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1 INTRODUCTION

A multiblock grid technology is widespread in fluid dynamics computations.
Grid in a multiblock domain can be constructed by a mapping of each block
onto the unit square. The grid in each block is regular but block structure
can be irregular. In our approach the origin physical domain is subdivided
into quadrangular blocks (sub-domains) by an iteration process of grid gen-
eration. It should be given the information of the topological structure of
blocks and some geometric data such as position of outer boundaries of
the original domain, size of grid, and, possibly position of some vertices of
blocks, some angles of intersection of block boundaries. But this informa-
tion is not sufficient to construct the multiblock configuration by means of
a simple way. In this paper a method of block structured quadrangular grid
generation on a plane, based on the theory of quasi-isometric mapping [1],
is given; some aspects of the problem under consideration are discussed.
Note, a lot of researches has focused on the grid generation based on map-
ping technique [2]. However inspite of achieved progress there is often no
proof that the used technique provides a mapping of the needed properties.

In our approach the block interfaces and grid itself are constructed by
discretization of quasi-isometric mapping of the union of the squares onto
the original domain. It is significant that there is no necessity to specify the
position of the block interfaces in the initial data. In this sense we can say
about automation of the grid generation process.
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The main emphasis of this paper is on the computational implemen-
tation of the quasi-isometric mapping technique. Section 2 describes the
basic variational principle and the numerical method for constructing a
quasi-isometric grid in a curvilinear quadrangle. Section 3 presents the
generalization of this approach for a multiblock domain.

2 SINGLE REGION FORMULATION
2.1 BASIC PRINCIPLE

We describe the quasi-isometric mapping technique for a curvilinear quad-
rangle ) C R? with four sides and the angles ¢y, @2, @3, ps (Fig. 1). Let us
mention some definitions and results from [1].

A curvilinear quadrangle Q2 is called smooth if each of its sides is suffi-
ciently smooth (Lyapunov arc with Holder exponent ). A mapping u =
u(s,t),v = v(s,t) of the unit square Ko = {(s,t) : 0 < s,t < 1} onto Q2
is called quasi-isometric if the ration between two (sufficiently close) points
(s1,t1) and (s2,t2) to the distance between their images (u1,v1) and (u2, va)

is bounded:
\/(Uz —u1)? + (v2 — v1)?
V(2 =512 + (t2 —t1)2 ~

A mapping u(s,t),v(s,t) of the domain Q is called C},(€)-mapping if
the partial derivatives ug,us, vs,v; are continuous and satisfy the Holder
condition with exponent y. We can also say that a mapping is called quasi-
isometric if |us], [ug|, [vs], |ve| < H, ugvpy — ugvs > h > 0.

Note that a quasi-isometric mapping is a quasi-conformal one, i.e. being
conformal with respect to some metric. A conformal mapping may not be
quasi-isometric. A mapping of a smooth quadrangle onto another one is
conformal and quasi-isometric if and only if the corresponding angles and
conformal modules of these quadrangles are equal [3]. The main result of [1]
is following:

0<o1 <

Theorem 1. Let Q C R2 be a smooth quadrangle with boundary 61
and angles @1, @2, 3, pasuch that 0 < ¢; < 7, § = p1+pat+ps+ps—21 <
2¢j, (j =1,2,3,4). Then any quasi-isometric C},-mapping of the boundary
0Ky of the unit square Ky onto 02 can be extended to quasi-isometric
C.(Ko)-mapping of Ko onto Q2.

Quality of a quasi-isometric mapping is defined by the ratio oy/02; a
mapping is optimal if this ratio is maximal among all quasi-isometric map-
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pings. There is a hypothesis that the mapping [1] is close to optimal one
under the assumption that curvature of any image of a straight line segment
is bounded.

The considered quasi-isometric mapping u = u(s,t),v = v(s,t) of Ky
onto € is constructed as the superposition of two mappings (see Fig. 1):
u = u(z,y),v = v(x,y) maps the unit square K = {(z,y) : 0 < z,y < 1}
onto Q; = = z(s,t),y = y(s,t) maps Ko onto K. The first mapping u, v is
quasi-isometric and conformal with respect to the metric g;; chosen from a
five-parameter family of metrics defined in the unit square K by:

g11(y) =14k + (51 + 52 — 53 — 54)§ — (514 S2 + 83+ 54)77,
ggz(.ﬁl)‘) =1—k+ (Sl — 89 — 83 + S4).’f — (81 + 82 + 83 —|—S4).i‘2, )
g12(z,y) = 21[(31—32 +33—54)—%(81+82—33—84)E‘— (1)

— (51— 52— 55+ 50)G + (51 + 52 + 53+ 84)70,

(here z =2 — 1,5 =y — 1), and g;; are to satisfy the following relations in
the verteces of K:

si = cos i/ g11 (i, i) g2 (i, ys), i=1,4 )
(mlayl) = (0=0)7 (3:273/2) = (170)7 ('73373/3) = (17 1)7 (754,:1/4) = (07 1)

The metrics (1) depends on five parameters § = (sq, $2, 83, 54, k). The de-
sired metric g;; represents the natural metric on the constant curvature sur-
face (the Lobachevckian or Euclidean sphere or plane) such that geodesics
in K are straight line segments; the general form of such metrics is described
in [4].

The mapping u(z,y),v(z,y) can be constructed by the minimization of
the functional

P 1 // {g22(u2 + v2) — 2912(uguy + vzvy) + 911 (u) + v3)}
2

V911922 — 9%2

with respect to u,v and the metric parameters § under the conditions (2)
and the free boundary condition.

The second mapping = = x(s,t),y = y(s,t) of Ko onto K is defined by
four functions zo(s), z1(s), yo(t), y1(#), 0 < s < 1,0 <t < 1, 2;(0) =
y:(0) =0, z;(1) = y;(1) = 1, ¢ = 1,2. The mapping of the lower and upper
sides of the square K, are defined by the functions zo(s) and z;(s), and
the mapping of the left and right sides are defined by the functions yo(t)
and y1(¢). The functions zo,Z1, Yo, y1 are called the control functions, they

7

dedy, (3)
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are assumed to be smooth (Cﬁ), strictly monotonically increasing, and their
derivatives are bounded:

0 <0 <zp(s),21(s),50(t), y1(t) <A, (6 <1).
The mapping of Ky onto K is the algebraic mapping given by the for-

mulas:
z = w {1 = yo(t)]zo(s) + yo(t)21(s)},

g = w YL = z0(s)lyo(8) + zo()n ()}, @

where
w=1-[z1(s) — zo(s)][y1(t) — yo(t)],
z;(0) = :i(0) = 0,2;(1) = 9;(1) = 1,i =0, 1.

This mapping transforms the rectangular grid on Ky to the grid on K
consisting of the straight line segments connecting the images of the corre-
sponding boundary points of Ky which lie on the opposite sides of K.

The superposition of the mappings u(z,y),v(z,y) and z(s,t),y(s,t) is
the resulting mapping u(s, t), v(s,t) of Kq onto 2, which is defined in [1] as
a unique solution of the variational problem given by the functional:

11
F, %//hzz u? 4 v? _2h12(usut+vsvt)+h11(ut2+'l)t2)dsdt7 5)
00

vV hi1has — h%Q

where h;; = h;;(s,t,§, o, z1,Y0,y1) satisfy the condition H = Q*GQ,

hi1 hio Ts Ty
H_[hIZ hzz]’ Q_[Z/s Z/t]7

The functional (5) is minimized with respect to three groups of argu-
ments:

1) functions u, v;

2) metric parameters § = (s1, 82, 83, 84, k);

3) control functions xg, 1,40, y1 or boundary point distributions.

The minimal value F' = S, where S is the area of (2, is achieved at the
quasi-isometric mapping u, v.

At each side of Ky a Dirichlet or free (natural) boundary condition
for u,v must be specified; in the case of a free boundary condition the
corresponding control function must be given and the point distribution is
to be found by the minimization process.
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2.2 NUMERICAL METHOD

The implementation of the quasi-isometric mapping technique requires some
special efforts described briefly in this item.

In the square Ky we introduce a rectangular uniform (s, t)-grid with the
step sizes As and At supposed to be constants. The finite-difference ap-
proximation of the functional (5) is standard. We will not use any discrete
notation, we will write (s,t), z,y, Ts,Tt, Ys, Yt, Us, Ut, €tC., keeping in mind
corresponding grid objects; the discrete unknowns are the values of z,y, u,v
defined at the nodes of the (s,t)-grid. The image of the (s,t) grid under the
mapping u(s,t),v(s,t) is the curvilinear (u,v) grid in Q. For minimization
(5) it is used an iterative process consisting of three stages in according to
three groups of unknowns. Each stage is a minimization procedure with
respect to one of these groups provided that the others are fixed on this
stage. The functions u,v, represented the desired grid, are computed as
a solution of the Euler variational equations for the integral (5) under the
Dirichlet boundary conditions. The corresponding system of discrete ellip-
tic equations is solved by multigrid method. The free boundary condition
realize at the stage 3 as computation of boundary point distribution.

The other two minimization procedures are more complicated and re-
quire more detailed explanations.

Computation of the metric parameters.
Consider the matrices H and G with the elements H;; and G;; respec-
tively, 1 <14,j < 2:

2 2 2 2
Hyy =u; +v;, Hy =u; +v;, Ha = Hiy=uzu;+ v, (7)

2 2 2 2
G = U, + vy, Goy = Uy + Vys Go1 =G = UgUy + VgUy. (8)

The values H;; are computed at the mid-points of each (s,t)-cell, the

values G;; are computed by means of the relation G = QHQ*, where Q is
defined in (6).
Using these notations we replace the functional (3) by

zdy.

11

P // g11G22 + g22G11 — 2g12G12 — 2\/911922 — 9i» \/G11G22 - G%zd
2./911922VG11G22

0 0

9)
here dxdy = (zsy; — T1ys)dsdt.
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It is easy to show that the extremals of (3) and (9) coincide.
At each (s,t)-cell, consider new variables (p,¢) and (P, ®) defined by
means of the relations:

g1 = peP, g =pe P, g =psing,
(10)
G = RGP, Gy = RG_P, G1a = Rsin®.
Note, the functional (9) does not depend on the values p, R. Using these
new variables we transform the functional (9) to the form:

11
F = //(2sh2p_2—P +2sin? 2 ; (I))d:cdy, (11)
0 0

DN | =

which has simple geometric interpretation as some distance between the
desired metric g;; and the real metric G;;, computed with respect to the
functions wu, v.

The functional (11) is non-negative and convex, if | — ®| < n/2. To
provide this inequality (even if the grid (u,v) is bad) we realize a special
regularization:

Gind — { mazx{sin ®, —| cos ¢|}, if siny >0, (12)

maz{sin®, |cosp|}, if singp <0,

and replace @ by & in all formulas.

A Newton-type procedure is used for minimization (11). This func-
tional is approximated at the (s,t) grid by the quadratic form with re-
spect to the variation §5 of the metric parameter §. To provide the con-
venient and reliable computation we use instead of §5 some new variables
£ = (&1,&2,&3,&4,&5) connected linearly with 65 and presented the varia-
tions of four angles and some analog of the conformal modulus. In this new
notation we write

2 01 .
where respectively b and A is the vector and the matrix computed from the

quadratic approximation of (11).

Computation of the control functions.
Replace the functional (5) by the equivalent one

11
Fo 1// hos Hi1 — 2h12Hyo + hi1 Has — 24/h11has — h3,Hy dsdt
2 /) VHi1Hazv/ha1has
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where h;; and H;; are defined by (5) and (7) respectively, Ho = usv; — usVs.
Introduced new variables p, ¢, P, ® by relations:

hi1 = peP,  hea = pe P,  his = psingp,
Hy = ReP, Hyy = Re‘P, His = Rsin (I),

11
we rewrite (13) similar to (9) in the form F = 0.5 [ [ fdsdt with the inte-
00

grand
p—=a

- P
f= 28h2pT + 2sin?

Again we correct the field (P, ®) by means of the regularization (12). Then,
at each (s,t)-cell we approximate the integrand f by the quadratic form
with respect to the values of control functions and their derivatives at the
mid-point of the cell. We split the computation into two steps according to
the pairs of zg,z; and yg,y;. For computing the functions zg,z; consider
the following transformations:
Q Q Q
(p’ (P) —1> (hll’ h227 h12) _2) (.’E, Y, Ts, T, Ys, yt) —3> ('Z.OJ 1.67 Ty, 'Z.Il)
Denote Z = (21, 22,23,24) = (0,4, %1,27). Twice differentiating the
mappings Q1,Q2, Q3 we find at each (s, t)-cell:
of > f
rad f = (=, i=1,4 C=
g f (6,217 7 )7 (62:16,2]97
and can write approximately

i,k =T,4),

[ = fo+ (grad f,62) + %(C&é‘, 67).

Summing over t at each fixed s (mid-point of cell) we have the one-dimen-
sional quadratic functional with respect to 6Z(s). The minimum condition
is written for the functions zg,x; defined at the grid nodes and represents
the system of two three point discrete equations, which is solved by matrix
sweep method; the boundary conditions are z;(0) = 0, z;(1) = 1,4 = 1,2.
The functions yg,y; are computed by the same way.

If the position of the nodes on a boundary of the quadrangle ) is
unknown then the corresponding control function is to be given and not
changed in the whole iterative process. The computation of the free bound-
ary points is based on the algorithm of computation of the control func-
tions. The approximation of the corresponding control function, obtained
by means of above-mentioned algorithm, is used for computing new position
of the boundary nodes by some interpolation formula.
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3 MULTIBLOCK GRID GENERATION

There are not well-justified approaches to automatic block-structured quad-
rangular grid generation on a plane or a surface in space. To seek a solution
of this problem we have been developing an approach based on the theory of
the quasi-isometric mapping. Consider a physical domain D which is to be
subdivided into a finite number N of quadrangular block D,,,n =1,2,..., N.
A block-structure of D is defined by a topological description. Each block
is formed by four boundaries, each of them may be either outer boundary
or an interface of two blocks. Note the grid lines crossing any block inter-
face are continuous. As a rule the initial positions of the interfaces apriori
are unknown. These interfaces, as well as block-structured grid itself, are
to be constructed by grid generation process using some topological and
geometrical information.

Topological information consists of the description of block correspon-
dence. Geometrical information includes the specification of the position of
all outer boundaries, grid size of each blocks, some angles of the boundary
intersections, some rules of boundary point distributions, position of interior
block vertices being apriori fixed. This information is not usually sufficient
to construct the whole block structure (included the interfaces) by a simple
method.

The proposed method is based on construction both of the grid and the
interfaces by means of discretization of the mapping of the union of the
unit squares K" ,n = I, N onto D. Each square KS”) in the (s,t) plane is
mapped quasi-isometrically onto some subdomain D).

As a base quasi-isometric mapping it is used one described in Section 2,
defined by the five-parameter family of metrics

(n

gij) = gz(]n)(xayag(n))

in the unit square K(™) in the (z,y) plane.

The full algorithm is based on minimization of the total variational func-
tional

F=FY 4+ F® 4 4+ FWN

under given boundary conditions and some metric relations, here F(™ is
the functional (5) written for the square K(()n) in the (s,t) plane. As in
2.2, the minimization process consists of three stages. The first one is the
computation of the grid functions {(u,v)™,n = 1,N} under given the
metric parameters and the control functions in each square Ké”). The

82



corresponding system of discrete equations in the whole block-domain is
solved by multigrid method. It is developed a special technique to take into
account irregular stencils of discretization arising in the block vertices.

The metric relations arise from requirement: each of block must be
mapped on the same constant curvature surface. Shwartz type procedure
is implemented to provide these relations.
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