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Abstract.

Triangulating a set of points is a key technique in solving problems in Surface
Reconstruction. Let V' be a finite point set in 3D and let ST'(V') be the
set of closed triangulated polyhedral surfaces with vertex set V. Those
surfaces can be defined as 2.5D (closed) triangulations of the given discrete
data set V. We discuss possible approaches to construct an optimal 2.5D
triangulation. We present and compare several optimality criteria, among
them two curvature criteria, both proposed by Alboul and van Damme: the
Tight criterion and the criterion of minimising total Mean curvature. Then
we discuss the procedure of optimisation for 2.5D (closed) triangulations.
As a transformation operation we use the so-called extended diagonal flip, or
simply EDF that generalises the ’conventional’ flip operation. The authors
have recently introduced the EDF by omitting the usual restriction that a
flip operation should not produce a self—intersecting triangulation. We use
the EDF procedure to obtain an optimal triangulation for the data taken
from the surface of an object of the simplest topological type, i.e., with the
boundary topologically equivalent to the 2D sphere.

*The research of the author is supported by the NWO (STW) (Dutch Organisation
for Scientific Research), project No. TWI4816



1 Introduction

Triangulating a set of points (a data set) is a key technique in many scientific
fields, for example, in scattered data interpolation and approximation, com-
putational geometry, computer—aided geometric design, and finite—element
computation. It has many practical applications. In real life one often deals
with reconstructing or modelling the surface of a three-dimensional object
from an initial data set; for instance, in computer graphics, cartography, ge-
ology, stereology, architecture, visual perception, medicine and so on. One
of the important problems in medicine is to build a 3D model of an organ
from 2D cross—sectional images, obtained, for example, by means of CT
(computerised tomography) VHBKSTL95] (see Fig. 1).

Figure 1: 2D cross—sectional image of the prostate motion

The first step in evaluating a surface is to obtain a triangulation of the
data sites. A ’good’ triangulation can help to solve many problems. It is
the quickest way to obtain an initial look at the data before using higher—
order interpolation/approximation methods. If the data are taken from an
irregular (non—-smooth) surface, a triangulation (a polyhedral surface) might
be the only possible way to view the object, determined by the data. The
problem of finding a suitable triangulation of the given data consists, in
general, in two steps: first, in constructing some initial triangulation, and
second, in its optimisation with respect to a chosen criterion.

We discuss possible approaches to construct an optimal triangulation. We
present and compare several optimality criteria; among them the Tight cri-
terion and the criterion based on minimising the total Mean curvature, both
introduced by L. Alboul and R. van Damme (see, for example, [AKTvD00]).
These two criteria seem the most promising criteria at the moment. Then
we discuss the procedure of optimisation for triangulations of closed surfaces
in 3D. Such triangulations can be defined as 2.5D triangulations. Optimisa-
tion usually consists of transforming an initial triangulation via a sequence
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of transformations to some final triangulation which is better with respect
to the given criterion. The operation of transformation should preferably
be simple as well as general enough in order to be able to reach the opti-
mal triangulation from any initial one. For triangulations of points in the
plane such a simple operation of transformation exists, known as Lawson’s
procedure [Law72]. The operation consists of swapping a diagonal of the
convex quadrilateral formed by two adjacent triangles to the other diagonal,
thus replacing one edge by a new one and obtaining another triangulation
of the given data. Recently Alboul and van Damme have introduced an in-
novative generalisation of Lawsons’s procedure for triangulations of surfaces
in 3D, by allowing self-intersections of a triangulation and defining a local
swapping procedure for non—flat quadrilaterals ([AvDO01]). We discuss this
procedure in the case the data are taken from the surface of an object of the
simplest topological type, i.e., the boundary of the object is topologically
equivalent to the 2D sphere. We show, for example, that we are able to re-
cover the optimal triangulation of convex data i.e., a convez triangulation,
starting from almost any initial triangulation of the data.

2 Triangulation

The concept of triangulation is known in different scientific areas, such as
topology, differential geometry, computational geometry, approximation and
interpolation theory. We deal with triangulations in Surface Reconstruction,
aiming to reconstruct a surface. Research on the triangulation problem
in Surface Reconstruction lies in the intersection of the above-mentioned
areas, and therefore, involves the use of notions from these fields, sometimes
appropriately adapted.

A triangulation T is a partition of a geometric domain into simplices (tri-
angles, tetrahedra and so on) that meet only at shared faces. In topological
graph theory therefore under a triangulation on a surface one understands
a simple graph G embedded on the surface so that each face is triangular
and any two faces share at most one edge. In the field of computational
geometry as well as in applications a geometric domain can be a point set,
a polygon or a polyhedron. In the planar case a triangulation represents
a collection of triangles. The difference with respect to topological graph
theory is that the points (vertices) have fixed positions and the edges are
straight line segments.

We consider a triangulated surface in three-dimensional space. In general,
one presupposes that this surface is embedded in 3D, i.e., has no self-
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intersections. The problem of constructing a triangulation can be considered
then as the 3D boundary construction problem which can be stated as
follows (see, for example, [Vel94]):

Boundary Construction 3D. Given is a set of vertices in 3—dimensional
space. Find a closed polyhedron of triangular faces through all vertices.
The above—mentioned problem can be addressed in one of two ways:

1. By directly constructing a triangulation of the surface defined by the
data. This approach is called the surface—based approach.

2. By intermediately constructing some 3D structure, obtained by filling
the interior of the object with tetrahedra, and then deriving a trian-
gulated representation of the object from such an auxiliary structure.
This approach can be called the solid—based approach.

The data can be either a set of irregularly distributed points, or a set of
straight—line segments, or a set of polygonal cross sections.

As we are dealing with a surface-reconstruction problem, we follow the first
approach, which seems more logical, and also because the theory of surfaces
is well-developed in the field of global (differential) geometry. Using the
language of computational geometry we can define the problem of recon-
structing a surface embedded in three-dimensional space is as the two-and-
a-half-dimensional problem. This problem has two forms: the first deals
with interpolating surfaces for point set data with elevation, or functional
surfaces, and the second deals with triangulated (polyhedral) surfaces for
three-dimensional models, or bounding surfaces of solid objects from 3D
data. Actually, these latter surfaces are two-dimensional closed surfaces,
which are situated in three-space. Consequently, we will refer to triangula-
tions of points in the plane, as to 2D triangulations, to triangulated poly-
hedral surfaces in space as to 2.5D triangulations, and triangulations of
points in space (as in the solid-based approach) as to 8D triangulations.
The solid-based approach has several drawbacks, for example, the non—
existence of a Hamiltonian polyhedron for some triangulations. This means
that one can not recover a 2D valid boundary (a surface) of the object
from the constructed collection of tetrahedra. This situation can occur
for the well-known Delaunay triangulations [Vel94]. There is also such a
phenomenon as non-tetrahedralisable polyhedron (see Fig. 2).

Let us define the concept of a triangulation more precise. The following
definition is standard:

Definition 2.1 A triangulation T is a collection of triangles, that satisfies
the following properties:



N

Figure 2: Schonhardt’s prism.

1. Two triangles are either disjoint, or have one verter in common, or
have two vertices and consequently the entire edge joining them in
common.

2. T is connected.

In the case of compact surfaces (2.5D triangulations) a triangulation T
consists of a finite number of triangles, and we can conclude that the two
following conditions are valid [Mass91]:

1. Each edge is an edge of exactly two triangles.

2. For every vertex V of a triangulation 7', we may arrange the set of all
triangles with V' as a vertex in cyclic order, Ty, 71, ..., Ty—1,T, = To,
such that T; and T;; have an edge in common for 0 <7 <n —1.

The last condition means, that our triangulated surface is a manifold, i.e.,
the neighbourhood of every point, as well as a vertex, is topologically the
same as the open unit ball in R™ (in our case n = 2).

For more details about different types of triangulations, see, for example,
[BE95, AvDO01].

3 Construction of a triangulation

The problem of finding some (an initial) triangulation clearly represents a
difficult problem. Moreover, as this triangulation can be very ’bad’, the next
problem, which can be even more difficult, arises: to optimise this initial
triangulation with respect to a chosen criterion.

There is not yet a general, formal and practical criterion to measure the
quality of a triangulation, applicable to a wide class of data. The main
idea governing the different approaches is that long thin triangles should be
avoided and that the triangles should be as equiangular as possible. The
arguments are:
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1. Aesthetic justification. The Piecewise Linear Interpolating Surface
(PLIS) constructed from thin triangles is not, in general, visually
pleasing.

2. Numerical justification. In spline approximation theory thin triangles
are undesirable because general expressions for the approximation er-
ror depend on the ’thinness’ of the triangle in the sense that the error
bound grows if the triangles become thinner.

3. Geometrical justification. This can be easily motivated in the frame-
work of the theory of surfaces. Roughly speaking, thin triangles might
deviate considerably from tangent planes to the surface (if these planes
exist) than thick triangles.

The most popular triangulation for functional data, which satisfies the above
criteria is the well-known Delaunay triangulation. This triangulation is to
be preferred if one wants to approximate different functions, using the same
triangulation: the triangulation does not depend on the function values, but
only on the location of the data sites. However, if one wants to approximate
a specific surface the Delaunay triangulation can give a very unsatisfactory
representation of the object, especially if it is used for a closed surface (see
the left picture in Fig 3).

Figure 3: Left: Delaunay traingulation; Right: Tightest triangulation
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4 Optimisation

Optimisation usually consists in transforming an initial triangulation via a
sequence of transformations to some final triangulation which is better with
respect to the given criterion. At each step of the optimisation process,
the triangulation, obtained at the previous step, is transformed to a better
triangulation by some, preferably simple, operation. The operation should
also be general enough in order to be able to reach the optimal triangulation
from any initial one.

Therefore the optimisation problem can be split into two sub—problems:

e Selection of an optimality criterion.

e Determination of an optimisation procedure.

4.1 Optimality criteria

The main goal of a triangulation is to give an initial representation of the
surface which is to be reconstructed. In order to obtain a suitable represen-
tation different requirements to a triangulation are considered. For example,
one can require that a triangulation must be as smooth as possible (i.e.,
without unnecessary sharp edges), or reflect certain features of the shape
of the object. These requirements determine the choice of one or another
optimality criterion.

There are several known optimality criteria in the literature such as

e minimising the area of the resulting object [ORourke81], which can
give a very strange final triangulation, even for very simple data (see,
for instance, Fig. 4);

Figure 4: A skewed cylinder
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e heuristic criteria, based on minimising a measure of roughness of the
resulting object. One such measure is the jump in normal derivative
(JND) and the other measure is the angle between normals (ABN)
[DLR90, DLR90a;

e methods based on minimising a certain functional, like the energy of
a bending plate, constrained by the interpolation conditions. Such a
method can e.g., be found in [QS89, QQ90, QS90a] (with the disad-
vantage of this latter method that it only works for functional data).

Some heuristic criteria do work well, but their main defect is the absence
of a well-defined theoretical background. The above—mentioned criteria are
discussed in detail in [AKTvDO0O0].

Much work in Surface Reconstruction has been done either in the spline
approximation theory, i.e., in numerical analysis, or in applications thereof.
However, surface reconstructing seems more apt as a geometric problem.
Unfortunately, geometric methods are not widely used and have not yet
been developed in their full strength. We can point out several reasons
for this: first, geometry is not a very common discipline in fields dealing
with applications, especially differential geometry is not known; second, the
direct application of tools of classical differential geometry require high order
differentiability of objects, and this can hardly cope with discrete schemes
used in numerical analysis and applications, the third reason might be the
popularity of Delaunay triangulations, which became even a field of intensive
research in computational geometry.

4.1.1 Curvature criteria

Using pure geometric criteria, Alboul and van Damme have introduced new
triangulations for irregularly-located 3D data [vDA95, AvD96, AKTvDO00].
The first triangulation is based on minimising of a discrete analogue of the
integral absolute Gaussian curvature. This triangulation was initially called
the Tight triangulation. We have renamed the Tight triangulation to the
Tightest triangulation. (The reasons for this are given in 4.1.2. Tightest
triangulations are evidently better than Delaunay triangulations, as, for
example, the Tightest triangulation automatically preserves convexity (see
the right picture in Fig 3).

The second proposed optimality criterion is the minimisation of the total
absolute Mean curvature.

Roughly speaking, the first criterion deals with the curvature determined
around the vertices, and the second — along the edges. Below we give a

12



short review of main notions concerning the Curvature criteria.

Both the Gaussian and Mean curvatures are among central concepts in dif-
ferential geometry and both related to the concept of angle. For triangulated
polyhedral surfaces which are non—regular surfaces, appropriate analogues
of curvatures are defined. As such a polyhedral surface is a 2.5D triangu-
lation, and therefore represents a collection of triangles, we denote it by A.
The star Str(v) of a vertex v is by definition the union of all the faces and
edges that contain the vertex, and the link of the star (the boundary of the
star) is the union of all those edges of the faces of the star Str(v) that are
not incident to v.

On the basis of the notion of the angle, the following curvatures for a tri-
angulation A are determined:

1. The (integral) curvature w (an analogue of the integral Gaussian curva-
ture).

The total angle 6(v;) around the vertex v; € A is the sum of those angles
of the faces (i.e., triangles)of Str(v;), that are incident to v;. For any point
z € A: w(z) = 2r—6(z). The quantity w is also known as the angle deficit.
Only for vertices we have: w(z) # 0. (see Fig. 5).

Figure 5: Curvature around a vertex: w(v) =2 — Y 8; = 27 — 6(v).

2. The positive (extrinsic) curvature w (v;).

Suppose, that through the vertex v; there passes some (local) supporting
plane of a triangulation A. Then this vertex lies on the boundary of the
convex hull of Str(v). We denote the star of v; in the boundary of this con-
vex hull by Str* (v;) and will call it the star of the convex cone of a vertex
(or, simply, the convex cone of a vertex, if it does not lead to ambiguities).
The curvature wt (v;) of Strt (v;) is called the positive (extrinsic) curvature
of v;. If there is no supporting plane through v; then w¥ (v;) is equal to zero
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by definition.

3. The negative (extrinsic) curvature w= (v;).
w™(v;) = Wt (v;) — w(v;).

4. The absolute (extrinsic) curvature &(v;).
w(v;) = wh(v;) +w™ (v)

We can isolate the following types of vertices:

o Conver vertices: w(v;) = wT(v;) = &(v;), (W™ (v;) = 0).
Geometrically it means that Str(v) coincides with Str™ (v;).

e Saddle vertices: @(v;) = w™ (v;) = —w(v;) (Wt (v;) = 0).
The Gaussian curvature w of a saddle vertex is less than zero and there
exists no supporting plane.

o Mized vertices:

1) w(vi) >0, wt(vi) > w(vi)

or

2) w(v;) <0, wt(v;) > 0.

In Fig. 6 examples of all three types of vertices are presented.

!
/

Figure 6: Types of vertices: (i) Convex (ii): Saddle (iii) Mixed.
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You can see a mixed vertex and its correspondent convex star in Fig. 7.

(@) (ii)
Figure 7: A mixed vertex (i) and its convex star (ii).

The total absolute (extrinsic) curvature Qaps(2) of a triangulation A is
given by the following expression:

Qus(BD) = 3 wtea)+ 3 0 )+ 3 @) +w (). (1)

Vo convex Vg saddle ¥y mixed

For any triangulation convex, saddle and mixed vertices form three disjoint
subsets of the vertices of the triangulation, and their union is the data set
itself.

Another curvature that can be defined for a polyhedron and, therefore, for
a triangulation, is the Mean curvature. This curvature measures how much
a surface is 'bent’, and for a polyhedron, it is logically defined along the
edges.

H(e) equals half of the oriented exterior angle between the faces ad-
jacent to the edge e and zero otherwise.

The sign of H depends on the orientation of the polyhedral surface (trian-
gulation) A.

The integral mean curvature (IMC) is determined for polyhedral surfaces as
well. For a domain U C A it is defined as follows:

HU)ynp = ZH(@) -length(e N U),

where the sum ranges over all edges e of A .
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4.1.2 Triangulations based on minimising the Curvature criteria

Let us given a (closed) data set V: {vf},i = 1,...,N. Let us note that
if we have a given discrete point set in 3D, we can, in general, construct
triangulated surfaces of different genera with the given points as the vertices.
Therefore, all triangulations [A] of the data set V fall into non-intersecting
subclasses of triangulations in such a way that all triangulations of the same
class have the same genus and orientability (i.e., topologically equivalent
to the 2D sphere, the torus, and so on). From the other side, the data are
situated, in general, on an existing surface. Even if we cannot view the
surface, nevertheless, we can presuppose its basic topological features as
orientability and genus. Therefore, it makes sense to apply a criterion only
to one subclass of the set [A(V)] of all triangulations.

Tightest triangulation.A triangulation A, that belong to some subclass
of all possible triangulations of the data set is said to be Tightest, if Qabs(A)
is minimal, i.e., X X

VA Qups (D) 2 Qaps (D).

Some properties of the Tightest (ex-Tight) triangulation are given in [AvD96].
REMARK. The notion of a tightness has its roots in the theory of embed-
dings (immersions) of differential manifolds. This concept arose when one
attempted to generalise theorems about convex surfaces to surfaces that are
topologically more complex (of other genera). A two—dimensional manifold
M is tightly embedded in R2 if every hyperplane in R3® which contains a
point of M and no nearby points is a global supporting hyperplane of M. In
R2 q tight close surface has also the minimal total absolute curvature as well
as it satisfies the two—piece property, i.e., any plane cuts it into two pieces
at the most. The theory of tight embeddings is well-developed and has sense
for polyhedral surfaces as well. A tight triangulation can be determined
as o triangulated polyhedron which is tight in the ambient Fuclidean space
(for a detailed description of the notions concerning tight immersions (em-
beddings) see [Kui70, Kui80, Kuhn95]). Our triangulations with minimal
absolute total extrinsic curvature QabS(A) are not really tight in the clas-
sical sense, because they are dependent on the lie of the data. Actually, it
seems that for any finite given data we can always find at least one tight
triangulation (polyhedron) of a certain genus. If we stick to triangulations
of the same genus, we might not have the Tight triangulation (in a classical
sense), however we can determine a triangulation of the minimal absolute
total extrinsic curvature, which might be not unique. (This topic was dis-
cussed in a scientific discussion of the first author with Wolfgang Kiihnel).
Therefore, to avoid further confusion, we refer now to triangulations with

16



the minimal Qap5(A) as to Tightest triangulations.
Another optimal triangulation, introduced by the authors is the triangula-
tion of the minimal total (integral) absolute Mean curvature. The
absolute total mean curvature is given by the formula

Heps = Z |H (e)],

where the sum ranges over all edges e of A. Consequently a triangulation
of the data set V' (among all the triangulations of same topological type) is
said to be the triangulation of the minimal absolute total mean curvature
if it minimises Hps.

An interesting fact that the above—mentioned heuristic criteria are all, in
a certain sense, related to minimisation of the Mean curvature (for more
details see [AvD97, AKTvDO00]).

Up to now it has not yet been clear which of two ’curvature’ criteria is the
'best’ (if any), and how they are compared. This is a subject of our current
research. For example, you can see an application of two criteria to an
initial triangulation of the scalp (see Fig 8).

The first (initial) triangulation on the left is good, but it has been obtained
mainly by hand. The second triangulation in the middle is the triangula-
tion, obtained from the first one by applying the Tight criterion. The third
triangulation is the triangulations obtained from the second one by applying
the criterion of minimising the absolute total Mean curvature. This trian-
gulation is almost identical to the first one and evidently better than the
second one. However, the problem in the case of the Tight criterion might
be of algorithmic character. The algorithm to obtain a triangulation of the
minimal absolute extrinsic Gaussian curvature is not global if the data are
not convex.

4.2 Transformation procedure

For triangulations of points in the plane a simple operation of optimisa-
tion exists, and this is a diagonal flip (called also a swap). The operation
consists of swapping a diagonal of the convex quadrilateral formed by two
adjacent triangles to the other diagonal, thus replacing one edge by a new
one and obtaining another triangulation of the given data. For a non—convex
quadrilateral in the plane this operation is not allowed, because it does not
produce a triangulation (see Fig. 9).
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Figure 8: Transformation of an initial triangulation of the scalp

In Surface Reconstruction this operation is known as Lawson’s procedure.
Recently Alboul and van Damme have introduced a generalisation of Law-
son’s procedure for triangulations of surfaces in 3D, by allowing self-intersections
of a triangulation and defining a local swapping procedure for non—flat
quadrilaterals ([AvDO01]).

4.2.1 Review of the extended edge operation (EDF)

As we deal with the surface—based approach, it seems logical to consider a
generalisation of Lawson’s procedure, using the same idea as in 2D: to swap
just an edge. One of conventional assumptions in the Surface Reconstruction
is that a reconstructed surface may not have self-intersections, or in other
words must be embedded. Moreover, this property is also assumed for every
intermediate surface which might occur during the transformation process.
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Vi Vi
(i) (ii)

Figure 9: Swapping a diagonal in a quadrilateral: (i) Convex quadrilateral.
(if) Non—convex quadrilateral. In both cases the dashed edge swapped to
the dotted one.

Indeed, the first condition of Defintion 2.1 excludes self-intersections. If we
stick to Definition 2.1, then it can be shown that embedded triangulations
(of the same topological type) of certain 3D data can be split into at least
two non—empty sets, such that the intersection of these sets is empty; we
cannot reach a triangulation of the first set from a triangulation of the sec-
ond one and vice versa by swapping edges (for a detailed description see
[AAHO00]). However, the above-mentioned definition is the definition of an
abstract triangulation of an abstract surface [Gibl77]. 'Real’ surfaces can
have self-intersections and/or have singularities, in which a surface is not
a manifold. We should distinguish between the abstract topological repre-
sentation of a surface S (as a 2-dimensional manifold) and its realisation in
3-space (as an image of this ’canonical’ manifold).

The restriction on the flip operation that forbids self-intersections seems
logical for plane triangulations, because self-intersections result in produc-
ing not a triangulation. However, in contrast to planar triangulations, a
valid triangulation can still be determined even if a self-intersection has
occurred after applying the flip operation.

We deal with triangulated compact surfaces. Compact surfaces are charac-
terised by such properties as orientability and Euler-Poincaré characteristics
x. In our research we deal with orientable surfaces and mostly with surfaces
without boundary (closed surfaces). (Reconstruction of non—orientable sur-
face might be of interest as well).

We have a finite data set V' and we want to reconstruct a 2.5D triangulation
(closed surface) which spans these data. At every step of transformation
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process the obtained triangulation represents, in general, a new polyhedral
surface. Our goal is to reconstruct a final surface, which is optimal with
respect to a given criterion. We presuppose that the reconstructed surface
belongs to a certain topological type. Therefore, it seems logical to require
that each intermediate triangulation remains in the subclass of the given
topological class of all possible triangulations of data V. Therefore, a flip
operation must preserve orientability and the genus of this subclass. Let us
note that when we speak about a surface of a certain topological type we
mean under the surface a 2-dimensional manifold and not as a 2—dimensional
submanifold in three—space. For example, our surface can be not homeo-
morphic to a sphere in three—space (because of self-intersections), but as
an abstract 2—manifold be topologically equivalent to the 2D sphere.
Orientation. Our triangulated surface is an orientable closed surface. For
every triangle we can define an orientation such that two triangles with a
common edge are always oriented coherently (see Fig. 10) [Gibl77]

(i) (i)

Figure 10: Two triangles with a common edge: (i) coherently oriented,(ii)
- not, coherently oriented.

Informally speaking, to assign an orientation to a triangle means that we
determine the direction of the walk along its boundary. Going around the
triangle can be clockwise or counter—clockwise. If one of two is fixed, then
it can be taken as ’positive’ and in the case of oriented surfaces, when all
triangles have the same direction of going around, we can determine the
positive side of the surface. The positive orientation is usually counter—
clockwise. For oriented surfaces we can define two directions of normals.
Usually, the direction of outwards pointing normals is said to be positive.

Quadrilaterals in the space. We specify some notations concerning
quadrilaterals in space. In plane swapping means the exchange of the diago-
nals in a convex quadrilateral, determined by four vertices, or replacing two
adjacent plane triangles forming the given plane quadrilateral by other two
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adjacent plane triangles that form the same plane quadrilateral. In space,
four vertices, form in general a tetrahedron. If we would like to stick to a
surface ('plane’) terminology, we prefer to consider two adjacent triangles,
formed by edges connecting the vertices, instead of a tetrahedron. The fig-
ure, built of two adjacent triangles, will be called a spatial quadrilateral.
The edges of two triangles except the common edge form a closed polygonal
line. We call it the boundary of the quadrilateral. If we keep these edges
fixed, then there are only two possible spatial quadrilaterals for every four
vertices, if the data are situated in general position, i.e., no three vertices
lie in a line and no four in the plane. If a triangulation is given then the
boundary of a quadrilateral is always fixed. The orientation of triangles
forming the spatial quadrilateral should be coherent. The common side of
two adjacent triangles in a spatial quadrilateral will be called a (spatial)
diagonal. We can say that an edge (diagonal) is concave, if two lines, de-
termined by the unit normals to the adjacent triangles, sharing this edge as
the common side, intersect each other in the positive direction, otherwise,
the edge is called convez. The edge is flat if the normals are parallel.

We assume that data are in general position. Then flipping in space means
the exchange of a convex edge to a concave edge and vice versa.

At each step we work only with two triangles, which together form a spatial
quadrilateral. As the data are situated in general position and if we connect
two vertices of the quadrilateral that are not the end—points of the common
edge, the new edge will lie outside the surface of the quadrilateral and
we can determine two new triangles. We will call a spatial quadrilateral
convet, if its development on the plane is a convex quadrilateral; otherwise,
we call it concave. Therefore, we have four cases: convex quadrilateral with
a convex diagonal, convex quadrilateral with a concave diagonal, concave
quadrilateral with a convex diagonal, concave quadrilateral with a concave
diagonal. If we instead of the word concave use the word reflex then we
can denote the above—mentioned quadrilaterals by CC, CR, RC, RR. Let
us determine the vertices of the quadrilateral as V;, V;, Vi, V;. We choose
as the diagonal edge V;Vj. Our triangles are oriented counter—clockwise,
as on the left diagram on the Fig. 10. Now if we swap edge V; Vi, we get
edge V;V; and triangles V;V;V; and V;V;V;. The new obtained triangles
should be oriented coherently with the orientation on the surface. This
can be easily done. Indeed, if we start to walk from any vertex of the
triangle along its boundary, the triangle itself must lie on our left side.
So we can always determine the positive side of the new obtained part of
the surface, determined by two new triangles. The above-given ordering
of vertices in two new obtained triangles corresponds to their orientation
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(counter—clockwise). See Fig. 11, where we present the swapping of the
concave (reflex) diagonal in CR and RR quadrilaterals.

Vj Vi

Vi Vi V; <

Vi Vi
(i) (ii)

Figure 11: Swapping diagonal V;V}, in a spatial quadrilateral: (i) CR quad-
rilateral (ii) RR quadrilateral. Vertex Vj on the left picture is a pinch point.

Therefore, at every swap our triangulated surface remains properly oriented.
An intersection can occur, but, in contrast to the 2D situation, two new
triangles are well-defined together with their adjacent triangles. At each
step we work exactly with two triangles. We can always swap the common
edge of two triangles and replace two initial triangles by two possible other
ones which would again share a common (new) edge. From the definition
of the triangulation it follows that our triangulated surface is strongly-
connected i.e., we can always find a path from one vertex to any other one
in such a way that this path will lie inside a chain of m triangles, where A;
shares with A; 41 a common edge (¢ =0, ...,m —1). If we now apply our flip
operation, it will not violate this property. This also means that if we start
with a triangulation with the Euler characteristic x, the transformation
process will not change it. Self-intersections do occur, but the graph of our
triangulation remains planar. However, we need to consider the graph of a
triangulation in an extended meaning and allow the existence of multiple
graphs, as you can see below.

Degenerated case (DC)

We suppose that our data are in general position. As three points always lie
in a plane, we can encounter a degenerated situation when a quadrilateral
collapses into two glued together triangles. This situation can occur if we
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swap an edge in the star of a vertex of valence 3, or in other words, the star
of the vertex has only three faces.

Let us denote this vertex as Vi, the vertices in its star as V5, V3 V. Face
V1V V3 shares a common edge VoV3 with face VoV5V3. Let us consider
the quadrilateral V3 V2V, V3, formed by triangles V1V, V5 and V; V3Vy. After
having swapped edge V1 V4 we obtain an edge, that connects V2 and V3. We
have vertices Vi, V5 and V3 and two faces (taking into consideration the
orientation) V31 V3V and V1V Vs, but edge VaV3 is not their common edge.
What does it mean? Actually the first triangle has the adjacent triangle
V5 V3V, and the second one — V5 V5 Vs: we have instead of one edge V5, V3 two
different edges with the same end—points. This degenerated case can be
easily eliminated by swapping in turn the common edge of triangles V4 V5 V3
and V2V5V3. We would have now the star of vertex Vi with vertices Va2, V3
and V5 in its link (see Fig. 12).

Va Vi

V2 Vs

Vs Vs

Vi

Va Va

Vs
(iii)

Figure 12: Degenerated case. (i) Before the first swap (ii) After the first

swap (iii) After the next swap.

If we would draw the part of the graph of the triangulation that corresponds
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to the first swap (after having obtained two ’glued’ triangles), we would have

a multiple graph (see Fig. 13). v
2

Vs \

3

Figure 13: Part of the plane graph corresponding to the degenrated case.

The edges V1 Vs and VoV; (V1 V3 and V3V; respectively) are the common
edges. These edges are the same. We still have a triangulation with the
same Euler—Poincaré characteristics as the 2D sphere. The swapping of
edges V1 V5 or V1 V3 is not allowed, because the quadrilateral is not defined
in this case. Therefore, if the data in general position, the flip operation is
completely defined. We can call this operation the eztended diagonal flip,
or EDF.

Other degenerated situations can occur if our data are not in general posi-
tion. In this case we can imagine that partially—glued triangles might occur.
This problem is now under investigation (see more in [AvDO1].

Now we define the type of triangulated surfaces which would be allowed.

Definition 4.1 (EXTENDED DEFINITION OF A TRIANGULATION).

e A triangulation T (triangulated surface, 2.5D triangulation) either
corresponds to the properties of Definition 2.1 or, if not, then the
following exceptions can occur:

1. For each triangle we can still single out three adjacent triangles,
with which it shares a common edge. Two of three adjacent tri-
angles may coincide.

2. Two triangles can have some points in common, besides vertices
or edges. If these triangles are not adjacent then they can inter-
sect each other along a line segment. Two adjacent triangles can
have a triangular domain in common.

In other words we consider now not only ’pure’ simplicial complexes and
we allow some singularities. We will call such triangulations generalised
2.5D triangulations, or shortly 2.5GD ;From all-above mentioned we can
conclude:
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Theorem 4.2 The extended diagonal flip operation preserves two main
topological characteristics (orientability and the genus) of the given class
of triangulations of the same data set V.

The following theorem is valid (for a proof see [AvDO1]):

Theorem 4.3 : All generalised 2.5D triangulations of the data which are
in general position and that are topologically equivalent to the 2D sphere are
connected under the EDF.

5 Implementation
We test the EDF procedure on the convex data.

Definition 5.1 A data set is called convex if all its data sites lie on the
boundary of the convex hull of the data.

We can also say that any vertex of convex data belongs to some global sup-
porting plane of the data. As an optimisation criterion we use the Tight
criterion. ;From the theory of tight embeddings it follows that an optimal
triangulation of convex data set should be convex. A convex triangulation is
also unique up to flat edges. In a convex triangulation all edges are convex.
If the data originate from a convex closed surface the convex triangulation
coincides with the Tightest triangulation. The latter one is also tight in the
classical sense. An algorithm based on minimising total absolute extrinsic
Gaussian curvature (Tight criterion) is implemented on C°level and con-
sists in the following:

1. Compute the Gaussian curvature w(v;) for each vertex.
2. Determine Str™ (v;) for each vertex.
3. Calculate wt(v;) for each vertex.

4. Minimise the value Qgp,(A) using a local edge-swapping (fipping)
procedure.

All the above-mentioned operations are easy; the second operation is slightly
more difficult. First this algorithm was developed for triangulations that
were conventionally presupposed to be without self-intersections. In that
case it has also been proved that for convex data the algorithm is global
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[AvD97]. The property of convex (embedded) triangulations were also de-
fined. The algorithm has been now adapted to allow self-intersections (for
example, to deal with the degenerate case). If we allow self-intersections
then we can have two types of self-intersections: local (which occurs in the
star of some vertex, a so—called pinch point) and global. If a self-intersection
is global then some part of the 'negative’ side of a triangulation must be
seen from ’outside’. In the case of global self-intersections our algorithm
is not global, because in this case a triangulation of convex data does not
posses more properties of embedded convex triangulations, and therefore,
does not differ from a triangulation of non—convex data. If we have only
local self-intersections, then we can show that the algorithm does not yield
global self-intersections at any step of the transformation process . It seems
also that in this case the algorithm is global. We have been able to extract
from different initial triangulations of various convex data (even not in gen-
eral position) a final convex triangulation of the data (one of the examples
is presented in Fig. 14).

The ’twisted double prism’ in the left picture of Fig. 14, after a sequence
of transformations, is transformed to the final convex polyhedron (on the
right). One of the intermediate polyhedra is given in the middle picture.
The details of the algorithmic aspects of our approach will be given in
[AvDO1].
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