Pi P1+. GALIULIN'S TABLE OF 219 (230) SPACE GROUPS
P2/m P2s/m P2. Pm.
P2/b P2s/b P2s+. Pb+. * - enantiamorphous
I2/m I2. Im. + - without special points
I2/b Ib+. - - kaleidoscopics
Pmmm" Pmma P222 Pmm2.Pmc2s. ' - Molnars
Pccm Pmna P222s Pcc2.Pmn2s. . - degenerations
Pban Pbam P2s2s2 Pma2.Pca2s+. Definitions:
Pnnn Pmmn P2s2s2s+Pnc2.Pna2s+. by E.S.Fedorov - the groups of symmetry
Pnnm Pnn2. transformations of discrete regular
Pcca Pba2. objects;
Pnna by D.Hilbert - discrete groups of moving
Pbcm with finite independent regions;
Pbcn by H.Zassenhaus - such finite exension of
Pccn free abelian group in which only
Pnma identity of factor-group corresponds
Pbca identity automorphism of normal divisor
Cmmm' Cmcm C222 Cmm2.Cmc2s. 32 Crystal Classes
Cccm Cmca C222s Ccc2. Systems Merohedries
Cmma C2mm. i 1
Ccca C2mb. 2/m 2 m
C2cm. mmm 222 mm2
C2cb. 4/mmm 422 4mm 4i2m 4m 4 4i
Immm' Imma I222 Imm2. 6/mmm 622 6mm 6i2m 6m 6 6i
Ibam Ibca I2s2s2s Ima2. 3im 32 3m 3i 3
Iba2. m3m 432 4i3m m3 23
Fmmm' F222 Fmm2.
Fddd Fdd2
P4/mmm"P4/mbm' P422 P4mm.P4smc.P4i2m P4i2sm P4/m P4s/m P4. P4i
P4/mcc P4/nmm P422s P4cc.P4snm.P4i2c P4i2sc P4/n P4s/n P4s.
P4/nbm P4/mnc P4s22 P4bm.P4scm. P4r+*
P4/nnc P4s/mmc'P4s22s P4nc.P4sbc.P4im2
P4s/mcm'P4r22* P4ic2
P4s/nnm P4r22s* P4ib2
P4s/mnm' P4in2
P4s/nmc
P4/ncc
P4s/nbc
P4s/ncm
P4s/mbc
I4/mmm'I4r/amd I422 I4mm.I4rmd I4i2m I4i2d I4/m I4r/a I4. I4i
I4/mcm'I4r/acd I4r22 I4cm.I4rcd I4im2 I4r
I4ic2
P6/mmm"P6s/mcm'P622 P6mm.P6smc.P6i2m' P6/m P6s/m P6. P6i
P6/mcc P6s/mmc'P6s22 P6cc.P6scm.P6i2c P6s.
P6rr22* P6im2" P6rr*
P6r22* P6ic2 P6r*+
P3im1 P321 P3m1.P3i P3.
P3ic1 P3r21*P3c1. P3r*+
P3i1m P312 P31m.
P3i1c P3r12*P31c.
R3im R32 R3m R3i R3
R3ic R3c
Pm3m" Pm3n' P432 P4i3m' Pm3' Pa3 P23
Pn3n Pn3m' P4s32 P4i3n' Pn3 P2s3
P4r32*
Im3m' Ia3d I432 I4i3m'I4i3d Im3' Ia3 I23
I4r32 I2s3
Fm3m" Fd3m' F432 F4i3m" Fm3' F23
Fm3c' Fd3c F4r32 F4i3c Fd3