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A noniterative algorithm for the marching generation of orthogonal grids

in exterior of contours in a plane and on surfaces is constructed. The stable

asymptotic behaviour of grids is speci�ed by a special law of change of the grid

cell volume which relates the curvature of the current grid line to its behaviour

at in�nity. A necessary criterion for the possibility of �tting an orthogonal grid

to a given contour with a prescribed asymptotic form is derived. A new version

of the de�nition of a star-shaped (convex) contour relative to a prescribed

asymptotic family of contours is proposed. To demonstrate the e�ciency of

the algorithm some examples of grids are presented.

Introduction
A new algorithm for generating orthogonal grids is constructed and inves-

tigated. This algorithm is characterized by the feature that it is noniterative

and marching. Hence, it can generate the grid sequentially, or layer by layer,

starting from a given initial contour.

The well-known principles and algorithms for constructing orthogonal grids,

which are reviewed in Thompson, Warsi, and Mastin (1985), Godunov et

al. (1979), are based on the solution of elliptic equations in a �nite domain. This

is necessarily done by iterative and nonmarching methods. The work in this

area includes also the paper Tomamidis and Assanis (1991), in which a family

of constructions of orthogonal grids, including the construction of a conformal

mapping of the given domain into a rectangle, are successfully combined.

Marching methods (iterative and noniterative) are used, in particular, to

generate quasi-orthogonal grids (Steger and Chaussee 1980; Steger 1991), see

also the review by Chan (1999). Special mention should be made of the paper

by Steger and Chaussee (1980), in which an original marching algorithm for
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Figure 1:

constructing quasi-orthogonal grids was proposed for the �rst time. In the

examples of Steger and Chaussee (1980), the degree of orthogonality of grid

construction, the cosine of the angle between the directrices, varied between

0.04 and 0.2.

The present paper was directly motivated by the results obtained in Steger

and Chaussee (1980), and is a positive answer to the possibility of constructing

a marching algorithm for generating rigorously orthogonal grids. Individual

cases of constructing an algorithm of this kind have been considered by

Semenov (1990, 1991, 1195a, 1995b, 1996), and Lipchinsky and Semenov (1997)

Apart from its theoretical interest, the problem arose from a consideration

of certain practical problems. The �rst was to construct a fast algorithm for

�tting grids around the hulls of ships in order to calculate the 
ow past them.

Orthogonal grids have to be constructed for each cross-section of the hull.

Another problem was to construct grids for investigating laminar and turbulent

boundary layers near smooth contours and bodies.

An algorithm for generating orthogonal grids in a plane is constructed in

Section 1 below. It is generalized in Section 2 to contours which lie on surfaces,

and to three-dimensional grids. The results obtained in generating various grids

are given in Section 3.

1 Construction of plane orthogonal grids

In this section we arrive a numerical algorithm for constructing an orthogo-

nal grid in exterior of a single simply connected contour given in the (x; y)

plane, see Fig. 1. It is a marching algorithm, that is, it will construct the grids

successively, beginning from the original contour. The condition is imposed

that at some distance from the original contour the grid shall be a simple

con�guration, composed of concentric circles (Steger and Chaussee 1980),

ellipses, parabolas, etc.
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1.1 The correctness of marching generation of orthogonal

grids

The orthogonal grids will be constructed on the basis of the system of the

following equations (Steger and Chaussee 1980; Thompson, Warsi, and Mas-

tin 1985):

x�x� + y�y� = 0; f� =
@f

@�
; f = fx; yg; � = f�; �g; (1.1)

x�y� � x�y� = V (�; �) =
1

J(�; �)
: (1.2)

Equations (1.1){(1.2) de�ne a one-to-one mapping of (x; y) onto (�; �), see

Fig. 1. The (x; y)-grid is the grid in the physical plane, the (�; �)-grid is

a uniform orthogonal grid in the parametric plane. Equation (1.1) is the

condition for an orthogonal grid, Eq. (1.2) gives the cell volumes of the grid

V (�; �), and J(�; �) is the Jacobian of the transformation.

It was shown by Steger and Chaussee (1980) that after local linearization

system (1.1){(1.2) becomes hyperbolic, after which smooth quasi-orthogonal

grids can be constructed by the marching method. In order to construct the

rigorously orthogonal grids, it is necessary to investigate the system in its

original form. To do so, we �rst rewrite it in the equivalent form:

x� = �y� G; y� = +x� G; G =
V (�; �)

x2� + y2�

: (1.3)

System (1.3) is of no de�nite type. Instead of investigating (1.3) directly, we

consider its extended Courant{Lax system (Courant and Lax 1949). We must

di�erentiate Eqs. (1.1){(1.2) with respect to � and introduce the new variables

X = @x=@� = x�, Y = @y=@� = y�, where � is the longitudinal variable and �

is the marching variable. The extended system has the form

@W

@�
= A

@W

@�
+ d; W = [X;Y ]T; d =

V�

R
[�Y;+X ]T; (1.4)

A =
V

R2

�
2XY Y

2 �X
2

Y
2 �X

2 �2XY

�
; R = X

2 + Y
2
;

System (1.4) is hyperbolic (Rozhdestvenskii and Yanenko 1983; Kulikovskii,

Pogorelov, and Semenov 2001) if R 6= 0. Its eigenvalues, in particular, are

equal to +V=R = +G and �V=R = �G, and system has a complete system of

eigenvectors. Also, the Riemann invariants can be written out for this system.

Thus, Eqs. (1.4) is a hyperbolic system, to solve which it is not only proper,

but quite natural, to use a marching method. As a further investigation, we
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can assume that the marching method is only proper for a separate simply

connected contour. The marching method gives satisfactory results only in the

case of a multiply connected curve until the grids generated independently from

each unconnected part of the curve meet.

As a result of the change to the extended system, the formulation of the

problem must be stated as follows: it is required to �nd V (�; �) such that

the resulting hyperbolic system of Eqs. (1.4): (i) is non-degenerate, that is,

the grid does not have self-intersections (R 6= 0), and (ii) does not have

singularities as a result of the characteristics approaching or intersecting one

another (Rozhdestvenskii and Yanenko 1983). These conditions are quite

important, because they govern the practical application and e�ciency of the

marching method. It can be said that the function V (�; �) must somehow

depend on local curvature of the contour and provide the asymptotic grid as the

distance along the marching variable � increases (Steger and Chaussee 1980).

1.2 Specifying the asymptotic form and selecting the

function V (�; �)

To generate the orthogonal grid we must specify its asymptotic form in some

way. It will be convenient to specify it in two forms. First, implicit, form is

the form of the one-parameter family F (x; y) = c, where c is the parameter.

In particular, the family F (x; y) = x
2 + y

2 = c, c > 0, is a family of concentric

circles with center at the point (0; 0), and F (x; y) = y = c is a family of

lines parallel to the x-axis, etc. Second, explicit, expression has the form x =

xc(�), y = yc(�), where xc and yc should satisfy the �rst form identically:

F (xc(�)); yc(�)) � c. In particular, for the family of circles x = xc(�) =
p
c sin �

and y = yc(�) =
p
c cos �.

The condition that the grids shall �nally attain the asymptotic form given

by F involves estimation how much they deviate from that form. The function
1

2
F
2
� � 0 will be used as a criterion. In fact, the value of this criterion is small

when the grid is close to the limiting form, because the value of F is nearly

constant.

We must now specify the law by which the grid attains its asymptotic form.

Thus, as the marching variable � increases, we must have

1

2
F
2
� j�=�2 � 1

2
F
2
� j�=�1 if �2 � �2; or

@

@�

�
1

2
F
2
�

� � 0: (1.5)

In this case the grid will tend gradually to the given one in the limit. Condition

(1.5) is unsuitable for use in speci�c applications, and so we will express it in
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a partial form as follows. Instead of Eq. (1.5), we take the rigorous equality

@

@�

�
1

2
F
2
�

�
= �f � 1

2
F
2
� ; V; x� ; y�; : : :

�
; f � 0: (1.6)

We make the condition that the unknown non-negative function f satisfy

f(0; V; x�; y�; : : :) � 0:

The di�erential equation (1.6) with respect to the function V is nonlinear, and

determined by the choice of f . The next step follows Semenov (1991, 1995b).

We choose f so that: (i) the equation for V is linear, (ii) its solution can be

written out in explicit form, and (iii) the function f has the simplest possible

form. So that a marching algorithm can be constructed, the result obtained for

V should not depend on derivatives with respect to �. A function f of this kind

has been constructed (whether or not it is unique remains an open question at

present), and has the form f = gGF
2
� , G = V=(x2� + y

2
� ), see Semenov (1991,

1995a, 1995b), where g is a positive constant, governing the rate at which the

asymptotic form is attained. With this choice of f , the relation (1.6) takes the

form
@

@�

�
1

2
F
2
�

�
= �gGF 2

� :

We then obtain

F�� = �gGF� or (Fxx� + Fyy�)� = �gGF�; Fx =
@F

@x
; Fy =

@F

@y
;

from which, using expressions for x� and y� from Eq. (1.3), we obtain an

equation for G, and therefore also for V :

(�Fxy�G+ Fyx�G)� = �gGF�; (1.7)

or

(�Fxy� + Fyx�)� G+ (�Fxy� + Fyx�) G� = �gGF�:

Solving Eq. (1.7), we �nd an expression for G, and then for V :

V = Q(�)
x
2
� + y

2
�

jKj exp

 
�g
Z �

0

F�

K
d�

!
; K = �Fxy� + Fyx� ; (1.8)

where K is some characteristic of the curvature of the contour which does not

contain derivatives with respect to � and for which a marching algorithm is

therefore possible. The function Q(�) > 0 speci�es the law of distribution of
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nodes along the �-axis. The integrand in Eq. (1.8) can be given the following

geometric interpretation:

F�

K
=

Fxx� + Fyy�

�Fxy� + Fyx�
=

1

tan�
;

where � is the angle between the vectors [Fx; Fy]
T and [x� ; y�]

T.

The properties of V follow at once from expression (1.8):

� V > 0;

� this choice of V ensures that there is no local degeneration of the grid.

In fact, it follows from Eq. (1.4) that

@R

@�
= (x��y� � y��x�)

2V

R
; R = x

2
� + y

2
� ;

and therefore, if R > 0 on the initial contour, this inequality holds in a �nite,

possibly small, interval of �.

1.3 A criterion for the applicability of the marching

algorithm

A necessary criterion for the applicability of the marching algorithm follows

from the form of V (�; �). We will �x the initial contour from which grid

generation starts in the form x = x0(�) and y = y0(�). We �x the asymptotic

grid in the form x = xc(�) and y = yc(�). We then consider two functions:

K0(�) = K(x0(�); y0(�)) and Kc(�) = K(xc(�); yc(�)), where K is de�ned in

(1.8).

Then a necessary condition for the problem of constructing a marching

algorithm for an orthogonal grid about a given contour with given asymptotic

form to be solvable is:

� the functions K0 and Kc must be sign-constant with respect to �;

� the values of the functions K0 and Kc must be �nite, non-zero, and of

the same sign.

We will call this the criterion for the given contour x0, y0 to be star-shaped

relative to the asymptotic form xc, yc. This suggests a new de�nition of the

convexity of a contour (Cassels 1959), or of a star-shaped body (Malyshev

1979). In particular, if the asymptotic grid is taken as a system of concentric

circles with center at O, will include the well-known de�nition of a star-shaped

contour relative to some point O as a contour for which any straight ray that

begins at O intersects it only once outside O.

The proof of necessity of the criterion follows from the condition for the

possibility of a continuous limiting transformation of the initial contour into an
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asymptotic contour as � ! +1, non-degeneracy of the grid that realizes that

transformation being observed, and also V 6= 0 and V 6= +1. Otherwise, if

K0 and Kc change sign, the value of K of (1.8) must past through zero. The

grid will then start to degenerate.

Thus, when the criterion is satis�ed, it is a priori possible to construct

a grid, at least in a small neighborhood of the given contour. As far as the

practical global generation of a grid is concerned, it has been found by numerical

calculation that the algorithm (and thus the criterion) can be used for problems

of di�erent kinds, see Section 3 below.

2 Grids on surfaces and in 3D space

We will give formulae for V in the case where the grids are constructed on

surfaces and in three-dimensional space.

In the case where orthogonal grids are generated on a surface given by the

metric tensor gij(�; �), where gij = gji and i; j = 1; 2; Eqs. (1.1){(1.2) acquire

the form

g11x�x� + g12x�y� + g21x�y� + g22y�y� = 0; x�y� � x�y� = V (�; �):

System (1.3) acquires the form

x� = �(g12x� + g22y�) G; y� = +(g11x� + g21y�) G; (2.9)

G =
V

jx� ; y�j2 ; jx� ; y�j2 = g11x
2
� + 2g12x�y� + g22y

2
� :

Function V can be constructed similarly, as in Section 1:

V = Q(�)
jx� ; y�j2
jKj exp

 
�g
Z �

0

F�

K
d�

!
;

K = (�g12x� � g22y�)Fx + (g11x� + g12y�)Fy

The function Q and the constant g are the same as in Eq. (1.8). If the metric

tensor g11 = g22 = 1, g12 = g21 = 0 is chosen, we obtain formula (1.8).

Now we will construct grids in three-dimensional space x; y; z. The initial

data is a surface on which a grid (may be non-orthogonal) has already been

constructed. Then, starting from that surface (or grid), we generate a new

surface, the tangent plane to which is orthogonal to the normal of the previous

surface. Equations similar to (1.1){(1.2) now acquire the form

x�x� + y�y� + z�z� = 0; x�x� + y�y� + z�z� = 0; (2.10)
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Figure 2:

V (�; �; �) = det

2
4 x� x� x�

y� y� y�

z� z� z�

3
5: (2.11)

Equation (2.11) can be rewritten as

x��x + y��y + z��z = V (�; �; �);

�x = det

�
y� y�

z� z�

�
; �y = det

�
x� x�

z� z�

�
; �z = det

�
x� x�

y� y�

�
:

Equations (2.10) are two orthogonality conditions and (2.11) speci�es the grid

cell volumes. The variable � is a marching variable, and � and � are longitudinal

variables in the parametric space �; �; �. Equations (1.3) now take the form

x� = G�x; y� = G�y; z� = G�z; G =
V (�; �; �)

�2
x +�2

y +�2
z

:

We can also construct V (�; �; �):

V = Q(�)
�2

x +�2
y +�2

z

jKj exp

 
�g1

Z �

0

F�

K
d� � g2

Z �

0

F�

K
d�

!
; (2.12)

K = Fx�x + Fy�y + Fz�z; g1 � 0; g2 � 0:

In Eq. (2.12) the constants g1 and g2 set the rate at which the asymptotic form

is attained in the di�erent directions, where as before, the asymptotic form is

de�ned implicitly in terms of a one-parameter family of the form F (x; y; z) = c,

and c is the parameter.

3 Construction of orthogonal grids

Numerical grid generation was performed using system (1.3) and (2.9), which

was approximated by �nite di�erences on a six-point pattern, two-layers in �

107



Figure 3:

Figure 4:

and three-points in �,

x̂k � xk

��
= �(ŷk+1 � ŷk�1 + yk+1 � yk�1)

Gk

4��
; (3.13)

ŷk � yk

��
= +(x̂k+1 � x̂k�1 + xk+1 � xk�1)

Gk

4��
; (3.14)

Gk =
4Vk��

2

(xk+1 � xk�1)2 + (yk+1 � yk�1)2
:

The subscript is the index of the grid node in the �-direction, the symbol f̂

denotes f for the upper layer in �, and the absence of this sign indicates the

known lower layer in �, and �� and �� are the steps of the di�erence grid

along the �- and �-axes, respectively. It is easy to see that the orthogonality

condition (1.1) is satis�ed identically with this approximation and, hence, for

points with coordinates ~xk = 1

2
(x̂k + xk), ~yk = 1

2
(ŷk + yk) it has th second-

order accuracy. After the coordinates (x̂k ; ŷk) were obtained, the �nal grid was

constructed over nodes (~xk ; ~yk).
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Figure 5:

Figure 6:

The resulting system of equations is linear and can be solved by matrix

sweep method (Godunov and Ryabenkii 1987; Samarskii and Nikolaev 1989)

or by reducing it to the inversion of a �ve-diagonal matrix by the Gauss

elimination, choosing the principal element in the row, the so-called scalar

monotone sweep method (Samarskii and Nikolaev 1989).

Note, that in calculations it is better to use system (1.3) than (1.4), which

was only used for analysis. The grids were constructed for �� = �� = 1. The

initial contours had a characteristic length of unity. The values of the constant

g were chosen in the range 0.3{0.66. The function Q was also taken to be

constant: Q = 10�2{10�4. The concentration of the grid nodes along � was

controlled by specifying a rule for choosing those grid layer indices which are

to remain in the �nal result. We chose this to be an arithmetic progression. In

each stage of grid construction, a check had to be made to see whether there

were any self-intersections. If there were, grid generation was interrupted. The

quality of the grid was also monitored by means of the ratio of the maximum

to the minimum cell volume along the grid layer.

Figure 2a shows an example of a grid constructed around an original contour

in the shape of a symmetric sinusoidal segment. The asymptotic grid was

chosen as concentric circles with center at O. Symmetry conditions for x:

x� = 0 and the condition y = 0, were speci�ed for closure on the x-axis

when generating the grid according to (3.13){(3.14). Figure 2b shows the grid
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Figure 7:

Figure 8:

for a smoothed rectangle, the center of the asymptotic grid here having been

shifted with respect to the axis of symmetry of the initial contour. Figure 3a

shows the general form of the grid around a semi-circle with imposed sinusoidal

perturbation, Fig. 3b shows a fragment of this grid. Figure 4 shows the grids

around rectangles with a cut. The asymptotic form consisted of concentric

circles, with F = x
2 + y

2 for all the grids in Figs. 2{4.

Figure 5 shows the grid which �ts a contour lying mainly along the x-axis,

with a semi-circular shaped concavity with center at the point O. A "witches

of Agnesi" asymptotic form was used:

F = (0:5 + x
2)y; yc =

c

0:5 + �2
; xc = �:

Figure 6 illustrates the relation between the grids for the smoothed contour

(a) and the nonsmoothed contour (b) of the type shown in Fig. 5. But now

we used a combined asymptotic form: at the initial stage, an asymptotic form

as in Fig. 5, until the grid left O, when we used straight lines parallel to the

x-axis: F = y, xc = 0, yc = �. This example demonstrates the 
exibility of

the method, in which the asymptotic form F can be changed while the grid is

being constructed.
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Figure 9:

Figure 7a{b illustrates the behaviour of the grid around a contour with a

convexity in the form of a semi-circle. Here F = y.

Note, that this grid generation method can be used for any initial contour,

even an nonsmooth one, as in Fig. 4b and 7b. In the latter case, the quality

obtained might be low, even though the orthogonality condition is, formally,

satis�ed identically at the discrete level. The reason for this is the large error

of approximation of the initial orthogonality condition (1.1), owing to the

nonsmooth behaviour of the contours. In this case one must either smooth the

initial contour, or concentrate the grid near large gradients in the � direction

in order to satisfy the approximation conditions.

Figure 8a{b gives an example of a grid constructed around quite a "di�cult"

initial convex-concave contour: the less detailed grid is at the top (a), the more

detailed grid is below (b). Here F = x
2 + y

2.

Figure 9a shows a closed grid constructed around a circle when the asymp-

totic form also consists of circles, but with their centers shifted relative to the

center of the original contour. Figure 9b{d shows the grid and its fragments

around a triangle. For closed contours, system (1.3) was solved by cycle sweep

method (Samarskii and Nikolaev 1989). For a smooth join, the boundary

conditions at the place where the �rst and last nodes of the grid lines met

were given: x���� = y���� = 0.

Figure 10 shows examples of grids constructed on surfaces (a hyperboloid,

an ellipsoid, and a cylinder) for initial contours of the type shown in Fig. 7.

We note, in conclusion, that the method can be used either independently,

or in combination with other iterative methods of grid generation (Thompson,

Warsi, and Mastin 1985; Godunov et al. 1979; Tomamidis and Assanis 1991;
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Figure 10:

Ivanenko 1999). In particular, it can be used to generate the initial distribution

of grid nodes. An unsuccessful arrangement of grid nodes on the boundary

could reduce the degree of orthogonality of the resulting grid, which only

increases after the number of nodes is increased (Steger and Chaussee 1980).

Otherwise, the method could be used to generate grids in an in�nite band

(channel), taking one of the sides of the channel as the initial contour, with

the shape of the other side given (or approximated) in the form of a one-

parameter family F . Then, by varying the rate of convergence g, it is possible

to achieve a prescribed degree of orthogonality of the grid on the other side of

the channel, see Fig. 11. And, �nally, the formulae obtained for V , see Eq. (1.8)

and (2.12), can be used directly for the methods by Steger and Chaussee (1980),

Steger (1991), Chan (1999).

We have constructed and investigated a marching noniterative algorithm

for the numerical generation of rigorously orthogonal grids around simply

connected curves in a plane and on surfaces. The method has been shown

to be e�ective and reliable for initial conditions of di�erent kinds and can be

recommended for practical use.
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Figure 11:

References

Cassels, J.W.S. (1959) Introduction to the Geometry of Number, Springer, Berlin.

Chan, W.M. (1999) Hyperbolic methods for surface and �eld grid generation,

Chapter 5 in Handbook of Grid Generation, J.F. Thompson, B.K. Soni, and N.P.

Weatherill (Eds.), CRC, Boca Raton, FL.

Courant, R., Lax, P. (1949) On nonlinear partial di�erential equations with two

independent variables, Comm. Pure Appl. Math. 2, No. 2-3, 255{273.

Godunov, S.K., Ryabenkii, V.S. (1987) Di�erence Schemes: An Introduction to

the Underlying Theory, North-Holland, Amsterdam.

Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., Prokopov, G.P.

(1979) R�esolution Num�erique des Probl�emes Multidimensionnels de la Dynamique

des Gaz, Mir, Moscou.

Ivanenko, S.A. (1999) Harmonic mappings, Chapter 8 in Handbook of Grid

Generation, J.F. Thompson, B.K. Soni, and N.P. Weatherill (Eds.), CRC, Boca

Raton, FL.

Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Yu. (2001) Mathematical Aspects

of Numerical Solution of Hyperbolic Systems, Monographs and Surveys in Pure and

Applied Mathematics 188, Chapman and Hall/CRC, Boca Raton, FL.

Lipchinsky, E.A., Semenov, A.Yu. (1997) The orthogonal grid generation on plane

and surfaces by noniterative marching method, in Computational Fluid Dynamics of

Natural Flows, Trudy IOFAN [Proc. Gen. Phys. Inst., Russian Acad. Sci.], 53, 173{

186, Nauka/Fizmatlit, Moscow [in Russian].

Malyshev, A.V. (1979) Star-shaped body, in Mathematical Encyclopedia 2, 446-

447, Soviet Encycl., Moscow [in Russian].

Rozhdestvenskii, B.L., Yanenko, N.N. (1983) Systems of Quasilinear Equations

and Their Applications to Gas Dynamics, Amer. Math. Soc. Transl. of Math.

Monographs, 55, AMS, Providence, RI.

Samarskii, A.A., Nikolaev, E.S. (1989) Numerical Methods for Grid Equations 1,

Birkh�auser Verlag, Basel, Switzerland.

113



Semenov, A.Yu. (1990) Marching generation of orthogonal contour-�tted co-

ordinates, in Proc. 2nd Japan{Soviet Union Symposium on Computational Fluid

Dynamics, Aug. 27-31, 1990, 2, 153{161, Tsukuba, Japan.

Semenov, A.Yu. (1991) Noniterative Marching Algorithm for Generation of Ortho-

gonal Contour-Fitted Coordinates, Preprint No. 50, General Physics Institute, USSR

Academy of Sciences, Moscow.

Semenov, A.Yu. (1995a) Noniterative marching generation of orthogonal contour-

�tted grids, in 6th Int. Symp. on Comput. Fluid. Dyn., Collection Tech. Papers,

Lake Tahoe, 1995, 3, 1087{1092.

Semenov, A.Yu. (1995b) Marching generation of orthogonal grids in a plane and

on surfaces, Comput. Maths Math. Phys. 35, No. 11, 1359{1371.

Semenov, A.Yu. (1996) Marching noniterative generation of orthogonal contour-

�tted grids, in Numerical Grid Generation in Computational Field Simulations,

B.K. Soni et al. (Eds.), Proc. of the 5th Int. Conf., April 1-5, 1996, 1, 117{125,

Mississippi State University.

Steger, J.L. (1991) Grid generation with hyperbolic partial di�erential equa-

tions for application to complex con�gurations, in Numerical Grid Generation in

Computational Fluid Dynamics and Related Fields, 871-886, North-Holland, New

York.

Steger, J.L., Chaussee, D.S. (1980) Generation of body-�tted coordinates using

hyperbolic partial di�erential equations, SIAM J. Sci. Stat. Comput. 1, No. 4,

431{437.

Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. (1985) Numerical Grid Generation.

Foundations and Applications, North-Holland, New York.

Tomamidis, P., Assanis, D.W. (1991) Generation of orthogonal grids with control

of spacing, J. Comput. Phys. 94, No. 2, 437-453.

114


