! <1, 1 =1,2,3} defines the
ruled cell with the corners z;,i,i; = z(41,142,13), 91,142,435 = 0,1. The vectors
a;,i,i; are found from the following relations

000 = Z000, A111 = Z111 — Z110 — Z101 — Zo11 + Z100 + Zo10 + Zoo1 — Z000,
001 = Z001 — Z000, Q011 = Zo11 — Zo10 — Zoo1 + Z0o0,
a010 = Z010 — Z000, A101 = Z101 — Z100 — Z001 + Z000,

a100 = Z100 — Z000, A110 = Z110 — Z100 — Z010 + Z000-

The concept of the ruled cell and techniques of generation of grids by such
cells can be found, for example, in [1, 7]. In two dimensions, the ruled cell
is a quadrilateral. If all eight corners of the cell are different, the edges of
the cube are transformed by the trilinear map to straight line edges of the
hexahedron, and the faces of the cube to ruled surfaces of the second order
or planes (Figures 2, 3, and 4).

The criterion of nondegeneracy of a cell is usually formulated in terms of
positivity of the Jacobian (the determinant of the Jacobian matrix) of the
map used for generating a grid or a cell [3, 4, 9, 10]. A grid element or
a cell is said to be nondegenerate (non-inverted, valid, unfolded, nonsin-
gular) if the Jacobian is positive. In the general case, nonzero Jacobian
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does not globally guarantee a one-to-one correspondence of the map (ex-
ample 1.3.4, [10, p.9]). It guarantees only locally. In the case of a trilinear
map (smooth map) from a cube (a domain), nonzero Jacobian in the whole
cube (including boundary) globally guarantees a one-to-one correspondence
of the map (theorem 1, [4, p.8-4]). Positivity of the Jacobian provides
the same orientation of edges of a cell that a unit cube has. Nondegener-
acy of the joint grid is attained by the nondegeneracy of all its cells [4].

Figure 1. Hexahedral cell.
The Jacobian of the map (1) is equal to the triple scalar product

d(2', 22, 2%) — det 02"\ [0z 0z Oz 5

o vh ) (&W’) - [5111 $ oy’ 81/3] - @
The properties of the Jacobian are studied in [2, 3, 4, 9]. In two dimen-
sions, a bilinear map of a unit square is considered. Its Jacobian is a linear
function. If the Jacobian is positive at the corners of the square, then due
to linearity the Jacobian will be positive everywhere in the square. The
converse is also true. In two dimensions, if the Jacobian is positive, then
the cell is convex, and the condition of nondegeneracy of cells is equivalent
to the condition of convexity of cells [4, 9, 10].

A three-dimensional case is much more complicated. Since the faces of the
cell can be nonplanar, the cell can be nonconvex. In [2] it is implied that
the Jacobian in three dimensions is positive everywhere if and only if the
Jacobian is positive at the corners of a cube. In [3] this statement is shown
to be false. It is also demonstrated that for the positivity of the Jacobian
in the interior of the cube the positivity of the Jacobian on the edges of the
cube is not sufficient. The Jacobian in [3] is written in terms of polynomials
the coefficients of which are the values of the Jacobian on the edges.

Jy',y%,y%) =

2. The Jacobian of the trilinear map

For each point z;, .45, 1,192,435 = 0,1, consider the vectors (Fig. 1)

Pivicis =  Zfjisiz — Ziyigizsy Qivinis = Ziyiniz — Ziyigias
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Tivigis =  Ziyigiz — Zivinizy Wirinis = Zjyip43 — Diriaizs (3)
Viviais =  Zijiniz — Ziviaizy Wirisiz — Ziyinig — Ziviziz>
di1i2i3 = Ziisiz — Zivisis-
Here and hereafter, 0 = 1, 1 = 0. The partial derivatives 0z/9y*, k = 1,2,3
are expressed in terms of vectors (3). Substitution of them into (2) yields

J = E pOzgzs 137 E qz1013 137 E rqu

i2,i3=0 i1,i3=0 i1,i2=0

where ;, = iy + (-1)" (1-4'), 1 =1,2,3, 4 =0,1, (V;, =1—4¢, if
iy =0, Y;, =y, if i; = 1). Decomposing the triple scalar product of sums
of vectors into a sum of triple scalar products and taking common factors
of the vectors out of the sign of triple scalar product, we get
1
J o= ) 0 Ys, Y5,V

i1,i2,i3 0

+ Z Z (Zﬁfi’fm) (1 -y")Y;,%Y, 2 + (4)

i],im =0, ir=0
(klm) (123)

3 1 1
+ Y > Y A A -y -y +
k=1 i=0 i1,im =0,
(klm)=(123)
1
D DR R R (T VAl S R TR T C )
i1,i9,13=0

where Yil = /L'l + (—1)il (]- _yl) l =1 2a37 il = Oala (}/Zl =1- yla lf
iy =0, Yiz = yla if oy = 1) le;zl;; 6111213’ = izlizis’ '6313 =

1311 7112 1112137
141 2ig 313

7@213 = 71112137 71311 = 7111213’ ’yzlzg = 7211213’

Qiyigis = [Poigis> Qi1 0is> Tirin0) »  Kirigis = [POinis> L 03> Tiriz0] »
1112.21.3 = [p0i2i37qi10i37171i20j| ) 7z’11i2i3 = [p0i2i37qi10737ri1§20j| ) (5)
zgligis = [p0i2i37qi10i37ri1§20] ’ 71'211'21'3 = [p0i2i37qi107371‘71i20] )
?1i2i3 = [P0i2i3,qilo;3,1‘z'1i20] ’ ’Y?m% = [POizis,Qiloz’mI‘mgo] s

and indices k,l,m form the permutation of the cycle (123), i.e. k,l,m
are equal to the values 1,2,3; 2,3,1; 3,1,2, respectively. (The last one is
denoted by (klm) = (123)).
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: . 141 __ 249 __ _3i3
Let us introduce the notations Qi = Qi = ag,

The following relations are valid for coefficients (5).

= Qjyigig-

= . = i i s -7 .. = par
Qirigiz = [pOigisathig;rzlng] - 6111213 [p7q7 r]i1i2i3 = Jzﬂzls - 6‘/;'11'21'37 (6)

1 — ) o -5 . . _ Pqu
i1inis — [pOigzsachlmgarhizl] = 6111213 [p,q, v]ilizia = 6Vi1i2i37
2 — . L -1 =5 .. — PqU
ﬂiliQis = [p012137q210137ri1i20] = 6111213 [p7q7 u]i1i2i3 = 61/;'11'21'37 (7)
3 . _ L. . . _ pur
i1dois [POiziaaqiloisarzlzzo] = iyizis [P W, r]i1i2i3 =6 142432
1 1
ki}c — *kik j—
E : Vivim — E : Virvim =
i,im =0 i]yim =0
(klm)=(123) (klm)=(123)
1
_ ki 13, M
= X (_O‘z'zz'm + B + B ): (8)
ig,im=0
(klm)=(123)
—1i1 __ =1 s _ dqr
Yigis = Vivizis — 6@11213 [da% r]i1i2i3 = 6‘/;'”'21'37
2y _ =2 s _ pdr
Yigin = Viviois — irisis [padar]i1i2i3 = 6Vz'1i2i37
=~3i3 _ 53 s _ pgd
Yiria = Viriniz — Oiyinis [P> 4, d]i1i2i3 = 6Vilz‘2i3a 9)
1 1 3 1
_ k _
E Kiyigis = E E /Bz'lz'gz'g -2 E Qirigis =
71 ,iz,iazo 11 ,i2,i3:0 k=1 i1 71'251'3:0
= 2Roo0 + 2R111, (10)
- —_ — uvw —_
K = 6w [, v, W], = 6V;5"™, 1=0,1, (11)
1 3 1
k - — _
E E Vivinis = E Qiigig + 4 (Rooo + R111), (12)
11,i2,i3=0 k=1 i1,12,i13=0
1 3 1
k . _ _
> Y B =2 ) iisi + 2 (Rooo + F111) - (13)
%1,%2,43=0 k=1 i1,%2,13=0
Here and hereafter, d; i, = (—1)7%%% and lower indices related to

brackets refer to each element inside brackets.

So, the Jacobian of the map can be represented by the sum of polynomials
of the sixth degree (second degree in each of variables). The coefficients
of the polynomial are expressed in terms of the volumes of tetrahedrons
of four types (6), (7), (9) (7£,,:,), (11). Tetrahedrons (6) are formed by
three edges (with the common corner), tetrahedrons (7) by two edges and
”diagonal” of one of adjacent faces, tetrahedrons (9) (3,,;,) by two edges
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and ”inner diagonal” of the cell, tetrahedrons (11) by ”diagonals” of faces.
The total number of tetrahedrons is 8 + 24 + 24 + 2 = 58.

Finally, substituting (8), (10) into (4) we obtain the Jacobian (4) in the
form of a polynomial of the degree not higher than fourth (second in each
of variables)

1
J = Z Qiyinis Yiy Yin Yis (Vi + Vi, + Y3y —2) +
i1 io,i3=0

+ > D (Zﬁﬁ‘iﬂ)y’“(l—ykmnm. (14)

k=1 i1-im=0 ir=0
(klm)=(123)

Formula (14) can be reduced to the following one

1
J = Z Qliyinis Yiy Yip Yig + (15)

i1,%2,13=0

3 1 1
© 5 (3 (et st
k=1 iim=0  \§,=0
(klm)=(123)
Formula (15) requires computations of 8 volumes of tetrahedrons (6) and
12 triple scalar products

1 — .. ] - - -
1213 5l11213 [phwlsapi1i2i3=pi1i2i3]

M-

1
( i1i2i3 a““%) ’

11=0
1
2 — e e . - - . . . - — 2 — . e .
1143 6111213 [q’iliz’is)q1112137qi1i2’i3:| - § ( 111213 al112'l3) ) (16)
i2=0
1
3 _ - - - U 3 — v
i1i2 6i1i2i3 [rilizis7ri1i2i37r111223] - Z ( i14213 a212213) .

Il
<

3

The Jacobian J on lines y' = const, y™ = const, | #m, I,m =1,2,3is a
quadratic trinomial. In particular, on the edges the Jacobian is of the form

2 2
T| i, =af (L=y%)" +ali o + (Bh, +85L,) v (1=4"),
yM=im

(klm) = (123), i1, im =0,1. (17)
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Using (17), the formula (15) can be rewritten in terms of values of J on the
edges as in [3].

If a hexahedral cell is a parallelepiped, then a, i,i, = @000 = BY;,;.,

k=1,2,3, it = 0,1, and the formula for the Jacobian (15) is simplified

J = agoo(l —y' —y* —y*) + 100y + @010y + @001y® = @000 = const.

3. Positivity of the Jacobian of a trilinear map

Necessary conditions 1. The condition JJ > 0 implies the inequalities

J(il,iz,ig) = Qqinig > 0, 41,%2,i3 =0,1;

Ty y®) | ey =
yly™=ip,im
1 1
ki ki ..
=1 Z (Oéiffm + ﬂil’i’;) >0,41,im =0,1; (18)
(lcl'r:L’)c:(OlQ3)
1 1
li i .
J(y17y2)y3) y’“:i,e = g Z (/Bz:zk +/327:Zl ) > O; 1k = 0717
yl’ym=% i1,im=0
(klm)=(123)

1

111 1 LS
k
He33) =15 X Lo X awu]>0

i1,i2,i3=0 k=1 i1,i2,i3=0
which compose the necessary conditions 1 of nondegeneracy of a cell.

Sufficient conditions 1. The polynomials corresponding to the coeffi-
cients from (4) in the interior of the cube P are positive. Hence, if coeffi-
cients o, iyi; are positive, and the rest of the coefficients are greater than
or equal to zero, then the Jacobian is positive in the interior. It is easy to
see that J is positive on the boundary.

1

Since the coefficients inig> > Kiyigis can be expressed in terms of
i1,%2,i3=0

Uiy inig s 611“1 inis» the conditions of the positivity of the Jacobian (sufficient

conditions 1) have the form:

a’i1i2i3 > O) z].7/L27z3 = 0)1;

1
Mo > BE. Jinim =0,1; (19
ﬂj”’m = ilim7zlazm_ s 4y ( )

i, =0
(klm)=(123)
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1 1

ki __ 1£7] Mim ki k . .
> k=D (ﬂimik + Bici, _%im) 2 L i =01

i1,im=0 i),im=0
(klm)=(123) (klm)=(123)

1 3 1
= = E E k 2
2'{/000 + 2'{/111 = ﬂi1i2i3 - 2 ailizi;; Z K
i1,i2,i3=0 k=1 i1,12,i3=0

k

where i, iyi5, 04,4, are calculated according to formulas (6), (7), and

Bk

iim

=T =K=0. (20)

The conditions (19) and (20) are satisfied, in particular, for hexahedral
cells with the same orientation of vectors of 58 tetrahedrons (6), (7), (9),
(11) corresponding to coefficients i, iyizs 8L iyins V¥ inia> Fooo, Fi11, that a
cube has (right-handed orientation). Note also that necessary conditions 1
coincide with (19) where equality signs are excluded (strict inequality form

of (19)) and the following expressions are used

1 1

1
Bi'clim = — Z afll';in’ ka = — Z a?zli)in’ K=- Z Qjqioig-
ix=0 i1yim=0 i1,i2,i3=0

It is clear that necessary conditions 1 assume a wider range of values for
Qliyiig s fl iris than sufficient conditions 1. Both conditions include 27
inequalities (for 8 corners, 12 edges, 6 faces, and the interior part of a cell).
The expression for J is also positive, if (16) and (6) are positive. How-
ever these conditions restrict (in comparison with (19)) the set of values of
Qi igis s ﬂfli2i3 for which J is positive. So, sufficient conditions 1 are more
general conditions.

Necessary and sufficient conditions of positivity of the Jacobian
on the edges. The Jacobian on edges is either a linear function or a
quadratic trinomial, so it is easy to find necessary and sufficient conditions
of its positivity on the edges

Qiyigig > 0, 11,12,i3 = 0,15
1
D BEE > —=2(/ak) okl | (klm) = (123), i1, im =0, 1. (21)
i, =0

The Jacobian J on the faces y' = 0,1, I = 1,2,3 and general formula (15)
can be written (see [5],[6]) as quadratic trinomial in one variable with fixed

122



other variables (one or two, respectively). An attempt to find necessary and
sufficient conditions of positivity of the Jacobian using its representation in
the form of quadratic trinomial fails since even in the case of faces the
discriminant of quadratic trinomial is a fourth-degree polynomial in one
variable; in the general case, the discriminant will be the polynomial in two
variables. Because of above reasons an analysis of the discriminant on the
property of having fixed sign fails. However, it is possible to find sufficient
conditions more general than (19) and necessary conditions more particular
than (18).

Sufficient conditions 2. Sufficient conditions 2 [5],[6] coincide with strick
inequality form of (19) (conditions (19) where equality signs are excluded)
with the parameters

E_ N RN 7| _ 0.
B, = —2min(ag; a5, ), (klm)=(123), i,im =0,1;
1 1
k — : k’ik lil mzm
T, ==2 min | 2a5% +> 8, + > B |,
JisJm s : .
41=0 im=0

(klm) = (123), ix = 0,1;

1 1
. 1 2
K= _2 1nin 1(3aj1j2j3 + 2( Z ’leizis + Z ’Yi1j2i3 +

j2,j3=0,
i i,i5=0 i1,i3=0
1 1 1 1
3 1 2 3
+ D Visi) ¥ D Bhijsia + D Bhrisia + D Bhjnia)-
11,i2=0 11=0 12=0 13=0

Obviously, that cells satisfying sufficient conditions 1 satisfy sufficient con-
dition 2. Sufficient conditions 2 are more general than sufficient conditions 1
but demand more computations. It is possible to show that when sufficient
conditions 1 are satisfied necessary conditions 1 also hold. (But not vice
versa,).

Necessary conditions 2. Since on lines y',y™ = const, I,m =1,2,3,

[ # m the Jacobian is either a linear function or a quadratic trinomial, we
can get necessary and sufficient conditions of positivity of the Jacobian on
these lines, and, thus, restrict general necessary conditions. To get neces-
sary conditions 2 we shall write down necessary and sufficient conditions
of Jacobian’s positivity on the edges and so called ”middle” lines. So, nec-
essary conditions 2 will be composed of conditions (21) and the following
conditions

¢2210 + ¢§11 > —2(050 + a1 + 2\/040041), aj = J(il,j,0.5),
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o+ di. > —2(ap + a1 +2y/apar), a; = J (i1,0.5,5),j = 0,1,

Gio + b1 > —2(0 + o1 + 2y/aan), aj = J (4,i2,0.5,),
(;50,2 + ¢1,2 > —2(ag + o1 + 2y/ap0q), @ J(0.5,42,7),7 =0,1,

¢(1)i3 + (ﬁLS > —2(Oéo + o1 + 2\/040041), aj = J(j,0.5,i3),
¢013 + ¢113 > —2(a0 + o1 +2y/ar), aj = J(0.5,4,i3),5 =0,1

on "middle” lines for the planes y' =14y, y? =is, y3 =43, ix =0,1, k=
=1, 2,3, respectively, and

Z By > —4(a0 + a1 + 2y/a0an),

11,12 =0

i, =J (¥4 9%) | e, 5 ik = 0,1, (Klm) = (123)

=ik
vt ym 0.5

on "middle” lines passing through the center point (0.5,0.5,0.5). Here val-
ues of J are given in (18), and ¢f  are given in (16).
Numerical results. To see how general the obtained conditions are, a
numerical experiment was carried out. The corners of hexahedron were se-
lected randomly. Of 107 hexahedrons randomly generated by the computer
only 36251 were found to have positive Jacobians at the corners of a cell.
From them only 14622 cases satisfied necessary conditions 1 for edges, 14010
cases satisfied necessary conditions 1 for faces, and 14004 cases satisfied nec-
essary conditions 1 for the whole cell. Necessary conditions 2 allowed us to
exclude some more degenerate cells. The number of cases when necessary
conditions 2 were satisfied, was equal to 11533.
The Jacobian was positive in 11481 cases. Sufficient conditions 1 were satis-
fied in 33.93% of the cases (from the number 11481), sufficient conditions 2
were satisfied in 65.08% of the cases. In 11660 cases the Jacobian was pos-
itive on the edges (conditions (21)), 98.46% of them had positive Jacobian
everywhere in the whole cell. The success rate of necessary conditions 2 was
99.54%.
In Figures 2 and 3 there are hexahedrons nondegeneracy of which was
checked by means of sufficient conditions 1 and 2, respectively. Figure 4
gives hexahedral cell nondegeneracy of which was established by a special
numerical algorithm of testing the Jacobian on its positivity. Figures 2 a,
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3, and 4 a show the edges of cells, Figures 2 b, 3 b, and 4 b show the faces
of cells (hidden lines are removed).

Figure 2. Hexahedral cell satisfying sufficient conditions 1:
a — edges, b — faces.

<>

Figure 3. Hexahedral cell satisfying sufficient conditions 2:
a — edges, b — faces.

Figure 4. Hexahedral cell nondegeneracy of which was
established by a special numerical algorithm:
a — edges, b — faces.

All computations were performed on a personal computer. A computer code
generated for each case, first, a hexahedron and, then, checked different
types of conditions. For all cases, necessary conditions 2 were checked. For
some cases, sufficient conditions 1 and sufficient conditions 2 were checked.
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Besides checking all these conditions in some cases a special numerical al-
gorithm of testing the Jacobian on its positivity in the whole cube was
applied. On the personal computer Pentium 3 (800 MHz), such a test of
107 cases demanded about 1 minute of computation (58 seconds). The test
of sufficient conditions 2 (as the most expensive) for 107 nondegenerate cells
required about one and half minute of computation (95 seconds).
Numerical results showed the following.

1. Necessary conditions allowed to exclude a great number of cells which
were degenerate.

2. Less than in one third of cases when the Jacobian was positive at the cor-
ners of a cell the Jacobian was positive everywhere in the cell. So, it would
be unreliable to draw a conclusion about the invertibility of the Jacobian
on the base of positive Jacobians at the corners of a cell.

3. Necessary and sufficient conditions of positivity of the Jacobian on the
edges (provided that necessary conditions 1 were satisfied) in a large per-
centage of cases gave positive Jacobian everywhere in the cell. The success
rate of necessary conditions 2 was higher. However, both of these conditions
also did not guarantee the invertibility of the trilinear map.

4. Sufficient conditions 2 permitted to recognize the nondegeneracy of cells
in most of the cases.

5. In other cases, nondegeneracy was established by a special numerical
algorithm.

A special numerical algorithm of testing the Jacobian on its posi-
tivity. Initially in [5], to estimate the success rate of nondegeneracy condi-
tions, computation of the Jacobian was carried out in the unit cube on the
uniform grid with the number of nodes 10 x 10 x 10. The number of cases
with positive Jacobians on such a grid was 11582 provided that necessary
conditions 1 were satisfied.

To recognize nondegenerate cells for the cases when necessary conditions 2
were satisfied but sufficient conditions 2 were not satisfied a special algo-
rithm of testing the Jacobian on its positivity was developed. It is an al-
gorithm of minimizing the Jacobian in unit cube. It consists of two stages.
First stage is a preliminary minimizing. On this stage we minimize the Ja-
cobian on lines y* = (i; —1)/(L — 1), y? = (ix — 1)/(L — 1), L =10, i} =
=1,...,L, k =1,2. Since on these lines the Jacobian is a guadratic trino-
mial, we can do this exactly. As a result of such minimizing, we have initial
approximation J2, of a minimal value of J and a corresponding global
minimizer as starting point for the next stage. On the next stage (correc-
tion of the minimal value) minimizing is carried out on each iteration along
coordinate directions y', y2, 33, sequentially. On the line corresponding
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to each direction we also solve the optimization problem for the Jacobian
precisely as for quadratic trinomial. We utilize such minimizing on each
iteration until the condition |J?, — J:!| < e will be satisfied. Here, J7,.
is a minimal value of the Jacobian on n iteration, € is a small parameter. If
on one of the stages nonpositive value of the Jacobian appears, the process
is also terminated. In this case the cell is considered degenerate. Otherwise,
the cell is considered nondegenerate. Such an algorithm of minimizing the
Jacobian in the unit cube allowed us to exclude about 100 degenerate cases.
The number of nodes of the grid for the preliminary minimizing was chosen

by the experiment. The small parameter € was equal to 1077

4. A formula of a cell volume
Integrate the Jacobian J. Let us use, for example, (15) and (13)

1 3
1

_ 1,2,3 ko _

vV = // Jdy'dy*dy =2 E Eﬁilim—

i1,12,i3=0 k=1

0<y!<1
1
1 _ _
= 12 E Qi1inis T Kooo + K111
11,12,i3=0

Conclusions
The criteria obtained allow to establish nondegenaracy of trilinear cells.

If sufficient conditions 1 or 2 hold, the cell is nondegenerate. Sufficient con-
ditions 1 demand less computations than sufficient conditions 2. If necessary
conditions 2 are not satisfied, the cell is degenerate.

In the case of cells satisfying necessary conditions 2 but not satisfying suf-
ficient conditions 2, a special numerical algorithm of testing the Jacobian
on its positivity allows to recognize nondegenerate cells. If this algorithm
gives nonpositive minimal value of the Jacobian, then the cell is degenerate.
Otherwise, the cell is nondegenerate.

The formula of a volume of a cell is simple and does not demand verification
of numerous conditions and computations as in [1, 7].
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