Pi             P1+.                GALIULIN'S TABLE OF 219 (230) SPACE GROUPS
P2/m   P2s/m   P2.     Pm.                   
P2/b   P2s/b   P2s+.   Pb+.            * - enantiamorphous
I2/m           I2.     Im.             + - without special points
I2/b                   Ib+.            - - kaleidoscopics
Pmmm"  Pmma    P222    Pmm2.Pmc2s.     ' - Molnars 
Pccm   Pmna    P222s   Pcc2.Pmn2s.     . - degenerations
Pban   Pbam    P2s2s2  Pma2.Pca2s+.  Definitions:  
Pnnn   Pmmn    P2s2s2s+Pnc2.Pna2s+.  by E.S.Fedorov - the groups of symmetry
       Pnnm            Pnn2.            transformations of discrete regular
       Pcca            Pba2.            objects;
       Pnna                          by D.Hilbert - discrete groups of moving
       Pbcm                             with finite independent regions;
       Pbcn                          by H.Zassenhaus - such finite exension of 
       Pccn                             free abelian group in which only 
       Pnma                             identity of factor-group corresponds
       Pbca                             identity automorphism of normal divisor
Cmmm'  Cmcm    C222    Cmm2.Cmc2s.            32  Crystal Classes     
Cccm   Cmca    C222s   Ccc2.            Systems     Merohedries                
Cmma                   C2mm.             i     1                            
Ccca                   C2mb.             2/m   2   m                       
                       C2cm.             mmm   222 mm2                     
                       C2cb.             4/mmm 422 4mm 4i2m 4m  4     4i      
Immm'  Imma    I222    Imm2.             6/mmm 622 6mm 6i2m 6m  6     6i      
Ibam   Ibca    I2s2s2s Ima2.                                3im 32 3m    3i 3 
                       Iba2.             m3m   432     4i3m m3  23           
Fmmm'          F222    Fmm2.            
Fddd                   Fdd2                         
P4/mmm"P4/mbm' P422    P4mm.P4smc.P4i2m P4i2sm P4/m  P4s/m P4.         P4i
P4/mcc P4/nmm  P422s   P4cc.P4snm.P4i2c P4i2sc P4/n  P4s/n P4s.        
P4/nbm P4/mnc  P4s22   P4bm.P4scm.                         P4r+*        
P4/nnc P4s/mmc'P4s22s  P4nc.P4sbc.P4im2                           
       P4s/mcm'P4r22*             P4ic2                           
       P4s/nnm P4r22s*            P4ib2                           
       P4s/mnm'                   P4in2                           
I4/mmm'I4r/amd I422    I4mm.I4rmd I4i2m I4i2d  I4/m  I4r/a I4.        I4i
I4/mcm'I4r/acd I4r22   I4cm.I4rcd I4im2                    I4r        
P6/mmm"P6s/mcm'P622    P6mm.P6smc.P6i2m'       P6/m  P6s/m P6.        P6i
P6/mcc P6s/mmc'P6s22   P6cc.P6scm.P6i2c                    P6s.        
               P6rr22*            P6im2"                   P6rr*       
               P6r22*             P6ic2                    P6r*+        
                                               P3im1       P321  P3m1.P3i P3.
                                               P3ic1       P3r21*P3c1.    P3r*+
                                               P3i1m       P312  P31m.     
                                               P3i1c       P3r12*P31c.     
                                               R3im        R32   R3m  R3i R3
                                               R3ic              R3c      
Pm3m"  Pm3n'   P432               P4i3m'       Pm3'  Pa3   P23    
Pn3n   Pn3m'   P4s32              P4i3n'       Pn3         P2s3   
Im3m'  Ia3d    I432               I4i3m'I4i3d  Im3'  Ia3   I23   
               I4r32                                       I2s3  
Fm3m"  Fd3m'   F432               F4i3m"       Fm3'        F23   
Fm3c'  Fd3c    F4r32              F4i3c        Fd3