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Abstract. Application of harmonic mapping using a variational approach
in order to generate moving adaptive grids in the hyperbolic problems of
gas dynamics is considered. Three-point model of adaptation shows if con-
trol/(monitor) function is discontinuous, minimizing the discrete analogy
of the harmonic functional it is provided possibility to generate an un-
folded mesh with strong grid lines condensing in the vicinity of shocks.
The algorithm of moving the boundary nodes is suggested consisting in
using constrained minimization of the functional when constraints define
the boundary of the domain. Computational tests of the unsteady flow in
a tunnel containing a step and transonic and supersonic flow over an air-
foil demonstrate possibility to control mesh sizes across shocks and contact
discontinuities.
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Introduction. In the present study it is considered some theoretical
aspects and practical possibilities of using the moving grid technology in hy-
perbolic problems of gas dynamics with discontinuous solution. The essence
of such an approach, referred as r-refinement, is in adjusting distribution
of the grid nodes in such a manner so that to catch nuances of interest in
the solution with fixed computer cost. Constructive way is that we try to
position more grid nodes in the domains of sharp change in the solution
being the regions of great gradients, while the mesh structure remains in-
variable that makes more simple the course of computation. Examples of
some r-refinement based methods can be found in [10, 7, 9, 4].

One of the mesh generation techniques is a variational approach when
minimizing the Dirichlet (or harmonic) functional of smoothness, first ap-
plied in [11], we ensure the grid lines to be as smooth as possible [3]. To
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include adaptivity in this process it has been suggested to write the Dirich-
let functional on the surface of the control/(monitor) function, being the
solution of the basic problem or somehow connected with it [8]. In [6] ap-
proximation the functional is performed in such a way that in case of smooth
solution there 1s an infinite barrier ensuring the mesh to be convex, in other
words all grid cells to be convex quadrilaterals. In [1, 2] adaptive-harmonic
grid generation has been applied in 2-D unsteady problems of gas dynamics.

1. Problem Formulation. To generate the 2-D adaptive-harmonic
mesh we use the formulation of the problem on minimizing the harmonic
functional of smoothness written on a surface of some control function

f(z,y) [6]
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The task in hand is to find the functions z(€,n) and y(&, n) ensuring one-
to-one inverse mapping of the parametric square 0<¢,n<1 to a physical
domain © by minimizing the functional (1). Here ¢, is the coefficient of
adaptation, showing that we work with the control function multiplied by
some coeflicient ¢, in order to increase or decrease adaptation.

In 1-D case to generate the inverse harmonic mapping of the graph of f
to the unit segment in logic space £ it is required to minimize the following
functional:
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Minimizing (2) we seek the grid points arc-length equidistribution in metric
of the curve ¢, f.
2. Approximation of functional. The functional (1) can be

approximated in such a way that its minimum is attained on a grid of convex
quadrilaterals [6, 5]
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where Fj is the integrand evaluated in the k-th corner of the -th cell. It
has been shown when generating a curvilinear mesh in an arbitrary domain

31



Q in plane z—y the discrete functional I approximating (2) on the mesh
formed with quadrilateral cells, has an infinite barrier on the boundary of
the set of grids with all convex cells. This is caused by the condition of
positiveness to the expression z¢ye—z,y, in (1), being the Jacobian of the
mapping. Should the vertexes of some cell displace so that the cell becomes
nearly nonconvex, then one of four triangles, into which the cell is divided
by its two diagonals, degenerates, its area tends to zero and, therefore,
I" 00, This holds in case of adaptive grid generation as well when the
control function feC'(Q) since the values f;, f, under the square root in
(1) are restricted everywhere in Q. However, if f belongs to the class of
discontinuous functions, what we generally have in hyperbolic problems of
gas dynamics, in the vicinity of a discontinuity the derivatives f;, f, become
unbounded. Therefore, the above infinite barrier disappears and this causes
some grid cells to fold and modeling to break. In order to prevent grid
lines overlap it will be used the procedure of regularization to the discrete
functional.
Discretized 1-D functional (2) reads
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3. Three-Point Model of Adaptation. Consider 1-D adap-
tive mesh generation. We solve the Cauchy problem to the nonlinear ad-
vection equation with discontinuous initial data, i.e., initial value problem
(TVP) when the shock moves from the left to the right

Ou Odu
In plane z—y we introduce the moving grid, see Fig.la. To update the

discrete function value u'+1/2 at time t"+! we use the Godunov’s scheme
on the moving grid. The following theorem holds

=0, u(z,0)={u, ife<0; u, ife>0; u >u}.

Theorem. Let without adaptation the grid nodes move with speed of shock
w=0.5(ur+u;). Suppose at time 1™ the shock is smeared over two cells, i.e.,
Ui p179=w if 1<ic and u;41/93=u, if i>i. , where i, is a node being the center
of the shock smeared and the average mesh node, 1.e., 1.=0.51,4:+1, where
Imaz 15 an even number of intervals. Then the updated values uwit1/2 do not
change.

Consequently, when adapting the mesh we need not solve IVP (5) and
can merely set the values equal u; to the left of the i.—th point and u, to
the right.
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We shall construct the adapted mesh minimizing the functional (2) and
use u as a control function. For the sake of simplicity we consider the
left half of the mesh consisting of three points, i.e., when 7,=3. Such an
assumption does not change the structure of the solution. The general case
can be easy obtained from this three-point model.
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Fig.1. Moving grid (a); i is a center of the shock smeared. Three-
point model of adaptation (b); in the coordinate system, moving with
speed of shock w, x1=0 and z3=I are the coordinates of the fixed
boundary nodes, z2=z is a moving node.

We pass into the new coordinate system moving with velocity w so that
z1=0, see Fig.1b. Then when adapting 1 and 3 are the fixed boundary
nodes and zz=L, where L=2h, h is a spacing of the initial uniform mesh,
coordinate x5 is variable, referred further as x. We also have uy=us=u; ,
uz=(u; + u,)/2.

4. Properties of discrete functional. Consider the properties
of the discrete functional in 1-D and 2-D cases within the framework of
three-point model of adaptation.

First, consider 1-D case. In assumptions of Section 3 the approximation
(4) to the functional on the two-cell grid reads (we set A& = 1 and use the
simple finite-difference approximations to (z¢)it1/2 and (fz)iy1/2 )

1 1
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where Au=|uz — us|/2=|u, — w;|/2. To minimize the one-parametric func-
tional I* we apply the Newton method

p+l _ p 7
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where the iterative parameter 7<1, the first derivative is

or _ 1. 1
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and the second derivative is derived of the first one.

In Fig.2 distributions of I* and 91" /0z are presented for several values
of ¢4 at u;=2, u,=1 and initial uniform spacing ~=0.1. One can see at ¢,=0
the functional 7* has the minimum at £=0.1 that corresponds to the points
equidistribution or uniform mesh. At ¢,>0 the functional I” loses its con-
vexity in the interval (0, 0.2) since there is a maximum to the left from point
3. Therefore, solution of the variational problem on finding its extremum
becomes non-unique. When increasing ¢, on one hand the minimum of 7*
shifts to the right that corresponds to point 2 moving towards point 3 or
grid clustering, see Fig.2b, on the other hand the maximum of I* shifts to
the left from point 3 causing grid rarefaction. In 2-D problems it can cause
harsh displacements of the mesh nodes due to jumps of the solution from
the minimum to maximum and vice versa during iterations, i.e., grid fold-
ness and instability in the solution of the flow problem. Furthermore, on
achieving the critical value ¢<"*~0.185 the both extrema merge and further
at c,>cS™" they disappear, see the curve ¢,=0.2 in Fig.2b. Minimization of
I" causes the right cell to collapse, consequently, significant mesh clustering
1s impossible.
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Fig.2. Dependence of the distribution for I" (a) and 31" /3= (b) on

cq within the interval (0, L). At ¢,>0.185 minimization of I causes
the right cell to collapse.

In order to preserve convexity of the functional we assume when varying
z the derivative u, in (2) remains fixed (invariable metric) as it was used in
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[6]. Assuming in (6) the derivative (uz)i41/2 not depending on z, we obtain
the derivative of some new functional I{L
oI 1 1

(8) =-—+ :
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To obtain an explicit expression of If, referred to as regularized func-
tional, we integrate (8) and get

(9) Ih—l—i— 1 ! caAu+ - cZAuQ
17 g caAun L—=z (L—:t:)z

Distributions of I? and 17 /dx, presented in Fig.3, illustrate three im-
portant properties of this new class of functionals.

I Functional I is conver within the interval (0,L) at any c,.

II. At cq—00 position of Ty, to I tends to L from the left.

II1. There s an infinite barrier preventing the right cell from collapsing.
The first property guarantees existence of an unique solution of the vari-

ational problem within the interval (0, L). The second property allows point

2 to approach point 3 at any small distance. The third one states that the

infinite barrier keeps the mesh nondegenerate.
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Fig.3. Dependence of the distribution for I (a) and 317'/3= (b) on

cq. Infinite barrier prevents the right cell from collapsing at any cq.

Thus, the infinite barrier allows to condense the mesh in the vicinity
of discontinuity up to any small distance. When modeling a flow with
shock waves it provides the accuracy to increase significantly, since the error,
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caused by shock wave smearing, in some integral norm is proportional to the
shock thickness. Next corollary is that two adjacent cells, one located in the
shock zone and the other in the domain of smooth flow, with sizes differing
by orders of magnitude, do not deteriorate the accuracy of the solution.
Thus, the mesh can sharply cluster, within one cell, towards a discontinuity.
Those properties hold in case of any (even) number of intervals 7,4, as well.

Now we turn to a special case of constructing the 2-D adaptive mesh
when the discrete functional can be reduced to one-parametric. Suppose
the 2-D flow problem can be considered in 1-D approach. Then the control
function in (1) depends only on the variable z. Therefore, when seeking the
mapping of the parametric square to the domain Q we have z=z(&), y=n
and fy=x,=y:=0. The harmonic functional (2) reads

z;(1+c z2(1+ 2 +1
1_//5 el /E< DAL,
I‘E\/l—{—CQfQ 1+ c2f2
The functional (10) differs from (2) by the additional term [z¢\/1 + c2 f2d¢
expressing the curve ¢, f length. This term defines the difference in proper-
ties of the 1-D and 2-D regularized discrete functionals.

We follow assumptions of Section 3. Approximation of (10) on the two-
cell grid looks

1

Ih:a:—i—l—i—(L—r)\/l—}—ciAu?/(L—a:)z—i— .
* L—a:)\/l—}—ciAuz/(L—x)z

This functional holds the similar properties as (6). Within the interval
(0, L) at cq<cS there are maximum and minimum of I* which disappear
at cg>cS™. Here the value of ¢¢™ differs a bit from above in 1-D case.

In order to regularize I" we again fix the metric when deriving the first
derivative. Derivative of a new functional reads
oI

_ 1 2A2 /(T N2
£ =1 = \/l—i—caAu/(L ) +

1
L - ;7:)2\/1 +c2Au? (L —x)?

Integrating it we get the functional

1
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Distributions of I and 017 /dx are presented in Fig.4d. We see as
soon as the expression 1—c2Au® becomes negative, in the above case at
ca>1/Au=2, the functional loses convexity. First, it seems to lead the right
cell to collapse when finding the minimum of I? via the iterative procedure
(7). In practice it does not happen due to the following reason. If to derive
the second derivative of I? and substitute it and 417 /dx in (7), in the limit
when point 2 tends to point 3, i.e. z tends to L, ratio of the derivatives
gives (L—zP)(1 — c2Au?) /(1 + c2Au?). Thus, 2P+! gets the increment be-
ing smaller than distance to the right node z3=L. Length of the right cell
remains greater than zero within truncation error or prescribed accuracy of
calculation at any ¢,>1/Au.
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Fig.4. Quasi 1-D flow. Dependence of the distribution for I (a) and
alf/am (b) on cq. At ¢o>2 the functional loses convexity.

Thus, it can turn out beginning from some value of ¢, the regularized
functional will not have the minimum. Nevertheless realization of the iter-
ative procedure (7) allows to condense significantly the grid lines towards
the discontinuity and guarantee the grid to be unfolded.

The above approach of three-point model of adaptation can be applied
in general case when calculating real 2-D flows with discontinuities as well.
Analysis based on this model is valid locally in every point of the disconti-
nuity. When calculating the 2-D flows absence of the solution in multipa-
rameter problem of minimization leads the grid nodes constantly to move
along some trajectory around an average position keeping strong grid lines
condensing in the vicinity of discontinuities. Further, for the sake of sim-
plicity, we shall refer the procedure (7) (or its analogy in a real 2-D case)
as a minimization of the discrete functional independently whether there 1s
a solution of the minimization problem or not.
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Performed analysis of the properties to the 1-D and 2-D functionals
shows these functionals are inconsistent, i.e., grid clustering towards the
discontinuity, executed inside the domain ©Q via minimization of the 2-D
functional and on the boundary 9Q via 1-D functional, is performed in
different ways. It is arisen the necessity in consistent distribution of the

grid nodes in  and on 9.

5. Distribution of nodes along the boundary curve.
There are several ways to distribute the grid nodes along the boundary 99
during adaptation. The simplest one, method 7, is a fixed position of every
point on 9. When moving the internal nodes towards a discontinuity some
instability in mesh generation arises, and consequently in the flow, near the
points where the discontinuity joins dQ2. In method IT the boundary nodes
are treated as internal and the vectors of shift are projected to 9 [7]. This
way can be used only if the discontinuity is orthogonal (or nearly orthogonal)
to 0. If no then, when condensing, the boundary nodes overlap, adjacent
cells degenerate and modeling breaks. Method 777 consists in using the
1-D functional [5]. Tt is more robust than two above ways and usually can
be used at adaptation. However, as it is shown in Section 4, the 1-D and
2-D discrete functionals are inconsistent. By this reason the parameters
of adaptation ¢, and 7 should be selected to them separately. It requires
additional work, which is particularly cuambersome when modeling unsteady
flows. Sometimes we get undesirable displacement of the boundary nodes
up to their overlap and then modeling stops.

It is required to perform distribution of the interior and boundary nodes
consistently. In suggested method I'V we perform constrained minimiza-
tion of the functional (3) under constraints defining 9. We minimize the
following functional:

imaz 4
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where constraints G;=G(z;,y)=0 define 9Q, A, are the Lagrange multi-
pliers, £ is the set of the boundary nodes. Since the function G(z,y) is
assumed twice differentiable, the functional I holds the infinite barrier on
the boundary of the set of convex grids as I does (surely if f € C1).

If the set of convex grids is not empty, the system of algebraic equations
has at least one solution being the mesh of convex quadrilaterals

h ) h .
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here i is a node number, A;=0 if i ¢ £ and constraints are defined only to
the boundary nodes i € L.

Consider the method of minimizing the functional (11) assuming the
grid to be convex at the p-th step of the iterative procedure. We use the
quasi-Newton procedure to find the coordinates of the i-th node mf"’l and

¥’ from the system (12)

6& p+1 V4 6& +1 3& p+1 Py —
TR, + B2, (7 —2l) + 3u; (i —v)+ o AT =A) =0,
- ORy  pi1 pyv OBy o1 oo ORy pi1 p
(13) TRy + Bz, (2" —=2) + E (W =)+ N, N =A) =0,
0G; 0G;
TG + . (If-l—l —af) + Ay (yf-l_l -¥)=0.

The procedure (13) can be also used when 9 is given by parametric func-
tions z=x(t), y=y(t) or tabular values (z,y);.

Another way, method V', of distributing the nodes along 9%, given by
parametric functions, employs an unconstrained minimization and is based
on solving the following system of algebraic equations:

Oz; dyi

Be=Rag + oy

=0,

via the quasi-Newton procedure

OR,

Ot; (t§+1 _tf) =0 )

(14) TRt +

here

OR: _ OR, [Ou; 2+3Ry Ay; 2+ ORs | ORy \ Oxi Oy
ot; a Ox; ot; Oyi ot; Oy; Ox; at; ot

0%x; 0%y, ot ot

ot; ot; Ox; dy;
Real-world 2-D flow computations have shown it is better to perform
adaptation along the boundary using constrained minimization (13) since
the procedure (14) does not always ensure consistent distribution of the

nodes in € and on 09.
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6. Examples of modeling.

6.1 Analytic control function. First we shall demonstrate a simple test
illustrating inconsistency of distributing the boundary and interior nodes
performed using minimization of the 1-D and 2-D functionals, respectively.

The adapted mesh 50 x50 has been generated in the unit square 0<z, y<1
when the control function is defined as

o1 y<05,
f("”’y)—{ 0 if y>05.
0.541 ‘ 0.541

0.46

0.00 0.05 0.10 0.15 020 0.00 0.05 0.10 0.15 0.20
(a) (b)

Fig.5. Fragment of the adapted mesh when the boundary nodes are

distributed using methods 777 (a) and IV (b).

Fragments of the adapted meshes in the vicinity of the discontinuity
at ¢,=0.1, obtained using methods 777 and IV, are presented in Fig.5a,b,
respectively. In the first case the horizontal grid lines are not parallel and
in the second they are parallel. In this test method IT (and V) gives the
same result as IV due to the discontinuity is orthogonal to 9Q. But if it is
not orthogonal in several tenths iterations the boundary nodes overlap.

6.2 Unsteady flow in a tunnel. Robustness of method 7V is demon-
strated in the test of the planar unsteady supersonic flow in the wind tunnel
containing a step [12]. The wind tunnel is 1 unit wide and 3 units length,
step is 0.2 units height and begins at £=0.6, see Fig.6. Initial conditions
are f=(3,0,1,1.4)T, ratio of specific heats y=1.4.

This test was calculated on the adapted grids when as a control function
it was used various flow parameters [2]. The boundary nodes were adapted
by using method 777. One of the main difficulties was to capture the triple
point, caused by irregular reflection of the bow shock from the top wall,
with clustered grid lines that required especial user’s effort.

In the present study the problem is calculated with the GLFC scheme
of the second-order accuracy [1] on the adaptive moving mesh and |V| is
used as a control function. Figs. 6a,b present the mesh 180x60 and density
contours at time t=4, respectively. Method IV of adaptation along the
boundary allows to eliminate the above mentioned difficulty, see fragment
IV of the mesh in Fig.6a, and to perform robust nodes clustering in the
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domains where the shocks are attached to the boundary or reflect from
it, see fragments I — I'1]. We also obtained grid lines compression to the

contact discontinuity, emanating from the triple point.
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Fig.6. Supersonic flow in mach wind tunnel containing a step. Adapted
mesh (a) with fragments I, I1,11] near the boundary and IV com-
prising the triple point. Density contours (b).

6.3 Flow over an airfoil. The GLFC scheme with adaptive procedure is
applied to calculating steady transonic and supersonic Euler flow over the
NACAOQ0012 airfoil. Modeling is performed in two stages. At the first stage
the calculation on the quasiuniform mesh, generated with the variational
barrier method [5, 6], is performed until the solution achieves its steady
state. Then, at the second stage, we switch on the adaptive procedure. As
a control function it is used p.

The first test is a transonic case with M,,=0.85 and angle of attack
a=1°. Fig.7 presents the quasiuniform O-mesh 140x80 and plots the Mach
number contours. We see that shock waves, one (stronger) on the upper
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side of the airfoil and the other (weakear) on the low side, are rather thick.
Fig.8 presents the adapted mesh and Mach number contours calculated on
this grid. Adaptation of the boundary nodes is performed along the airfoil
contour by applying method /V. Using method /77 or V leads the boundary
nodes to overlap in the vicinity of shocks. Thickness of the shocks is reduced
by 50 times in comparison with the nonadapted mesh that provides with
capturing the discontinuities very accurately.
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Fig.7. Transonic flow around NACAOQ0012 airfoil. Quasiuniform mesh
(a) and Mach number contours (b).
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Fig.8. Transoglig flow around NACA0012 airfoil. Adapted mesh (a)
and Mach number contours (b).
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Fig.9. Supersonic flow around NACAQ0012 airfoil. Mach number con-
tours computed on quasiuniform (a) and adapted (b) grids.
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Fig.10. Mesh around NACAOQ0012 airfoil after adaptation for super-
sonic flow calculations.

The other test is a supersonic flow with M, ,=1.3 and a=0°. Fig.9 plots
the Mach number contours computed on the quasiuniform and adapted O-
meshes 120x50. It can be seen in Fig.9a, a strong bow shock wave appears
in front of the airfoil leading edge and two weak shocks emanate from the
trailing edge. Using the adaptation provides with very strong reducing the
thickness of the bow shock and rather strong reducing the thickness of the
weaker trailing edge shocks that is demonstrated by the both Mach number
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contours in Fig.9b and adapted grid in Fig.10. Grid lines clustering allows
to hope that we nearly eliminate the errors caused by shock waves smearing
and increase significantly the accuracy of computations.

7. Concluding remarks. Results of computations presented show
adaptive-harmonic grid generation allows to increase significantly the accu-
racy of calculations in comparison with modeling on quasiuniform meshes
due to reducing the thickness of smearing to the shock waves and contact
discontinuities, while keeping the same simple grid structure and requiring
less computing cost. Theoretical analysis based on the three-point model
of adaptation has shown minimization of the regularized discrete functional
in 1-D and 2-D cases delivers strong grid lines compression towards the
discontinuities, while keeping the mesh unfolded. Constrained optimization
leads to consistent distributing the boundary and interior mesh nodes that
increases robustness of the adaptive procedure and modeling.
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