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This paper written be the full member of the Russian Academy of Sciences dwells upon the substantiation, develop-
ments, and investigation of the mathematical model of pattern recognition algorithm which covers the known classes
of pattern recognition algorithms. The article was published in the collection of papers Problemy Kibernetiki (Prob-
lems of Cybernetics), edited by S.V. Yablonskii. The ideas, problem set-up, and the results of this work provide a basis
for evolution of soviet and russian pattern recognition school for next 20 years. The essential fundamental and appli-
cation results were made on this base in the field of recognition and in several adjacent domains (image analysis and
understanding, speech analysis and synthesis, information technologies for data analysis and evaluation).

Unfortunately, this work is not available in English and nowadays the attempts have been made to re-open the
results presented in the paper.

The editorial board hopes that this publication will allow the world commonwealth of pattern recognition scientists

to get acquainted with the fundamentals of mathematical theory of pattern recognition from the original sourse.

INTRODUCTION

The paper discusses the well-known problem of
assigning an object to certain classes from a specified
list of classes.

The problem can be formulated as follows. We have
a set M of objects which are to be classified, and we
know that M can be represented by the sum of subsets
K, ..., K;usually called classes.

Given an information / about the classes K|, ..., K|,
the description of the set M, and the description I(S)
of an object S about which it is generally not known
to what classes K, ..., K| it belongs, we need to eval-
uate for every j the property S € K, =1, 2, ..., )
from the information / and the description I(S).

The problem formulated above is usually called the
pattern recognition problem or the classification prob-
lem. In what follows, we call it the Z problem or the
recognition problem.

At first, problems of the Z type were regarded as
purely applied tasks. A special emphasis was laid, for
example, on automatic text reading. Each character was
assigned the class K of its various images.

1t was required to establish to which of the classes K
the presented image (which was assumed in advance to
be the image of a character) belonged. In other words,
it was required to identify a character by its image.
Later came similar tasks concerned with speech identi-
fication and the like.
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Somewhat later, investigators turned to classifica-
tion tasks involving objects described in a more com-
plicated way. These included medical diagnostics, geo-
logical forecasting, assessment of economic and politi-
cal situations, prediction of properties of chemical
compounds, and so on.

There is no need to discuss these problems in detail.
There is an extensive literature on each of them and,
more important, there is no significant difference
between them mathematically. Note only that recogni-
tion problems are rather general, a great many practical
issues can be reduced to them. For example, with some
idealization, any decision-making problem can be
reduced to a recognition scheme if the decision-making
process is mainly based on an analysis of past experi-
ence. To demonstrate, let there be a collection of previ-
ously analyzed situations S|, ..., S,, and their descriptions
I(S)), ..., I(S,,) are given in some form. The best decision
is known for each situation S, and this decision, R(S,) is
likewise described. Suppose also that a description of the
set {R} of all possible decisions may be given. Assume
that in the space { R} there exists the concept of closeness;
i.e., the decisions may be divided into classes K, ..., K; so
that “close” decisions (decisions of the same type) fall in
the same class. Decisions in different classes are not close.

Given the description of a new situation, I(S), we
need to find the class of the best decision from the col-
lection of descriptions of previously analyzed situa-
tions, I(S}), ..., I(S,,) and of their respective decisions
R(S)), ..., R(S,).

Thus, the recognition problem is, in a special case, a
discrete equivalent of the problem of searching for optimal
decisions. Recognition problems encompass not only
those concerned with the synthesis of best decisions but
also other important classes of applied problems.
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So, the first reason why a great number of investiga-
tors have turned to classification problems in the past
decade is abundance of applied issues whose study
reduces to solving problems of this type. Another rea-
son, very important to mathematicians, is that the solu-
tion of these problems has placed in circulation a great
number of ill-defined or what are usually called heuris-
tic algorithms. The point is that the overwhelming
majority of the recognition theory applications relates
to poorly formalizable sciences and industries, such as
medicine, geology, sociology, or chemistry.

It is difficult to develop formal theories and to use
standard mathematical methods in these areas. A math-
ematical format can be given to some intuitive princi-
ples and then the resultant empirical formalisms applied
to special types of problems at best. This was the reason
why a great number of various methods and algorithms
emerged at the early stage in the evolution of recognition
theory and practice and were applied to practical prob-
lems without any serious mathematical basis. As is cus-
tomary in all experimental sciences, the methods were
verified by a direct test—success or failure in tackling
real problems. Many of them have stood this test and are
used despite the lack of mathematical justification.

It must be admitted that ill-defined algorithms has
long become a fact of life. Apparently, any algorithm of
this type can be regarded as an experiment and the total
set of these experiments and their findings should be
treated as a set of objects new to mathematics. So, hav-
ing recognized the existence and practical usefulness of
ill-defined procedures of solving poorly formalized
problems as reality, we face the task of studying the
very set of these procedures using rigorous mathemati-
cal methods. An antithesis to this ideology might be to
build formal models in areas that now defy formaliza-
tion. However, this path can hardly lead to success in,
say, descriptive biology or geology.

Consider the collection of ill-defined algorithms
intended to handle recognition problems. As they were
accumulated, not only individual algorithms but their
underlying principles were described. These principles,
now operating on subsets of algorithms and, likewise,
poorly formalized at first, were later given (or might have
been given) exact mathematical descriptions. The choice
of a principle only was heuristic at that stage but the algo-
rithms produced by this principle could be formulated in
a standard manner. Thus, the formalization of different
principles led to models of recognition algorithms.

Consider a simple example of a principle formu-
lated intuitively. In many problems where object
descriptions are defined by sets of values of numerical
features (the objects are points in an n-dimensional
space), the descriptions belonging to different classes
can be separated by surfaces of a fairly simple form. We
call this approach the separation principle.

One of the possible formalizations is this. Consider
hyperplanes, the simplest class of separating surfaces:

n
2a,~x,~+an+1 = 0.

i=1
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Let the set of admissible objects be separated into
two classes: K|, K,, K, N K, = . Let it also be known
that the objects S|, ..., S,, belong to K; and the objects
S 41> o> 54 t0 K,. Generally, these objects are not
equivalent. Therefore, we introduce their numerical
characteristics Y(S;) = y; which is the weight of the
objectS;,i=1,2,....m,m+1, ..., g. So, the set of algo-
rithms is characterized by specifying the parameters
a, ..., a,,, which are coefficients in the hyperplane
equation, and v, ..., ¥,, which are the weights of the
objects classified above. The recognition process for
I(S) =(ay, ..., o) proceeds as follows,

Suppose
Jlxy, oo x,) = Za,-x,-+a,,+1.

i=1
We separate the objects S, ..., S,, into sets K; and K,
such that S;e K| if AI(S))=20and S;e K if fI(S)) <O.
Similarly, we separate the objects S,,, . 1, ..., S, into sets
K; and K, . Consider the quantities
YK = Y v(S), y(KD = Y (S)
S, € K} S e K}
and similar quantities Y(K ) and (K ).
Evaluvate f{I(S)). We compare to S two numbers, I")(S)

and I',(S), which are, respectively, the values of the
membership function of Sin K, or K. If I(S)) 2 0, then

r(S) = Y(K1_)+Y(K£)’ r(8) = Y(Ki)”(KE).
Y(K,)+v(K3) Y(Ky) +7(K3)
For f{I(S)) < 0, T'(S) = M , and, similarly,
Y(Ky) +v(K3)

F'xS).

By the numbers I'j(S) and T',(S), the decision is
made to include S in K| or K,. This procedure is speci-
fied by a decision rule. Consider the class of decision
rules defined by the parameter & > 0:

it (S) —T5(S) > d, then S e K|,

if rz(S) - FI(S) > 5, then S e Kz,

if [T(S) — T'x)(S)| £ 8, then no decision is made
because the algorithm has refused to classify S.

We have built one of the possible models based on the
separation principle. This model draws upon two hypoth-
eses: (a) the elements (or at least a significant part of the
elements whose classification is of interest) in the classes
K, and K, are separated by a hyperplane, and (b) the ele-
ments of the classes are not equal in importance, and this
importance can be expressed numerically.

The hypotheses were embodied in the model

May, ...,a,. 1Y - Y 0),
—e0 <Y, a,<+e, 320.
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Values of all the parameters of a model are defined by
its element—a specific recognition algorithm.

The second stage in the evolution of recognition the-
ory was marked above all by changeover from individ-
ual algorithms to models, i.e., families of classification
algorithms, used to solve classification problems. Sev-
eral types of models have been developed and tested by
now. We focus on several models that are the most com-
mon in various applications.

1. Models based on the separation principle (R mod-
els) [55, 56, 61, 76]. Such a model was examined in the
above example. The R models mainly differ in the spec-
ification of the class of surfaces from which we select a
surface (or a set of surfaces) that separates elements of
different classes.

2. Statistical models. They are formed on the basis
of mathematical statistics. These are used mainly in the
cases where probabilistic characteristics, such as distri-
bution functions, of classes K|, ..., K; are known (or are
simple to find). Since the initial information in most
problems does not make it possible to determine these
characteristics reliably enough, it is natural to regard
these models likewise as based on heuristic principles.

3. Models based on the principle of potentials (P mod-
els [4]). They draw upon the analogy with a well-
known physical principle: the force of attraction
between any two masses is directly proportional to the
product of the masses and inversely proportional to the
distance between them.

Concerning the objects whose membership in a
class K; has been established previously, it is possible in
one way or another to introduce the concept of the mass
of that set and of the distance from the set to the object
S to be recognized and to choose as the value of the
membership function of S in K| the quantity which is a
monotonically increasing function of mass or a mono-
tonically decreasing function of distance. P models can
be built in more than one way.

4. Estimation (voting) models (V models) {27, 28, 31].
They are based on the principle of partial precedence.
Corresponding parts of the descriptions of previously
classified objects and of the object to be recognized are
analyzed for closeness. The existence of closeness is a
partial precedence and is estimated by a defined rule.

The overall estimate of the object with respect to a
class is formed from the set of estimates and it is a value
of the membership function of the object in the class.

A model based on one of the above principles can
use ideas of other principles. For example, the R model
set up above also uses the principle of potentials. The
latter [4] directly combines the principle of potentials
and the separation principle.

The committee method [55, 56, 61, 76] uses ideas of
the separation principle and of the voting principle.

At the time when the focus was on specific dedi-
cated algorithms emphasis was laid on the construction
of efficient computational schemes and experiments;
that is, on applied problems. Since the switch to mod-
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els, a multitude of new problems of interest to mathe-
maticians have arisen.

These include, first of all, the synthesis of algorithms
extremal in terms of recognition quality within a given
model. The quality functional of an algorithm can be
defined in several ways. Its definition is usually based
on the following principle. The manner is specified in
which objects from each class are built. A fixed algo-
rithm from the given model is estimated in terms of the
percentage of the objects it classifies correctly, i.e.,
assigns them to a given class. The quantity thus
obtained is averaged over the classes and referred to as
the quality functional of the algorithm. The objective is
to find in that model an algorithm that has a maximum
quality functional. For example, the following law of
the generation of the classes K, K, can be specified.
Let the descriptions I(S) of the objects S be collec-
tions (a,(S), ..., a,(S)) of numerical features such
that —0c < g (S)<+eeo(i=1,2,...,n).

Two normal distributions are defined in the
n-dimensional space with means m, and m, and with
variances G, and ©,. Points (object descriptions) are
picked at random and the class to which they are
assigned is drawn according to the specified laws.
Then, if it is assigned to, say, K, with probability p, the
object S is included in the learning sample and, with
probability 1 — p, it is included in the control sample.
The same procedure is applied to objects in K,. We have
thus formed a learning and a control samples. The
former includes objects Sy, ..., S, from K, and objects
Ss15 ... Sy, from K, and the latter objects S, ..., S3,
from K|, and objects Sy, ..., S4, from K,. An algo-
rithm A is developed in the model, which, given the
descriptions 1(Sy)), ..., I(S;,) and I(S;), ..., I(Sy),

returns the maximum value of the quality functional
o) = qi where ¢' is the number of the control sam-

1"

ple’s objects correctly classified by the algorithm A,
and ¢" = v + u is the total number of objects in the con-
trol sample.

The quantity @(A) is a random variable, and its char-
acteristics (instants) give an idea about the accuracy of
the model for a certain type of recognition problems. It
is not at all trivial to calculate these characteristics. The
results in such problems can be only obtained for rela-
tively simple models and class formation laws (see, for
example, [67, 69]).

A more standard approach is that where, given an ini-
tial fixed information /, and a model, it is required to find
an algorithm in the model to classify as accurately as pos-
sible the given collection S; (i = 1, 2, ..., m) of control
objects whose membership in K|, ..., K| is unknown.

Naturally, the information of the type S; € K; and
S;€ K; is not included in an algorithm. Extremum
algorithms constructed in a model on a specified control
sample produce new types of extremum problems to be
solved and studied. These studies were the subject of a
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great number of papers, especially on R and V models.
Here is one example. Let there be given the descriptions
I(Sy), ..., I(S,) of objects in K, and I(S,, , 1), ..., I(S,) of
objects in K, such that I(S)) = (o, ..., 0). There is no
initial information available. An R model is built,

and the partition is done by the hyperplane fix) =

Zaixi + a, ., - The model parameters are the coeffi-
cl:ielnts ay, ..., a, . of the hyperplane.
Decision rule. If f(I(S;)) 2 0, then S; € K,. For
SU(S)) <0, the object S; (i=1, 2, ..., g) is included in K.
It is easy to write for every S; the condition of correct
classification. Having written these conditions sequen-
tially for Sy, ..., S; Sy s 15 - - S, We get a system of lin-

ear inequalities in the unknowns ay, ..., @, ,

- a, +...+a,0,,+a,,,20,

ao,;+..+a,0,,+a,,;20, "

alam+1’1+... +a,,0€m+1,n+an+1<0,

a, +...+a,0,+a,,; <0.

The system in (1) is inconsistent, generally speak-
ing. To set up the desired algorithm, it is required to find
a maximum consistent subsystem in (1). By solving
this problem, we can obtain the values of a4, ..., a,,
and, thus, an algorithm which is extremal on the sample
Sty oeer Sy
The selection of a maximum consistent subsystem is
a difficult problem even for linear systems, and special
methods are needed to solve it. In more sophisticated
models, the development of algorithms extremal on a
given sample likewise involves searching for maximum
consistent subsystems, but inequalities in analogues to (1)
are not linear.

Finally, it is interesting by itself in many cases to con-
struct a convenient model description and to solve prob-
lems inherent in the model and not related directly to the
synthesis and analysis of extremum algorithms. Thus, in
models of estimates I'(S) calculation, it is often unfeasible
to try to find these quantities by direct exhaustive search of
object descriptions for close parts. The need, therefore,
arose to develop a special “analytical” tool whereby the
quantities I'(S), could be evaluated efficiently.

Another branch of studies evolved in parallel to the
changeover from individual algorithms to models. It
was primarily intended to facilitate the preparation of
learning information for recognition problems. Suc-
cessful attempts were made in this area to extend the
class of learning informations suitable for further pro-
cessing by recognition algorithms. This branch came to
be known as structural recognition [78].

Previously, it was required for every class K; (j =
1,2,...,[])todraw up a list of objects known in advance
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to belong or not to belong to K, to select a set of char-
acteristics (features), and to give descriptions of the
objects thus prepared as collections of features. It took a
good deal of time and effort to construct a sufficient num-
ber of template objects and their descriptions. It was
required in fact to define classes by a partial enumeration
of their elements. On the other hand, discrete mathematics
(algebra, mathematical logic, theory of algorithms, etc.)
had long been using another method to define sets. Select
a system of basis elements { B} and a system of operations
{O}. Apply sequentially operations in {Q} to basis ele-
ments in {B}, i.e., use a standard procedure to generate a
set in succession. The class K; is defined for recognition
problems by the collection {B}; of basis elements and by
the collection { O} of generation rules (operations).

The collection of features (properties) is constructed
in a similar way. A set of basis properties (elementary
predicates), not necessarily binary, is defined. A set of
predicates is developed from them inductively, e.g.
using logical operations, quantifiers, etc., and it is these
predicates that are the features used to describe the
objects. By analogy with formulas of formal theory,
these predicates are denoted by {®};. The quantities
®(S) are evaluated on the constructions of S and on the
generated elements in K; (actually, a finite subclass is
generated in K in a short time).

The collection of elementary properties describing
the relation of S to Kj is selected. For example, (S € K));
it is more probable for § to belong to K, than to K,; the
membership function (according to Zadeh [79]) of S in
K, is not greater than ¢, etc. The class of formulas, {'¥'} s
is constructed over the collection of elementary proper-
ties by analogy with {®},.

Finally, we consider the formulas ® — ¥, W e {\¥};,
and ® € {®};, i.e., conclusions in terms of {¥'}; from
the satisfied @ (it is possible to consider necessary con-
ditions: ¥ — @).

The collection of the formulas ® — W with the
satisfied @ is estimated numerically and is used as a
basis for the numerical quantity I'(S) (explicitly or
implicitly), which is the membership function of S'in X
G=1,2, ..., 0. The decision is made on the basis
of the vector (I'|(S), ..., I',(S)) or the matrix {I(S)}
(i=1,2, ..., g)asto the class to which § or each of the
objects Sy, ..., S, belongs.

The structural approach has inherent problems and
problems related to applications.

We do not dwell on these problems in this paper. Here
are only some particular results to demonstrate that the
structural approach in recognition does not differ funda-
mentally from the approach whereby classes are defined
by enumerating descriptions of a finite number of objects.

To sum up the foregoing, we should note that the
theory and practice of recognition have accumulated a
wealth of experimental material (various algorithms)
and a certain experience in the construction and analy-
sis of models, i.e., descriptions of classes of recognition
algorithms. Taking the above history as the basis, it is
Vol. 8
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possible to set the task of developing a general theory
of recognition algorithms. Mention should be made of
an interesting paper by Grenander [77] in this connec-
tion. The present paper develops a different approach to
the formulation of this general theory.

An alternative definition of the recognition algo-
rithm is proposed, which can accommodate all existing
types of algorithms. The terms in which the definitions
are given make it possible to use the latter both in the-
oretical studies and in applied problems.

Furthermore, an approach is proposed, similar to the
one set forth in connection with structural methods, to
provide an efficient analysis of the class of recognition
algorithms and of their constructive description. Basic
algorithms and models are selected and operations on
them are introduced to generate subsequently new
algorithms and models. This approach can be used not
only to describe efficiently many new classes of recog-
nition algorithms but also to identify some of their
important properties. For example, conditions were
derived under which a given family of algorithms is
basic with respect to the operations thus introduced.
Two models were taken as examples to demonstrate the
test of these conditions. It was found what properties a
model should have to contain an algorithm that can
classify correctly all objects of this finite sample. Meth-
ods were given whereby these algorithms can be devel-
oped for various models.

Here is a brief outline of the paper by chapters.

The first chapter introduces basic definitions and the
statement of problems with an emphasis laid on the
concept of initial learning information.

The second chapter briefly describes the R models
and P models and, in more detail, the V (estimates cal-
culation) model.

Taking the latter as an example, the transition from
specific algorithms to an intuitively formulated princi-
ple and finally to a formal description of a model is
shown in detail.

Efficient analytical tools to calculate estimates T'(5)
of the classified objects S are described. This chapter
also discusses models based on the structural approach.

The third chapter analyzes specific models and pro-
poses a definition of the recognition algorithm. This
algorithm A is regarded as the consecutive application of
two operators, R, and r,, such that A = R, - r,. In what
follows, R, is called the recognition operator and is
applied to the initial (learning) information /; and to the

descriptions /(S} ), ..., I(S, ) of the objects to be recog-
nized. It transforms them into a numerical matrix,
{a,},x:» where a, is the value of the membership func-
tionof S,inclass K, G=1,2,...,1,i=1,2,...,9). The
term “membership function” was taken from the theory
of fuzzy sets [79].

We use a shorter term, “estimate,” instead, in many
cases. We believe that it reflects better the meaning of a,,.
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The operator r,—the decision rule of A—trans-
forms the matrix {o},; into the information matrix
{o,} < 0, € {0, 1, A} For o, € {0, 1}, the algorithm

A states that P(S,) = a,,, &, = A mean that A failed to
evaluate the property P(S,).

Operations of addition and multiplication by a sca-
lar are introduced for the recognition operators R, (and,
hence, for algorithms with a fixed r,). The latter form a
linear vector space in these operations. Given a control
sample whose size is bounded from above, this space
has a finite basis under fairly broad assumptions about
the initial information and possible descriptions of con-
trol objects. In addition, the product (consecutive appli-
cation of recognition operators) is introduced. The
same chapter proves a theorem that establishes the
properties of models, which enable any finite control
sample to be classified without error. The theorems thus
proved are used to analyze linear closures of the R mod-
els and V models.

The fourth chapter reviews operations on algorithms
at the level of information matrices. Subgroups in these
operations are described. More general types of opera-
tions are also introduced, which are interpreted as mul-
tiplace functions of ternary logic. The application of
these operations to the synthesis of new recognition-
algorithm models is demonstrated.

The fifth chapter describes basic types of problems
that arise in the synthesis of extremum algorithms and
the principles are set forth for their solution.

CHAPTER 1
STATEMENT OF THE PROBLEM.
BASIC DEFINITIONS.
LEARNING INFORMATION.
QUALITY FUNCTIONAL

§ 1. Statement of the Problem

Let there be given a set M of what is called below
admissible objects. The set of admissible objects is
covered by a finite number of subsets, K|, ..., K;: M =

!
UK, . Thesubsets K, (j=1, 2, ..., [) are called classes.
1=1

The partition of M is not defined completely. Only a
certain information, I, about K, ..., K, is given. Simi-
larly, an admissible object S is defined by values of cer-
tain characteristics. The collection of the specified val-
ues defines the description I(S) of S.

The prime problem (or the Z problem) is to use the
information I, about the classes K, ..., K;, [o(K|, ..., K}))
and the description /(S) of the admissible object S in
order to evaluate the predicates P(S) implying “S e K,”
(=1,2,...,D.Itis customary to call ; learning infor-
mation and P(S) elementary predicates.

The restatement of Z is as follows. Let there be
given two sets, {{,} and {/($)}. The former is the set of
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admissible learning informations, Iy(K|, ..., K}), and the

latter is the set of descriptions I(S) of the admissible
Se M.

It is required to construct an algorithm A such that
A((K 1y . K ), 1(S)) = (0(S) ... 0(S)), ()
where
0 (8) = PAS), j=1,2,...1

or, as applied to the collection of admissible objects,

AUo(Ky, oy K IS, .0 I(S))) = {aj‘(sg)} ;
ax
0 (S) = PASD, i=1,2.q j=1,2..,L
The solution to the Z problem also involves ill-
defined algorithms A such that oc;‘(S;) € {0, 1} but not
necessarily oc}q(S,-') = P(S;). Finally, algorithms are
considered which refuse to evaluate P,(.S D, 1<j<for
some admissible S;. This fact is written in symbols as
0l (S]) = A.
When the Z problem is solved in the class of ill-

defined algorithms, it is usual to impose additional con-
straints on the algorithm A.

Let the set {A} of algorithms be specified, such that
AUo(K s s KD, I(S)) = (BL(S), ... BL(S)),

B (S)e {0,1,A}.

The numerical functional @(A) is defined on the set
{A} of these algorithms. It is called the quality func-
tional of the algorithm A.

4

The refined prime problem V4 problem) is as fol-
lows: Among the algorithms defined by (4), find an
algorithm A* such that

¢(A*) = sup @(A). (%)
Ae {A}
For a complete formulation of the problem, it is nec-
essary to refine the concepts of:
1. The learning information I(K, ..., K});
2. The description /(S) of the admissible object S;
3. The quality functional @(A) of the algorithm A.

§ 2. The Learning Information I(K,, ..., K)).
Descriptions of Admissible Objects
I. The Standard Types

of Learning Information
and Descriptions

1. Let a collection of features {1, 2, ..., n} be set.
Each feature i has a set M; of admissible values (i=1, 2,
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..., n). It is usual to consider the features that have the
following sets of values:

1°, M,~2 = {0, 1}: the feature is or is not defined on
the object.

2°, Mf ={0,1, 2, ..., k— 1}: the feature has several
gradations, (k > 2).

~ k
3°. M; ={a,, ..., a;}: the feature takes the finite

~ k
number of values. The elements in M; are generally
not numbers (k > 2).

4°. M;=1a, bl, (a, b), [a, b), (a, b), and a, b: arbitrary
numbers or the symbols —eo and +eo.

5°. M;: a more complicated subset of the set of real
numbers.

6°. M ,f : the values of the feature { are functions in a
class of functions.

7°. M} : the values of the feature i are distribution
functions of a random variable.

Clearly, the sets 1° through 7° listed above do not
exhaust the diversity of the features that can be found in
recognition problems.

In what follows, we assume that the sets M, of fea-
ture values can be supplemented with the element A

which means that the value of the ith feature is not
known. The set M; U A is denoted by M(A).

Let there be given the collections (b, ..., b,) = b
and (cy, ..., ¢,) = ¢ suchthat b,, c;e M(A). The collec-
tions b and ¢ are called distinct if there is at least one
number i such that b; # A, ¢;# A, and b; # ¢; (1 < i < n).

Definition 1. The description I(S) = (a,(S), ..., a,(S)),
af(S) € M[A), of the admissible object S, S € M, is
called the standard description of S. The description
I(S) is called complete if a(S) £ A, i=1,2, ..., n.

There exist traditionally several specifically
selected classes of features and names for them. Thus,
the features i with the value set M,~2 are called binary

features; those with (M;, 4°) are simple numerical fea-
tures; those with (M;, 5°) are complex numerical fea-

tures; those with M ,f are functional features, and those

with M} are probabilistic features.

Features with special additional constraints
imposed on the set M; are particularly important in rec-
ognition problems.

Definition 2. The feature i (1 <i < n) such that its M,
is a metric space is called a metric feature.

If the metric in M; is denoted by p;, then i can be

denoted subsequently by (M;, p;). In some cases, the
function p; satisfies all axioms of distance except the
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Table 1
1 2 n-1 n
S 1 ap Q-1 ai,
: 4 Class K,
Sm, myl am‘2 am,i amln—l mn
Sm,,1+1 am,_1+1,l am,71+l,i am,_1+1,n
: Class K|
Sm | A
axiom of a triangle. If so, p; is a semimetric and the fea-  or
ture (M, p;) is a semimetric feature. 1(K K
, oK1y oes K
In actual problems, the standard descriptions of (7

admissible objects usually include different types of
features.

2. Information vectors. The recognition (classifi-
cation) problem consists of evaluating the elementary
properties P(S): “S belongs to K,” for the given S and
the set of classes K|, ..., K.

Consider three types of information about P(S): it was

established that S € K;; it was established that § € Kj;
and it is not known whether or not § belongs to K.
These facts are coded by symbols 1, 0, and A, respec-
tively. The information that S belongs to Ky, ..., K|
is coded by the vector (0,0, ... o), a; € {0, 1, A},
(i =1, ..., D). The information can be true or false, com-
plete or incomplete. The situations that may arise here
give grounds for introducing the following definitions.

Definition 3. The vector & = (q, ... o) is called the
information vector if o, € {0, 1, A}. The information
vector O assigned to the admissible object S is denoted
by a.(S) = (04(S), ..., 0(S)). The vector a.(S) is com-
plete if a(S) # A (i = 1, 2, ..., I). The vector a.(S) is
called well-defined for S if the condition 0,(S) # A
implies that P(S) = 0(S), (j = 1,2, ..., ). The complete
vector (S), well-defined for S is called a true vector for
S [32].

3. Let there be given the collection S, ..., S, of
admissible objects and their standard descriptions
1(S)), ..., I(S,,). Let also every object in S, be assigned

a well-defined information vector @.(S,) different from
(AA ... AA).

Definition 4. The standard learning information
1K, ..., K)) is the collection of sets A =S, ...

1(S,)) and ¢, = (@ (S)), ..., 0.(S,)). The standard
information I(K|, ..., K)) is written below as

IO(KIS cevy K[) = gﬁl UEUEZ (6)
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= (I(Sl)’ &'(Sl)3 sy I(Sm)7 &'(Sm))

The standard learning information is called well-
defined (true) if the vectors o (S;) are well-defined
(true) for ;.

We consider, henceforth, true standard informa-
tions. As well-defined standard informations are dis-
cussed further, it is assumed that the elements of J)(, do
not include the vector (AA ... AA).

The standard information that contains the
descriptions of the objects Sy, ..., S,, in terms of fea-
tures 1, 2, ..., n and the information vectors of length [
are denoted below by

ISy, ... Spu Ky . K.

If it is clear a priori what objects, features, or classes
are meant or an exact enumeration of the appropriate
components is not needed, we use the notation

Iy(D), Iy(m, 1), etc.

4. Learning information in a problem with dis-
joint classes K, ..., K| is often given in a special form,

i.e., a learning table T,?m . The rows in the table are stan-
., S, (see Table 1).

In what follows, we assume that the objects S, ..., S

dard descriptions of the objects S}, ..

ny
belong to K, ..., the objects SmHJr1 s anes Smlto K ...,
and the objects S,, 115 ..., Sy t0 K.

5. Parts of standard learning information. Let us
select a subset of objects S, , ..., S; intheset S, ..., S,

and a subset of features u,, ..., i, in the system of fea-
tures 1,2, ..., 1.

We leave only the descriptions I(S; ), ..., I(S, ) in
IK,, ..., K)) and only the coordinates numbered u,, ...,
u, in these descriptions. The information vectors are left

unchanged. The information thus obtained is called a
part of standard learning information.
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Clearly, a part of standard information is standard
information.

II. The Structural Learning
Information and Structural
Descriptions

Given finite alphabets U = {a,, ..., a,} and A =
{Ay, ..., A;}, we form the language X as follows:

1°. All finite words with characters in 2I belong to X;

2°.If 8, 8" € Z, then S'A,S" € Z; if S and S" are non-
empty words.

In what follows, words in X are called phrases.

Definition 5. The description I(S) of an admissible
object is called structural if it is an element in X
(a phrase).

Clearly, any standard description is structural. The
part of a phrase enclosed between the consecutive
occurrences of characters in A from the first character
inclusive to the first character in A exclusive is called
the correct part of a phrase or a word from the last
occurrence of the character in A (exclusive) to the last
character of the phrase (inclusive).

The remaining parts of the phrase are called sub-
phrases.

Let for every class K| there be specified a collection
of phrases B{ y ens B,{(j) and operations O{ y ey 0;(].) ,
whose application to the phrases forms a phrase. Let
further K; consist solely of the phrases that are derived
from the phrases B,{ (u=1,2, ..., k(j)) by applying the
operations O,j t=12,....q9()).

Definition 6. The description I(K) = { B| , ..., Bl ,

O{ s eens 0;( 5 } of K; is called structural or algebraic

and the collection B/ = {B{ s eens B,{( j }is the generating
set (the basis) in I(K)).
The collection I(K)), ..., I(K)) is a generalization of

the collection of the descriptions I(S)), ..., I(S,,) in stan-
dard learning information.

Let there be specified a collection of properties
P{ @), ..., Pf;( j) (@) defined on the phrases @ in %,
which are the descriptions of admissible objects in K;.

We construct a class of formulas {¢}; over P’ s eens P,’;

using, for example, the logical operations A, v, —, and
— and the quantifiers 3 and V. Note that the predi-

cates P, ..., P,’; are generally multiplace and @ is
solely one of the arguments in P,-j (i=1,2,...,n).

For example, P(®, ®') implies “®’ is a word in ®.”
Select a collection of elementary relations that describe
the membership of § in the classes K;. Note particularly

among them: Q(S) (Q,(®)) implying that an object S

belongs to K, i = 1,2, ..., D, Q% (S) (QF (®)) imply-
ing that “S € K, with a greater probability than S € K,,”
p0

0 . .
QF’(S) (QF (®)) implying that the events S € K, and

S e K, are equiprobable, and Q] 4P (S) (Q;”a’b(d)))

implying that the event S € K; has probability p
enclosed in the interval [a, b], thatisa < p < b.

Similarly, we introduce Qf:;1 , QZ;O , and Q{ b ,
where, instead of probability p, we consider the mem-
bership function f of an object S in K,,, K;, and K;.

The collection of elementary relations (predicates)
may include other elementary relations as well.

We construct a system of formulas {y}; on the ele-
mentary relation Q', ..., Q" using the logical operations
A, V, —, and —,

Finally, we specify a collection of formulas, {x};,
where the formulas take the form: (a) ¢ — W and
(b) y —= @, such that @ € {@};and y e {y};.

The implication symbol in A — B is defined only
for the case where A = 1 in a standard fashion: if A =1,
then B=1.

Definition 7. The collection of formulas {x}; is
called the information set K; in the structural learning
information.

Definition 8. The set Io(K,, ..., K) = {I(K)),
{x(KD}, ..., IKp), {x(KD}} is called the structural
learning information over the classes K, ..., K|.

Example 1. Let ©(S) be the description of an object S
and a collection of words ®!, ..., @ be specified for
the class K.

The elementary predicates P(®D(S), @) imply that
the word @' is a correct part of the phrase ®(S), i =
1,2,..., r(j).

Apply the operations A, v, and —to { P,} construct
{0};. The set {@}; consists of all possible DNFs v

G’l le
P, ... P, .

The elementary predicates for the system {y};:
0% (®) are S € K,. They imply that S belongs to K,
with a greater probability than S belonging to K,
(u=1,2,....Lt=1,2,..,u-1Lu+1,...,0). The pred-
icate Qf; ! (®) in this example means K, (®) > K,(D).

We form the system {y}; by applying the operations
—, A, and v to the elementary predicates.

The collection of formulas {x}; does not contain
formulas of the y — ¢ type. We assign the only for-

mula in y of the type Hz (K;j(®)> K /(D)) toeachele-
mentary predicate P(®D(S), @), and the product is taken
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over the indices occurring in the subset {1, 2, ..., /}\j. We
include the following formula in {)};:

PA®(S), ) — [](K}(®@)>K,(®)),
t
i=12,..r(). :
We assign no formulas from {y}; to the formulas in

{¢}; which contain at least one P;.IfA,Be {¢}; and
{x}; includes the formulas

A— [ (@) > K (D)),

u

B— [k (@)>K (@),

with the indices # and v running through the subsets M,
and M., respectively, then {y}; includes the formulas

A-B—s H(K,(©)>1<w(c1>)), we M,UM,,

AvB —

I1

we (M, "M))

(Ki(®)> K, (D)),

if M, N M, is nonempty.
Thus, we built the system of formulas {x}, j=1.2, ..., D).

Clearly, we can likewise consider the concept of a
part of the structural learning information:

1.(K,, ..., K)) is the part I(K,, ..., K)),
if -
L(K,, ... K)) = {I"(K)), {x: 3% o KD, {037
WOERI ORI ORIIN;
{x;}Y cix};, IKpcIK).

Finally, we can combine an arbitrary part of the
standard information /(K, ..., K)) and an arbitrary part

I(K,, ..

of the structural information I (K 1s -es Kp.

We do not dwell on other forms of learning informa-
tion.

§ 3. The Quality Functional ¢(A)
of the Algorithm A

We consider the following types of the functionals
¢A). Let Sy, ..., S "1 be a collection of admissible objects

called further a control set; ¢.; = (0 ... o) be true infor-

. . . ~ A A A
mation vectors of objects S;;and o; =(q;j, ... ;) be
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Table 2
o
) Y 0 1 A
P(S)H
0 00 01 04
;) D D
1 10 1 1A
?;; Qi Qi

information vectors constructed for S; by the algo-
rithm A (i =1, 2, ..., q). Let p(Q., &') denote an arbi-
trary semimetric in the space of information vectors.

Consider the sequence of functions fi(x), f,(x,, Xx3), - ..,
fixy, ..., x,), which satisfy the following conditions:

1°. All f, are defined for x; 20 (i=1, 2, ..., 7).
2°. All f, are not increasing in any variable.

3°, The function f, reaches the absolute maximum at
the point (0, 0, ..., 0), and this maximum is 1.

The latter condition can always be satisfied through
a proper choice of the normalizing factor.

Definition 9. The quality function ¢(A) over the con-
trol set S|, ..., S, is the quantity

- -4 - A
fq(p(ah o )a sees p(aq’ aq ))
Subsequently, we sometimes omit the words “over
the control set.”

Definition 9 is very general. A special concept of
quality functional is used when optimum algorithms
are formulated constructively.

Let there be a pair (S;, K;). The former is an object
from the control sample; the latter is a class from

K\, ..., K, and Table 2 is given for each pair.

Here, 013 is the value of the predicate P(S;), “S; € K;”
evaluated in the algorithm A, P(S 1) is the true value of
this predicate, (p,(j P is a numerical estimate (areward or
a penalty) of the event: Pj(S} )=q, ocf; =fB,o0e {0, 1},
and B € {0, 1, A}. For the control sample S, ..., S, ,a

A
. 00y
matrix {Y;},«; where y; = @;" ", is constructed from

. . ~ ~ A
the set of true information vectors o; and vectors o; .

q li
. . |
Definition 10. The functional @A) = 5—121 ;Yﬁ
[32] is called the linear quality functional.

An important special case of the linear functional is
the functional ©*(A) such that Tables 2 are the same for
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Table 3
p .(SY) 0 1 A
] 1
0 1 0 0
1 0 1 0

all pairs (i, ) (i=1,2,...,q9,j= 1,2, ..., ]) and take the
form given in Table 3.

The functional ¢*(A) is called the fraction of correct
predictions.

CHAPTER 1I
SOME MODELS IN THE THEORY
OF RECOGNITION ALGORITHMS

SECTION 1. MODELS OF THE ALGORITHMS
OF ESTIMATES CALCULATION

§ 1. General Remarks

Algorithms based on the estimates calculation prin-
ciple are a formalization of the idea of precedence or
partial precedence. Suppose that standard descriptions
of objects {S }, such that § € K;and {§'}, ' € Kjare
specified. Anobject S,j=1, 2, ..., l is presented for rec-
ognition. Assume that a method is given whereby we
can determine the degree of closeness between some
parts of the description of S and the corresponding parts

of the descriptions {I(:S )} and {I(S")}. By evaluating
the closeness between the parts of I(S) and I(S' ) and,

accordingly, between I(S) and I(S"), we can deduce a
generalized closeness between S and the object sets

{S‘ } and {S'}. In the simplest case, the generalized

closeness is equal to the sum of partial closenesses.
With the generalized closenesses denoted by I‘;

and 1"; , we construct a characteristic of the type I'(S) =

F; — I';, which can naturally be taken as the value of
the membership function of the object S in the class K;.
If § = S;, then T(S;) is later denoted by I';. The quan-
tity IT'; is called the estimate of S; in the class K.
Clearly, the estimates calculation algorithm transforms
the descriptions of objects S, presented for recognition
into a numerical matrix {I';},,, further called an esti-

mation matrix. We apply a decision rule to this matrix

to construct the matrix {0y}, , of information vectors
for the objects Sy, ..., S, .

§ 2. Some Algorithms
of the Estimates Calculation Type

The first estimation algorithms appeared in the
1960s [18]. They proved their worth in the solution of

practical problems such as geological forecasting, med-
ical diagnosis, etc. Later [28], they provided the basis
for models of estimates calculation algorithms. These
models were analyzed in detail in a large number of
studies and were also used in various applications.

It was the test algorithm that played a special role in
the evolution of the estimates calculation model. This
algorithm draws upon the concept of test introduced in
1956 by S.V. Yablonskii. A great number of modifications
of the test algorithm, their machine implementations and
applications were reported [19, 22, 45-50, 66, 75].

This paper describes a modification of the test algo-
rithm, which is convenient to illustrate the evolution of
estimates calculation models. The test algorithm is
described for problems with disjoint classes K, ..., K.
The initial information I is presented as the learning

table Tsm (see Table 1, § 2, Chapter I), and the descrip-
tions of the objects S, ..., S,, are binary vectors.

Definition 11. The test of T,?m is the collection of

columns, i, ..., i, such that deletion of all columns,

. . 0
except those numbered i, ..., i}, from T,,, produces a

new table, T, _, ,,, where all pairs of rows belonging to
different classes are distinct. The test {i; ... i} is called
the irreducible test if none of its true parts is a test [71].

Consider the set { T'} of irreducible tests in the learn-
ing table T,(,)m .Suppose T={i, ..., i;} € {T}. We select
in the description I(S;) of the object S; being recog-
nized a subdescription (a; , ..., a, ) in terms of features
iy, ..., iy. Compare (a; , ..., a; ) with all the subdescrip-

tions (a,;,, ..., a,;,) of the objects S, ..., S, in the

learning table T,?m .
Let I'(T) denote the number of times that (a; , ..., a;, )
coincides with (a,; , ..., a,;, ), u=m;_; + 1, ..., my;

i=1,2,...,1l; my=0; my=m (according to the descrip-
tions of the jth class). The quantity

' 1
Ty=T,8)=——— Y TN
m;=mj 11

o

is called the estimate of S; in the class K;.

Once the estimates T'(S}), ..., [(S, ) are available, it

is easy to classify S; using simple decision rules. For

example, if the set of estimates has at least two maxima,
the object is not classifiable. With one maximum, the
object is assigned to the class where it has the highest esti-
mate.

Somewhat later algorithms were used, where vari-
ous nonempty subsets of the set {1, 2, ..., n) or all
possible subsets of the same cardinality k (1 £ k < n)
were taken as the set {(i,i, ... ip)}.
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Geological forecasting problems were solved with
algorithms of the KORA type [11]. These used a sub-
class of subsets of length 3 specifically selected from

T,?,,, as the subsets (i) ... ip).
Yablonskii and colleagues [75] came up with the idea

that not all the templates in T,?m should be regarded as

being equal. They should be assigned numerical
weights, and these should be considered in evaluating

I'(T) and Fj(S} ). Earlier, the weights p(i) of features i

(i=1,2, ..., n) were introduced on the basis of the analysis
numerous irreducible tests [ 18], and these were likewise

taken into account in evaluating I'(T) and T'(.S .
In a test algorithm, p(i) is evaluated as follows. Let

1(n, m) be the number of irreducible tests in T,(,)m , and

T{n, m) be the number of such tests containing the col-
umn {. Then

T,(n, m)
t(n,m)’

p(i) =

The greater is the weight p(i), the greater is the
importance of i in describing admissible objects in M.
The latter assertion is justified by the following plausi-

ble arguments. The table Tsm is a description of the set
M. 1t is interesting in that it delivers certain information
about the partition of M into classes K|, ..., K.

The irreducible test description cannot be com-
pressed any further but still contains all information
about the division of M into classes. The greater is the
number of these irredundant descriptions that contain i,
the greater is the importance of that feature.

If the weights p(1), ..., p(n) of features and the
weights Y(S)), ..., Y(S,,) of the objects whose descrip-
tions make up the learning table are determined, shouid
(a;, ..., ;) in §' being recognized coincide with the

subrow (a,; , ..., a,; ) of the object S, S, € K|, this

coincidence is rewarded with Y(S,)(p(i)) + ... + p(i)) =
IS,,S).
Then,

1 '
m,—m; Z z 'y (S,S8). (8

-1
i Te{T}u:mkl+l

T(S) =

The properties of irreducible tests for binary learning
tables were the subject of many publications [58, 63-65].

§ 3. Models of Estimates Calculation Algorithms
for Standard Learning Information

Here, we review only some estimation models. In
what follows, we assume that the features 1, 2, ..., n are
metric features (Definition 2), i.e., the sets M, are metric
spaces with metrics p; (i = 1, 2, ..., n).
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I. The first step in developing the algorithm A in a
model is to select the system €2, of subsets in the set
{1,2, ..., n). The elements of €, are called the refer-
ence sets of the algorithm and the system € is the sys-
tem of reference subsets of A. Examples of €, are sets
of irreducible tests (in the problem with disjoint classes
and the binary learning table T,(,)m ), the system of all
subsets of cardinality k (in this case €, is defined by the
parameter k, I <k < n—1), and the system of all non-
empty subsets of the set {1, 2, ..., n}.

Clearly, each subset Q = (i}, i, ..., iy} may be
placed in one-to-one correspondence with a character-
istic Boolean vector ® = (0, ... 0,,), where o; = ...

o, =1 and the remaining coordinates are 0.

L

Definition 12. The characteristic function f?, X1 oves
x,,) of the system €4 (algorithm A) is a Boolean function
defined by the relation

1, if @ is the characteristic vector

fa@) = of an element in Q, 9

0 otherwise.

In many situations, it is convenient to specify €, in
terms of fé (Xgs o s X

Example 2. If £2, is the system of all nonempty sub-
sets of the set {1, 2, ..., n}, then fé = 0 solely on the
collection (00 ... 00). Then fg =xV..vx IfQ,is

the system of all subsets of cardinality k, then f é is a

symmetric Boolean function equal to 1 solely on the kth
layer of vertices in an n-dimensional unit cube.

II. The second step in specifying the algorithm A is
to define the proximity function B (S,, S,), where ®
corresponds to 2 € €, and S, S, are arbitrary admissi-
ble objects.

We introduce the concept of the @ part of the
description I(S) (of an object S). Let in ® the coordi-

nates numbered iy, ..., i, in ® be 1 and the remaining

coordinates be 0.

Definition 13. The description (a; , ..., a, ) is called
the ® part of I(S), which is denoted by ®I(S). The
object S is identified sometimes with its description for
brevity. We also use the symbol ® S where this does not
cause confusion.

Accordingly, the @ part of the set of descriptions
I(S)), ..., I(S,) (of the matrix T,,,) is the set { ® I(S)), ...,
®I(S,)} (the matrix T}, = ® T, from which all columns

nm
were deleted except the columns numbered iy, ..., i).
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In what follows, the proximity function B (S,. S,) is
also denoted by B(® S,, ® S)).

The following proximity functions were considered
in various models [7-9, 12, 13, 24, 25, 29, 31-37, 44,
53, 67-69, 72, 73, 80).

1. BE(®S,, ®S). Lete;20(i=1,2,...,n), & =
(€ ... €,), where € is an integer, € 20, ® S, = (a,,, ...,
a,)and ®S,=(a,, ..., a, ). Write the system of ine-
qualities
i=1,2,..,k.

pia,, b,)<¢g, (10)

Here, p; is the metric in the set M; of the values of the
ith feature, i =1, 2, ..., n. Then

1, if the number of unsatisfied
inequalities in (10) is not greater
than €

0 otherwise.

BY(®s, ®S,) =

Important special forms of the function B, are Béo“'o) .
The latter is equal to 1 if and only if not more than €
coordinates are not equal in ® S, and ®S,; B, =1 if all
inequalities in (10) are satisfied, and B((,O"'O) =1if

b8, = @S,

k
1, if Y pia,, b )<e

i=1
0 otherwise.

2. B.(®S,®S,) =

For the case of numerical features such that p,(x, y) =
|x —y{, the function B(®S, ©®S, was analyzed in
detail in [57].

In what follows, we mainly review models with the
function BE and with functions B that are dependent
significantly on the inequalities in (10) but of a more

general form than Bf .
II1. Estimates I',(I(S), I(S))), and T' (S, S)). Let S;
be part of the standard learning information I(Kj, ..., K)),

S be an admissible object, and ® be the characteristic
vector of 2, Q € Q,.

Let also the object S; be assigned numerical param-
eters (Yi(S), ..., Y,(SD) = Y (S;) and the set Q (the vector
®) be assigned numerical parameters (p;(®), ...,
pA®)) = p(®). Then

F(I)(S7 Sl) = f(Bu)(S’ Sz): :Y‘(Sl)’ ﬁ(d))) (1 1)
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is called the estimate of S with respect to the object S;
and the set Q.

The following form of the function I'; was consid-
ered in applications:

Ta(S,8) = (Y(SHP(®))Bg(S, ). 12)

In many cases, if the set € associated with the vector
® consists of elements ij, ..., i, then p(®) =
pil + ... +pik’ q= 1, and thCn

Fa(S, 8 = vi(S)(pi, + ... + p;)Bg(S, 5. (13)

In the general case, if the function B (S, S;) is taken

to be the function B, (®S;, ®S), then the quantities I';,
in (11) are specified by collections of values of the param-
eters €y, ..., €, YI(SI) i (T Yl(Sm) =Y and D> oo Due
If the reference subsets are collections of all the subsets
of the set {1, 2, ..., n) of k elements, then the steps in
(D) through (II1) are defined by the collection of values

of the parameters (k, €, £, B, ?); that is, by the collec-
tion of values of 2n + m + 2 parameters. The parameters
g, are usually called accuracies of feature measure-
ments, the parameters p; are called weights of features,
and the parameters Y(S,) = v, are called weights of
objects. Thus, they are given a simple physical interpre-

tation. The set of parameters (%, €, £, [3 , 39() is crucial
in the definition of the most commonly used model
containing the subclass of estimation algorithms.

IV. The estimate I‘(’;; (S) of an object S by its ref-
erence set Q (or its characteristic vector ®) in the

class K;:

TL(S) = o(T4(S, 81D, ..., Ta(S, 810, (14)

where {S;l } is a subset of objects from S|, ..., S,, that

belong to K; (i = 1, 2, ..., 7). The function I"é, (S in (14)
is defined most often as

1

ri(s) = (15)

1 2 F(I)(S’ Si,)’ H(le),

Y t
S,‘le w,

where pL( W}) is the number of elements in W} and

W, =K (S), ooy Syl
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Then in the model (k,e, , , ):

j 1
ries) = —
ww;)
a6
X YSIPy + o+ Py )BS, S1).
S, €W,
In problems with disjoint classes
j 1
|4 = —
&(S) mi—m;_
m , (17
X 3 S py + .+ Py, )Be(S, S).

i=m,_y+1
V. The estimate I',(S) with respect to the class K;.
It is defined as a function of the estimates I“{-;, (S) over
various subsets ©, ® ~—— Q. Ordinarily,

rs) = 3 Ta®)
®eQeQ,
or (18)
IS =g Y THO).
D Qe Qy

where N is a normalizing factor. In view of (15),

=5 3 3 TaSs))

Qe QASIi e W}
i

(19)

In regards to (16) and (19), in the model (k, €, E, 3, \9(),

we generally have

, . (20)
2o~
X D Y (pi,+ ..+ p)B(BS, BS,).
(&' s,
o ~ k
Here, the first summation is taken over the vectors ®
that have exactly k ones among their coordinates and

the second summation over the elements S,’,, that are

s S}
In the problem with disjoint classes,

1 1
FAS) = —
i(5) N mj-m

members of W]l =K;n (S, ...

J-1

", , 1)
XD D, YEHPpi++ p)B(@S, BS).

{6)"}i=’”/—1+1
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If we consider in succession objects of the control sam-
ple Sy, ..., S, as S, then the initial information

(I(Sl)? &(Sl)a s [(Sm)’ &'(Sm)’ I(Si)’ LR I(S:]))
= (lo(D), I5(q))

is transformed by computations set out in I through V
to a matrix {I';},,;. Here, I';=T(S)) (i=1,2, ..., ¢;
j=12,..., ). The matrix {I';} is called an estimation
matrix. The operator R, such that

Ry(Io(D), Is(g)) = {T;},., (22)

is called an estimation operator. In the cases where
I'; are determined by the choice of values for the
parameters T,, ..., T, the operator R, is sometimes
denoted by

I,(D, 1
RA( o(D), Is(q)

T ... T,

) = (T} (23)

or
Ry(my, ..., ).

Thus, for the model with the parameters (k, €, .2:, 3 , ?)

RA=RA(k, £, g, B, '—?).

VL. Decision rules in estimates calculations algo-
rithms. This rule r for the row (I, ..., I'y) in the esti-
mation matrix for each class K; (j=1, 2, ..., [) evaluates

the predicate P(S;) = “S; € K;” or refuses to do so. It
is written in the latter case P(S,) = A.

Thus, r(Ty, ..
0.4 (S, is the information vector of S; in the algorithm A

defined by the operator R, and by the decision rule r.
Clearly,

ST = ..alh)=6,(S)), where

r({T b)) = {0 s

A , . . .
Here, {0;; },; is the matrix of the information vectors

of the elements S, ..
rithm A.

Different estimation models use different decision
rules. In problems with disjoint classes, for example,
the following decision rule was used:

The elements of the row (I, ..., T include the
maximum element I';. If T; - I';, > 8, (u # j) and

., S, constructed by the algo-

if

i
zuﬂ'r”‘

K,, u #j. If at least one of the conditions listed above is

> 8,, then S; € K| and, consequently, S; e

not satisfied, then all the elements in the row (()L,A} s eees
Oc,/?) of the matrix {I';} are equal to A. The model

defined by the operator R(k, &, g, ,3 , ?) and by this
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decision rule with the parameters &, and 9, is denoted
by
Em(k’ 8’ E) B’ ’-Y>’ 619 82) (24)

This model and its submodels were used most often in
solving practical problems by estimation algorithms
[7, 13, 34, 36, 72].
More general forms of decision rules are as follows:
1°. For each class K, we specify the linear form

blx,+ ... +blx+bl,, = L(b, %
and the threshold constants cy,, ¢, G = 1,2, ..., ). Let

I, =@, ...T).
The linear decision rule:

if L,(b',T\) > cyy then S, € K or o)) = 1,
ifLJ(E], T) < ¢y, then S, e K, or oc,‘j =0,

for ¢y, > L](l;], f,) 2 ¢y, the algorithm A does not estab-

lish the membership of S, in K, and 0(3 =A.

2°. Similarly to 1° above, it is possible to define a
nonlinear decision rule. In this case, instead of the lin-

ear forms Lj(l;], x) , we specify a system of continuous
functions f(x;, ..., x) =1, 2, ..., D).

Important special cases of the rules defined in 1° and
2° above are

L(b,5)=Lb,%), j=1,2 .1 25)

fi(xs cnxp)=sflx,nx), j=1,2,..,1L (26)

By varying rules I through VI for the determination
of characteristics in estimation models, we can obtain
various models for recognition algorithms of the esti-
mation type.

§ 4. Formulas for I'(S)

The elements of a matrix of estimates are usually
impossible to evaluate directly from their definitions
in § 3.

Indeed, the number of reference subsets in the

model Nk, €, %, 1_)), ?) 24) is C,’f and the number of
terms in (19) for I'(S) is p( W]1 )Cf, , where n is the num-

ber of features in the description of objects and u( W]1 )
is the number of descriptions of objects in K| in the
learning information.

In many cases, however, it is possible to develop
practically efficient formulas for I',(S).

It is not the aim of this paper to enumerate all such
cases. We only describe two fairly general methods

PATTERN RECOGNITION AND IMAGE ANALYSIS

whereby simple formulas can be developed for I'(S)
and demonstrate several of their applications.

I. The first method draws upon the special property
of estimates obtained by (19) when

1
IL(S) = 1
ww,)
27
X Y VS, + o+ Dy )Ba(S, S,
Sie W,
where iy, ..., iy 18 the collection of all coordinates of

value 1 of the vector @, the proximity function By
takes only O or 1.
The quantity ['(S) is produced from I'; (S), @ ~—

Q € Q, by (18). Fix the feature ¢ (1 <z < n). Denote by
VS, S, the number of subsets  in €, (the number of

corresponding characteristic vectors ®) containing the
feature ¢ (the coordinate numbered ¢ has value 1) and
such that

B(®S, ®S,) = 1. (28)

The set K, N {S), ..., S,,} is denoted by le .
Theorem 1.

1 1 .
T(S) = — =~ 2, Y)Y, pViCS, S).
”(Wf)Ns,eW; r=1

Proof. Indeed,

Y THS,S) = 1(S) Y, Ba(S,S) Y, p,

Qe Q, te Q

S S =vS)Y VS, S).
t=1

Q B,(S,S)=11e Q

D Qe Qy

= Y(S)

Substituting the above expression in (18) proves the
theorem.

Corollary. Let I'(S, S) denote Y T(@S, ®S,)

Qe Qy
Then
I'(S,8) = ¥(S) ), pVi(S, 8) (29)
t=1
and
1 1
r(s) = N'u 1 ZIF(S,S,). (30)
175,eW,

Note that, if the number of distinct values of V,(S, S,)
is small in (29), then the formula for I'(S, S,) is simpli-
fied and so is the formula for I'(S). In this case, the
Vol 8
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summation over the system of reference sets almost
disappears for I'(S) in (19), and only the summation

over the elements S, from W; remains.

Let us describe two forms of the proximity function
for which the number of distinct values of VS, S)) is

small for all §;in W;.

Consider the model It where the proximity func-
tion for (@ I(S), ® I(S)), I(S) = (ay, ..., a,), I(S) = (b,
... b,) is defined by the system of inequalities p,(a,, b;) <
€ .- Pula,, b,) < g, as follows. If the identically num-

bered inequalities in the pairs (0 S;, ®S) and (©S,,
® S") are either both satisfied or both not satisfied, then
B(®I(S,), ®I(S)) = B(®I(S,), ®I(S)). (31

Definition 14. The functions B that satisfy (31) and
assume O or 1 are called threshold functions.

The set {B} of threshold functions is denoted below
by {B"}.

Let the pair (/(S) = (ay, ..., a ) and I(S") = (by, ...,
b,)) of admissible objects be assigned the characteristic

vector & = (8, ..., 8,) = 8(S, S):
if pi(ai’ bz) < 8[, then 8,’ = 1,
if p(a,-, b,) > Ei, then 61' = 0, i= 1, P (3

Clearly, if §(S,, S) = 8(S,, S, then for any @ the
threshold function B® satisfies the equality

B(&S, @S) = B(&S,, ®S"). (32)

Let there be given vectors S(S, S;) and the characteris-

. ~ 1 ~2
tic vectors @ and @ of the reference subsets €2, and €2,.

Definition 15. The threshold function B® is called
symmetric if the condition that the vectors S(S, S,)&)l ,

3(S, S) & (here, the multiplication of vectors is taken
to mean their coordinate-wise multiplication) have the
same number of coordinates of value 1 and the same
number of coordinates of value O implies that

B(®'1(5), ®' (I(5,)) = BY(&'I(S), ®"I(S))).
If in @ the vectors of value 1 are iy, ..., i, then any

threshold function BE is symmetric if its value on
(@ I(S), ®I(S)) is determined only by the number of
inequalities satisfied or not satisfied in (10).

Definition 17. The system of reference subsets, Q,,
is called correct if the condition that Q € Q, and  has

cardinality &, 1 <k < n — 1, implies that all subsets of
cardinality k belong to €,.

PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 8

Theorem 2. [f the proximity function Bé is symmet-
ric and the system of reference subsets is correct, then
VLS, S) (1= 1,2, ..., n) take at most two distinct values
for each pair (S, S)).

Proof. Combine in one group the features ji, ..., j,
such that the corresponding coordinates of the vector
8 (S, S;) have value 1. Take an arbitrary pair of features,

juandj,, from this group. Consider an arbitrary ® such
that

jo€ Qd—Q), j, € Q and B;(S,S,) = 1.
Then, due to the symmetry of the proximity function,

for @' corresponding to the set (2 L j )\j, we have

B ®'1(S), ®'1(S)) = 1. (33)

Due to (33) and that Q — (& U j)\j, is
one-to-one correspondence, we have for the collec-
tions M,, and M,, whose elements are reference sets
containing j, and not containing j, (in the case of M) or
not containing j, but containing j, (in the case of M,):

V; (5,8) =V, (§,S). We also made use of the fact that
the system of reference subsets is correct.

The same equality is proved in a similar way for fea-
tures associated with O coordinates in the vector (S, S).

The theorem is proved.

We proved that all features which correspond in

S(S, S;) coordinates of value 0 or 1 occur in the same

number V0 or V! of reference  with respect to which
the proximity function between I(S) and I(S)) is 1.

The theorem can be formulated as follows.

If (v - w) is the scalar product of the vectors v and
w, then

T(S,5) = (3(5,5)-B)- V' +(5(5,5) - B) - V°. 34)

9
where p =(p; ... po)-

Here are several examples of applications for the
theorem. Suppose B (®S, ®S,) = B. (see 1°, § 3,
Chapter I1),

T(®S, ®S;) = V(S)B:(®S, DS)(p;, + ... + p,)-
Then (Theorem 1)

1_‘,'(S) =

L3 e, s)
Nu(W))

i’sew,

and
LS, 8) = V1Y put Vo) o

No. 1 1998
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with the summations taken over the coordinates of

value 1 (#) and of value 0 (v) in the vector 8(S, S)).
Consider the system €, of reference sets consisting of
all subsets of cardinality k in the set {1, 2, ..., n}.

Let 7 be the feature which is assigned a coordinate of

value 1 in the vector S(S, S,). Then V, = V!, The quan-

tity V! is equal to the number of subsets of cardinality &
containing ¢ and not more than € features which corre-

spond to zero coordinates in 5(5 , 5. Let ¢(S, S;) be the

number of one coordinates in S(S, S)).
It is easy to calculate that

£
i I k-u-1
VS, $8) = Z,Cn—qmsocq(s,sa—r

u=0
Similarly,

€
0 w—1 k—u
V(@s, Si) = ch—q(S,S,)—ICq(S,S,)‘
u=1

Substitution in (34) yields

1
(S = Y(S)
’ Nu(W})Sa,
x{(S(S, $)-BY o, C ! (35)
u=0

+(58.5) DY, C;‘:;C’;‘“}.
u=1

Let now the collection of all subsets in the set
{1, 2, ..., n) be chosen as the system £,. The function

B(®S, @S,) depends on the parameters £, £, , and &, .

-

1, if the coordinates in 8(S, S,)
numbered in Q(® ~— Q) include

at least €, coordinates of value 1

B(®S, ®S;) = 1 (36)

and not greater than €,

coordinates of value O

\O in all other cases.

The remaining steps in evaluating I'(S) are defined
as in the previous case.

It is easy to see that the function B® defined in (36)
is symmetric. If, again, the number of one coordinates
in 8(S, S) is g(S, S;), then V! and V? are defined as in
the first example.

PATTERN RECOGNITION AND IMAGE ANALYSIS
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Then
q(S, S,) - E1

;:2
1 Ejtu-1 u
Vv = Z Cq(S, S)-1 Z Cn—q(S, 5 (37
u=0 u=_0

(5, 5) - & &
0 u+g u-1
Vi= 3 Cussy X Cacassy-te
u=0 u=0

Having (37) and (38) and using the theorem, we can
easily derive a formula for I'(S) G =1, 2, ..., ]).

To demonstrate, we prove (37).

In addition to one fixed feature ¢, the reference sub-
set should include either €, — 1 or g, ..., or ¢(S, S,) ele-
ments that correspond to coordinates of value 1 in the

vector 9 (S, S)).
The choice is made from g(S, S;) — 1 elements, the
element ¢ is fixed and the number of 1 coordinates in

S(S, S) is g(S, S). The total number of possible
choices is

(38)

q(S,S) - €, )
e +u-1
Z Cq(sv Sr) -1
u=0
Each of the selected subsets can be supplemented
with at most €, elements from the number n — ¢(S, S;) of

(39

the elements that correspond to O coordinates in S(S, S).
The total number of possible adjunctions is

&

u
2 Cogs.5y-
=0

Equations (39) and (40) readily lead to (37). Equa-
tion (38) is proved in the same way.

Having formulas (37) and (38) for V! and V?, we can
easily derive a formula for I'(S).

The generalization of the concept of the symmetric
threshold function is the concept of a threshold func-
tion that is symmetrically with respect to partition.

Let {1,2,...,n} =\, N, be the partition R of a
set of features into subsets NV, ..., NV,. Let there be given

(40)

Y .. ~1
two subsets, Q! and 2, with characteristic vectors ®

and @ . The characteristic vectors of the subsets N, are
denoted by ®; (i=1,2, ..., v). The subsets Q, and Q,
are called equivalent with respect to R and the descrip-
tions I(S), I(S,) if the vectors (&' - @;) and (& - @®,)
have the same number of 1 coordinates (i=1, 2, ..., v).

Definition 18. The proximity function B(® S, ®S")
is called symmetric with respect to the partition R if

B(®'S,®'S,) = B(®'S, ®°S,).
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Divide the feature set {1, 2, ..., n} into equivalence
classes with respect to the partition R: the features 1" and
" are R-equivalent if they both occur (do not occur) in
each subset NV, (i = 1, 2, ..., v). The number of classes
of R-equivalent features is denoted by r(R).

Theorem 3. If B is a threshold function symmetric
with respect to the partition R and the system of refer-
ence subsets is correct, then the number of distinct val-
ues of V,(S, S)) is not greater than 2r(R).

Proof. It is only slightly more elaborate than that of
Theorem 2. Let the features 7' and ¢" be R-equivalent and

their corresponding coordinates in 8 (S, S,) be equal.

Consider an arbitrary reference set Q',r' e Q1" € Q'
Since the system of reference sets is correct, Q" =
(Q' U "\t is likewise a reference set. Establish one-
to-one correspondence between the reference sets con-
taining at least one of the elements ¢ or t". If {¢, 1"} € Q

thenQ—Q.If f € Q' and " € Q, then Q' — Q".
The correspondence symbol signifies that 7' and 1" occur
in the same number of reference subsets. Since ¢ and 1"
are R equivalent, they either both occur or both do not
occurineachof N (i=1,2, ..., v).

Since the coordinates in S(S, S;) corresponding to ¢
and 1" are equal, the same number of 1 and 0 coordi-

nates in 8 (S, ;) correspond to the elements of the sets
QNN, QAN IfQ ~—— ® and Q" ~— @", then,
because the proximity function B is symmetric with
respect to R, we get

B(®'S, ®'S') = B(®"S, @"S'). (41)

It readily follows from (41) that V,(S, S,) = V.(S, S).
The latter equality, the condition that the number of R-
equivalent features is r(R), and the fact that the coordi-

nates in 8 (S, ;) take at most two values easily prove
the assertion of the theorem.

Corollary. If the partition R consists of v disjoint
subsets, then the number of distinct values of VS, S,) is
at most 2v.

The evaluation of VS, S;) for correct subsets and
threshold functions symmetric for N;, ..., N, usually
involves only technical difficulties. Let us calculate
these values for two cases.

Let the system of reference subsets Q,’; be the col-
lection of all the subsets of k elements and let the func-
tion B(® S, ® S,) be symmetric with respect to the sys-
tem of disjoint subsets and defined by the parameters
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€, ..., €, (they define the vector S(S, S)) and by the

parameters e} ,j=1,2,..., vas follows:

1, ifin (S, S,) the coordinates
numbered from N;,NQ include

B(wS, ®S;) = J at most e} coordinates of value 0,

j=12.,v (42)
0 in all other cases.

The corollary of Theorem 3 implies that VS, S)
takes at most 2v values. All the features u from N, with

the same coordinate o. of the vector S(S, S;) have the
same value of V,. We denoted it by V;x (a=0,1;7=1,
2, ..., V).

. 1
Let us now derive formulas for V;) and V;.

Let N; contain A; elements of which A,l- , Af, and
A,l + AJQ = A, are such that the coordinate in S(S, S,)

numbered the same as an element in A; or A?, takes
value 1 or O, respectively. Similarly, the number k, of

elements in N; M € can be represented as k? + k; =k,
(according to the values of the respective coordinates in

S G=12,..., v).
We say that the set N; N Q satisfies the condition Q,
if the number of 0 coordinates in S(S, S;), numbered

from N; M €, is not greater than 8; (1<jgv.

Let us calculate the number B(k;, A ,l , A;), € ]I ) of

such sets. It can be done similarly to the calculations
given in the example of an application for Theorem 2.

Note that, if A? < 8} , then

k

B(k;, Al, Aj,€,) = Cy. (43)
0 1
For A] > €,
)
Joad oiy k-t i
B(k;, A7, Ay, €) = ZCA; cAJO. (44)
=0

Let now B,(k;, A?, A; , e} ) be the number of the
sets N, M Q that satisfy the condition Q; and contain a

feature u such that the uth coordinate in S(S, S;) is equal
too (=0, 1).
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It is easy to prove that

g
k, - _
Bo(kj Aj.Ajg) = F.C1Cull @)

By(kj, A (46)

ZC’_J A

It is equally obvious that k =k, + ... + k...
In view of (43) through (46), we get

o 0 1
V_] = 2 H B(ki’Ai’ Ai’ 8,)
(kyy oo k) i*j
kyt.o.o+k, =k 1Sisv
k, <A,
AI?+AI}=AM
0 1 1
xBa(kj,Aj,Aj,e]). -

Similarly, we can derive formulas for V;-x when the sys-
tem €, of reference subsets in the algorithm A consists
of nonempty subsets in the set {1, 2, ..., n), and the

function B(®S, ®S;) is defined by the parameters

€, , € and is symmetric with
N,

12
€ os Ep €15 €1y oeny
respect to the system of disjoint subsets W, ...,
Suppose

(1, if, in the vector 8(S, S,) the

coordinates numbered in Q, N N;

. 1 .
include at least € y coordinates

B(®S, @S,) = 1

of value 1 and not more 47)

j=12,..,v

L0 in all other cases.

2
than £/,

As before, we use A, A? ,and A} to denote the num-
ber of elements in N, and the number of elements in N;
with O and 1 coordinates, respectively, in the vector

5(5,8)G=1,2,...,v.
Theorem 4.

‘ e—l

ZC ECM

1
k=¢
= N l’ >

ZCA,12C0

0
V;
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2 ¢ 1—12C°

k= e-l
=N ,
EJ

k k

Sy

| AJ AJ
k=¢, k=0

1
V;

V=TI ZCA,ZC

1=\ g !

Proof. Note that, if A} < 8} for at least one j (j =

1,2, ..., v), then there is no reference {2 such that
B(®S, ®S) # 0. In this case V] =0, 00=0, 1 ( =
1,2,..., v

Therefore, in what follows, we assume that A} > e;
(G=1,2, ..., v). We say that 2 " N, satisfies the condi-

tion P; if the vector 5(S, S;) has at least € 11 coordinates

from Q N N; that take value 1 and not more than 8?
such coordinates that take value 0. The number of the

sets that satisfy P; is denoted by D(€; , €], A}, A}).

Here, A} and A;) denote the coordinates in S(S, S)
that take value 1 and O, respectively, numbered from ¥;

G=1,2, ..., v

Fix a feature u in Q N N, form the set (2 N N)\u =
€2(j, u) and introduce the properties P;) and P ]1 on it,

P;) (€(j, w)) is the number of coordinates in S(S, S,
at least e} of value 1, numbered in Q(j, u) and not
greater than ef — 1 such coordinates of value 0.

The property P} (€2(j, u)) implies that there are in
Q(j, u) at least € ]1 — 1 coordinates in S(S, S;) of value 1

and not greater than e; coordinates of value 0.

The number of the sets €2 that satisfy the property P;
and of the sets €(j, u) that satisfy the properties P]Q or P}

is denoted by D(E A ), D (8 ;), A; ),
and D' i (e i s i AY j o A j ), respectively. Similarly, D?'

or D}t denote the number of the sets Q(j, u) that satisfy

]’ ]’ ]7 ]’

the property P;) or P} and an additional condition that
the uth coordinate in S(S, Spist,te {0, 1}.
It is easy to show that all D;)’ (and, similarly, D}')

are equal for all these features u.
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The equality
12

vi= [l D e, AL A)D] ()€ A A))
le{l,i,...,v}\j L (48)
= HD(ell,ef, AL A b, (elj’ezj’Alf’AO’)

=1 D(e), &}, A, A))
holds for all features u in N; such that the uth coordinate
of 8(S,8)ist(=1,2,...,wt=0,1).

It is easy to calculate directly that

€

D(e,’,e,z, A,I,Af) = (CA’I +CA’, + ... +Ci{)

2

2 A J ]
g, g, -1 oy _ k k
x(CA?+CA? +"'+C%) = > Cud Co

k=e k=0
Similarly,
I L
Dy’ = 3 Cud Co, (50)
k=e! k=0

We can calculate D ,’»l in the same way.

The substitution of D;’O , D}‘ and D in (48) proves
the theorem.

In simple cases, the formulas for ['(S) are not com-
plex. Thus, if “8(5, S,-)” denotes the number of unities
in 8(S, S,), and we consider the function B(® S, ®S))
that is equal to 1 if and only if the coordinates  that
take value 1 in ® (S, S)) are included among the coordi-
nates that take value 1 in 8(S, S, (all inequalities p, < g,
are satisfied), then:

1°. If the system of reference subsets consists of all
k-element subsets in the set {1, 2, ..., n),

1 k
TAS) = — 2 YSICses s
(W) W,

2°. If the system of reference subsets consists of all
nonempty subsets in the set {1, 2, ..., n}, then

L_ 3 yesp@Peilyy,

17sew

r,(S) =

Here, W} = K; N {S;,
1,2, ..., m.

IL. The second principle underlying formulas for
T'{S) draws upon the fact that the characteristic func-

s Syt and I(S) € Iy (u =

tion f 3 (®) of the system £, of the reference sets of A
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can be given a special representation. It is well-known

[74] that any Boolean function f;, f = 0 (and so, f 3 (®))

can be represented as a DNF composed of orthogonal
elementary conjunctions, that is

fo(@) = Kyv..vK, KK;=0 forizj (51)

o, G, x, C = 1
K=x"'“"..x% x=:"
c=0.

The function f g (®) is denoted below by fix, ... x,)

or simply by f. It is also known that any representa-
tion (51) corresponds to the partition of the set N, of
unities in the function into a system of disjoint inter-
vals Ng , ..., Ng (where Ng is the set of ones in the

conjunction K)); that is,
Nf - NK‘U "'UNKY’ NK,(WNKI
(52
is empty for i #j.

Let @, be the collection of characteristic vectors for
the system €24 of reference subsets of the algorithm A.
A partition is specified such that ®, = \_J;_, {®}, (con-
sequently, Q, = {_J)/_ {Q},) into a collection of disjoint
subsets {®}; (and, respectively, {Q}; (i=1,2, ..., 7).

Consider a collection of estimates calculation algo-
rithms A, ..., A, with systems of reference sets {Q}, =

Q5 - {Q}, = Q, , in which the remaining steps,
II through VI, are defined identically, such that

rf“(s) = % . ;}
ww;)
(53)
N Z 2 Q(B(DS, ®S;, Ty, ..., ),
Se w0e {0}
here ¢(B, ®;, ..., T,) is an arbitrary numerical function
defining the estimates I'(® S, ® ;) from the proximity
function and the fixed values of numerical parameters
Ty, ooos T
Thus, we previously considered (13), (?)), the sca-
lar product of the numerical vector (p, ... p,) by ® as
0: YS)(P, ®)B(®S, ®S,), B being a threshold prox-
imity function. We have
Theorem 5 [14]

ris = Y r/o.

w=1

8 No.1 1998
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Proof. It is easy to see that

sy = L. 1
1=y w(W))

X Y @B(®S, ®S), ..., )

Se W}Qe Q,

= Z(Nu(W ) 2 z Q(B(®S, ®S), 1, ...,n,)]

]QE{Q}

A
= 2 T,"(S).
u=1
The theorem is proved.

Let the algorithms A, A,, A, and B be defined by the
systems of reference subsets Q,, Q,, Q, U Q,, Q, =
Q; N Q,, and T'(S) are estimated by formula (53) where
{®@}; is replaced by Q,, ,, Q, U Q,, and Q,,, respec-
tively. It is easy to prove (the proof is omitted)

Theorem 6 [14]

TAS) = T)'(S) + T13(S) - TH(S).

It follows from Theorems 5 and 6 that, if for some
basis subsets of characteristic vectors (and the corre-
sponding systems of reference sets) the estimates I'(S)
are evaluated by the formulas derived above, it is possi-
ble to obtain formulas by representing arbitrary sys-
tems of reference sets as the sums of basis subsets.

It turns out [74] that, if the collection { @ }, of char-

o L. N (¢ o]
acteristic vectors forms the interval Ny (K= x,»l1 .- x,")

and proximity function B is a threshold function, then it
is likewise possible to formulate a general method for
the synthesis of formulas for I'(S). Then, using the rep-
resentations in (51) and (52) and Theorems 5 and 6, we
can develop formulas for algorithms with fairly diverse
systems of reference sets. The development of a for-

mula for {® }, = Ng (K = le . xZ’) follows.

The conjunction K turns to unity on any ® =
(®; ... ®,) such that o, =0, ..., ®, = G, and the
remaining coordinates are arbitrary. To simplify the
notation and without loss of generality, we can assume
that K= X, -...- X, - x,, -...- x, (this form can always

be achieved by rearranging the variables). Clearly, the
system £, = Ny includes all the subsets that do not con-

tain {1, 2, ..., r) and include {r+ 1, ..., ¢}. Let us eval-
vate separately
rY(s) = I(®S, ®S,),
J
(W ) z
= {r+ 1, R

PATTERN RECOGNITION AND IMAGE ANALYSIS
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Consider the function B (€;, &,) in (36) analyzed

above. Formulas of V! and V° were obtained for it in
(37) and (38). Using the formulas and Theorem 1, we
can easily write a formula for I'(S).

We denote by At , and A _, the coordinates of
value 1 and 0, respectively, of the vector S(S, S;), which

t}. Then B (§,, &) =1
on (®S, @S, if and only if: (1) the number of unities

are numbered from {r+1, ...,

among the coordinates of S(S, S;), numbered from

{t+1,...,n},isatleast &, — A,_, and (2) the number
of zeroes among these coordinates does not exceed
~ 0
&€ - At -r

So, we reduced the problem to the one solved previ-
ously by the substitution: n —»=n—1, &, —» &, ~A,_,,
€, — & — A?_,. If we substitute them in (37) and

(38), include the term F? (S) and apply Theorem 1, we

get
Theorem 7.
1 0 ol S
LS = ;(S)+ Y(SH((S(S, S)) - p)
: Nu(Wb( ’ E,,l

4(s, S)-¢€; +A, ,

t ryu-1
X Z q(s 5)

u=0

2 Cn q(s,S)

_ q(s, S) el+A, , ]
+(8(S, S) - 3) 2 q(ls S) z Cn q(S 5))]

u=0 u=0
where ¢ (S, S)) is the number of the unities among the

coordinates of (S, S;), which are numbered from {t +
- ).

Generally, once a formula was obtained for I'(S) in
an algorithm with the system £, of reference subsets
identical to all the subsets {1, 2, ..., n), we can use a
method similar to the one described in proving Theo-
rem 1 to derive a formula for the case { ® }, = Ng.

SECTION II.
OTHER MODELS OF RECOGNITION ALGORITHMS

§ 5. Algorithm Models Based
on the Separation Principle (R Models) [10]

Algorithms based on construction of the class sepa-
rating surfaces appeared before any other algorithms.
They are mainly applied to problems with the learning
information Iy(K|, ..., K;) defined in standard form with
numerical features.

1998
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Consider first a problem with two disjoint classes,
K, and K. It is postulated explicitly or implicitly that
there is a surface R of a fairly simple form, which sep-
arates the elements of K, and K,, so, for example, that

ifSe K,and I(S) = (a,, ..., a,) = a,thenR(a) > 0;

ifS'e K,and [(S) = (b, ..., b,) = b, then R(b) <O0.

Algorithms differ in the set {R} of surfaces, from
which the separating surface is selected, and in how the
surface is selected. Most often, the set {R} is the class
of hyperplanes, o,x; + ... + O,x, + 0, ., = 0, the class
of piecewise linear surfaces, and the class of second-
order surfaces.

If all features in the descriptions of S are binary, then
the collection of elements in the first and second class
is identified with the set of unities and zeroes, respec-
tively, of a not everywhere defined Boolean function
F(xy, ..., x,) (its domain coincides with the set of
descriptions I(S)), ..., I(S,,) in standard information) [5, 6].
The arbitrary logical function ®(x,, ..., x,) that imple-
ments I is a separating function.

The object S in this case is assigned to K, or to K, if
FU(S)) =1 or F(I(S)) =0, respectively.

A similar procedure is followed in constructing the
class of separating surfaces if the features 1, 2, ..., n
have each not more than & gradations and if the set of
admissible objects is separated into no more than & dis-
joint classes. Then, similar to the Boolean case, a not
everywhere defined function F(x,, ..., x,) of k-valent
logic is developed, which takes j — 1 values on the
descriptions I(S) of objects which are members of K;
G=1,2,...,1; 1 £k). Then the separator is an arbitrary
formula of k-valent logic, which implements F(x,, ..., x,).
It is natural to select a disjunctive normal form (in the
case of two classes) or its equivalent in k-valent logic to
act as the corresponding formula.

The idea of constructing the separating surface by
the successive approximation method is the basis of the
method of potential functions [4]. It embraces a fairly
broad class of surfaces as the class of possible separat-
ing surfaces.

Once the class {R} of separating surfaces is fixed,
one of the surfaces is generally selected by solving an
extremum problem. For example, we can select a sur-
face that produces the best recognition accuracy on a
specified control set.

The principal conclusion that can be drawn from the
analysis of various R models is this. Any of these algo-
rithms takes two stages to execute. Let a recognition

problem be solved for admissible objects S}, ..., S .

1. Using learning information, set up a numerical
matrix {R;}, . The element R; can be interpreted as a

value of the membership function of S; in K; (i =1,
2, ..,q:j=12,..,D.

2. Using the matrix {R;}, ., and the decision rule of
the algorithm, set up the matrix {o;}, ., of information

PATTERN RECOGNITION AND IMAGE ANALYSIS
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vectors for the elements S, ..., S;, such that o; €
{0, 1, A}. If the transformation of [, into {R;}, ., is
regarded as the application of the operator R4 and the
transformation of {R;},, into {a,}, ., as the applica-
tion of the other operator r,, then an arbitrary algorithm
in the R model is representable as A = (R,(/\(]),
I{@)ra{ R}, < )- Here, the product of the operators is
taken to mean their successive application.
The basic R models are as follows.

L.9a,, ...,a,, a,, ). The separation is made by the
hyperplane ax; + ... + a,x, + a,,, = 0. The model is
defined by giving the parameters ay, ..., a,,;and a
decision rule.

IL SD%’; . The separation is made by a piecewise-linear
surface. Any separating surface R divides the space of
descriptions I(S) into two subsets: M*(R) = {1(S): R(/(S)) >
0} and M=(R) = {I(S): R(I(S)) < 0}. The notation R(I(S)) S
0 is conventional.

IHL. The models (/) differ from the models in I
and II above in that the separation is made by surfaces
R, ..., R, such that the surface R; separates the objects
that are members of K; from the objects that are not
members of K; (j = 1, 2, ..., [). The operators R, are
introduced in the same way as in I and I

V. D).

Let there be given a standard learning information

Iy = (I(S1), A(S))s ...y 1(S,), 0(S,))

and descriptions I(S} ), ..., I(S, ) of admissible objects.
Each S; is assigned a parameter Y(S;) = y; > 0. The sep-
arating surface R is picked from the class {R}.

Consider the predicate Px(S)):

1, if RU(S))>0

P Si =
#(50) {o, if R(I(S)))<0.
Each S, is assigned a pair (0, B), where o = Pg(S;) and
B = o is the jth coordinate in the information vector
a(S).

The set Sy, ..., S, is partitioned into four disjoint
subsets S?o, sV

i S}O and S ,1 ' of the elements S, that
are assigned the pairs (o, ) equal to (0, 0), (0, 1), (1, 0)
and (1, 1), respectively. Suppose

/ i
On = 2 Yo Qo = z Ve
ses, 5e5,)’
j i
Qn = 2 Yo Qoo = z Yi-
Se sV 5es8)”
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Assign S; a numerical vector (v, ..., r;) as follows.

J 7
If RU(S))>0, then R, = —2tC0
+ +1
ij Qmj 54
it R(U(S))<0, then R, = —20*Q0

Ol + Q% +1
The conditions in (54) define the operator R, that
transforms I, into a matrix {R;}, .

V. The model IN'(Y, ) is similar to the model in IV
above and differs in that the surface R;; for each class K ;
is found relative to the surface R; (j=1, 2, ..., ).

§ 6. Statistical and Potential-Type Models

1. Statistical models. We do not dwell on these
models in detail. What is important for the purposes of
this paper is that their algorithms transform the learning
information I, and the descriptions of admissible
objects, I(S] ... S;); that is, the pair ({y(]), I5(g)), into
a numerical matrix, {p;}, .

Then from the elements of this matrix we develop
information vectors &? (S) = (o ... o) for objects S; .
The elements p;; can be, for example, the probabilities
of §; being members of K; j=1,2,...,Li=1,2,...,9)
or some other statistical measures. We need only to

state the fact that, as with other models, their statistical
counterparts involve two stages:

1°. The operator R, is applied to transform (I(0), I(g))
into the numerical matrix {p;}, ;.

2°. The decision rule r, is applied to transform {p;},,
into the information vector matrix { oc,;‘- 1i@=1,2,...,4,
j=1,2,..,D.

IL. Algorithms of the potential function type.
Consider the case of numerical features and assume
that the original information is specified in standard
form.

Among §,, ..., S, we pick the set W} of objects
which are members of K;. The algorithms are specified
as follows.

Consider a collection of functions, {F}. The poten-
tial of S; with respect to K; is the quantity F(/( W} ),
I(S})), where (W 11 ) is the collection of descriptions for
objects out of W} .

The following set of functions can be considered as
{F}. Let p(I(S), I(S})) be the distance in the set of

descriptions of admissible objects and Y(S;) = 7; be the
mass of an object S;. Put

pUS), IW)) = Y YpU(S), I(S)).

Sew,

Then {F} = {e®°®Y} or {F} = {é?&%ﬁ?} (It is

possible to specify the class {F} in other ways.) The
potential of S; relative to K, respectively, is

0 Y vipU(S), 1(S)

1
S.e W Cq
e ' ,

2 Y, pUS), 1(SH) + ¢3

Sew,
In the general case, the potential of S; relative to K;

1.
(the set W, ) is denoted by II;.

Potential-type algorithms are executed likewise in
two stages.

1. At the first stage, the potential matrix {I1;},,; is
set up using the given control sample S, ..., S; .le.,
the operator R, acts to transform (/(!), I{(¢g)) into the
numerical matrix {II;},..

2. The collection of potentials I1;, ..., Il; (or the
entire matrix {Il;}) is inspected and the decision is

made as to the membership of S; inK;(j=1,...,0).In

. . . A .
other words, the information vectors matrix { o; }, ;s

derived from the potential matrix {I1;},.,, i-e., the -

decision rule r, is applied and r,{I1;} = {OL;; Yaxir

The statistical and potential-type algorithms and
their subclasses can be described using various models.
The underlying principles of the models are similar to

those used in describing V (estimates calculation) mod-
els or R models.

§ 7. Structural Recognition Algorithms [33, 78]

The basic scheme of structural recognition methods
was described in the Introduction. We confine our-
selves, therefore, to an analysis of one example.

Suppose we are given a finite alphabet U = {A, q,,
..., a,} and descriptions of objects to be classified,
which are phrases in X (Definition 5).

The class {y}; is composed of elementary predi-

cates, Q‘jf,’ ! (S): the membership function (estimate) of

an object in the class K is greater than the membership
function (estimate) of S in K.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 8 No.1 1998
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In addition to Q If, 1 (8), the class {y}; includes the

=il . .
predicates Q{, (S): the estimate of S for K; is not
greater than that for K.

In addition to the above predicates Q) jf, " and Q]f, ! ,
all their logical products are also included.

The set of formulas, {®};, is composed of elemen-
tary predicates P(r, a;, S), which implies that the #th
character in the phrase Sisa; (r=1,2, ..., ¢, ...,i =1,
2, ..., n).

Let it also be known that the classes K; (j=1,2, ...,1)
are disjoint.

The basis elements {B} were used in operations
{OV to construct the set M; of descriptions of objects in K;.

. I
The numerical parameters J,, and 55, (u=1,2,..,1,
¢t # u) were introduced.

Consider the description S of an object to be recog-
nized, S € M;(j=1,2,..., 1.

Suppose the rth character in S is ¢;. We denote the
number of words in M, which contain the rth character
a; by Q/(r, a;) and that for M, by Q/(r, a)).

If Q(r, a) — Q(r, a) > 8}, , we include the formula
P(r,a, S) — Q' in {x);. (

If Q(r, a) -~ Q(r,a) > 8?, , we include the formula
P(r,a;, S) — Q{rl in {x};.

If {x}; includes the formulas ®, = (P(k, a,, S) —
04" and @, = (P(k, a,, ) —= O ). then {x}; also

I
includes the formula P(k, a,, S) — Q,f, , Q{M] .

The symbol Q signifies that Q =Qor Q =0.

We introduce the parameters x,‘li (r, a;) and x,2,~ (r,a)
G=1,2,..,Lt=1,2, ..,j-1L,j+1,..,D).
Suppose S = (b;b, ... b,). We assign to b; (i = 1,
2, ..., q) the number
0, if b; = Aor {)}, has

no formulas containing b,
b, S) =

o .
Zx,i in all other cases.

t
The summation is taken over ¢ numbers for which
~ f,1 ~ f,
{x};includes the formula P(i, b;S) —~ Q,'f, JIf Qf, -
~ il _f
ij,’l, thena=1.If @, = Q,j-;l,then a=2.

PATTERN RECOGNITION AND IMAGE ANALYSIS
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The object S is given the estimate

q
1
Ixa=62nwwwp
i=1
The quantities vy, ..., ¥,, ... are numerical parameters.
We described a model of structural recognition

. . 2

algorithms with the parameters 85,, O, > x,lj (r, a),
2

x,; (1, a;), and ;.

This model transforms the structural learning infor-
mation and the descriptions of the objects S, ..., S, to
be recognized into a numerical estimation matrix,
{T';}, x:- The model parameters can be chosen for prior
considerations or sought as a solution to an extremum
problem.

§ 8. Decision Rules in Recognition Algorithms

The decision rule r, of a recognition algorithm A is
the operator that transforms the estimation matrix

. . A . .
{0y} 4« into the matrix {o; },., of the information

vectors of the elements to be recognized. In what fol-
lows, we review three basic types of decision rules.

I. Functional decision rules r, of order 1. One

evaluates ocf;- as follows. Introduce a numerical func-
tion fix). In the set M, of values of fx), three disjoint

sets Mﬁ , M} , and M? are selected:
A, if f(a;)e M}
ogay) = {1, if fa)e M) (55)
0, if f(a;)e M;.

The function f{x) is the basis of the decision rule r,.

II. Functional decision rules of order /. One spec-
ifies [ functions fi(x, ..., x), ..., fi(xy, ..., x). These
functions form the basis of the decision rule. The func-
tionsf; (j = 1,2, ..., l) are not necessarily distinct.

As in I above, the set Mf; of values of f; is partitioned
into three subsets, M?j; M }j ; and M?} such that

A, if fan, ... ay) e M?]
o =20, if fi(ap, .. a,)e My (56)
Loif fian, .. ap) € My

Another class of decision rules of order [ is specified
by a basis consisting of a single function, f(x,, ..., x)).

Let { & } be a set of information vectors of length / and
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suppose that the subsets M ? , 0 € {0}, are selected in
the set M, such that

flay, ..
fa;, ..., a;) € M;,

Out of the functional decision rules of order /, those
used most often are /inear rules. The basis in these rules
consists of linear functions b;x; + ... + byx; + by,
G=1,2,...,])orthe functionax, + ... + ax; + a;, ;.

The partition in linear rules is done by means of
constants Clj’ C2j’ Clj < C2j (i = 1, 2, ey l).

111. Decision rules of denumerable order. The basis

Xy ee

A AL .
sa) = (0, ..., 04), if

(57

is a sequence of functions, f1 (xy), ..., fi(x, ..

We select a function f1 ., (xy, ..., x,.). Let ({04} ) =
N, be a collection of information matrices of dimen-
sion g X [,

For each N € N, we pick in M, the subsets

q !

M; (N)
ra{a,t,<) = N, if

(58)
fq-[(alb" aq~1)€ qu ,(N)-

.y aij, ey

CHAPTER HI
THE GENERAL THEORY
OF RECOGNITION (CLASSIFICATION)
ALGORITHMS

§ 1. The Definition of the Class
of Recognition Algorithms [26]

The analysis of recognition models suggests the fol-
lowing definition for the recognition algorithm.

Let there be specified I = {I,(K;, ..., K))} and for
each S in M let there be defined the class of admissible
descriptions I = {I(S)}.

Definition 19. The algorithm A is a recognition
algorithm if it transforms the learning information
I(K,, ..., K}) and the descriptions of an arbitrary finite

number g of objects, I(S)), ..., I(S,), into a matrix,
{oc,'»; }4x: composed of elements {1, 0, A}.

In the definition, it is assumed that I(S,, ) € IS, (u=
1,2, ...,q¢)and e L

The collection (I(S}), ..., I(S;)) is further denoted
by I(S;, ..., S,). Then

u

AUoK o KIS, o 8)) = {0 s (59)

is the symbolic notation of the recognition algorithm.
The learning information I(K;, ..., K)) is denoted

PATTERN RECOGNITION AND IMAGE ANALYSIS

sometimes by I(]) and the collection I(S,, ..., S['I) by
I{(g). Then instead of (59), we can write

AU, I(9)) = {05},

In what follows, the standard interpretation is

(60)

adopted for the elements ocf; :
(13 = 1: the element S; belongs to K;
ocf} = 0: the element S} does not belong to K;;

013 = A: the algorithm A failed to establish whether

or not the element §; belongs to KJ i=12,...,q;j=
1,2, .., D.

In specific models of recognition algorithms, the
algorithm A was executed in two stages. At the first
stage, the collection (/y({), I(¢g)) was acted upon by an
operator that transformed (/y(!), I(q)) into a numerical
matrix, {a;}, ;. At the second stage, the decision rule
was applied to transform the numerical matrix {a;},,

into an information matrix, { OL;j Yoxie

We introduce the subclass of recognition algorithms
executed in two stages.

Definition 20. The operator R, is called a recognition
operator if it processes (Io(K|, ..., K, I(S}, ..., ;)
into a numerical matrix, {aij} gxi = Mg p where
IK,, ..., K) € I, S; are arbitrary admissible objects

(i=1,2,...,9), qis an arbitrary integer and I(S; ) € IS, .

Clearly, M, ., = M, , (Io(D), I«(q)). The symbolic

notation for the recognition operator is

RA(IO(KD '-~9Kl)’ I(Sia 1S¢’])) = {aij}qxl

or in compact form
R (Iy(D), Is(q)) = {aij}qxl'

Definition 21. The operator r, is called a decision
rule if it transforms an arbitrary numerical matrix

(61)

. . . . A
{a;}yx1 =M, into an information matrix {oy; }, ;=

1, ;s that is, a matrix whose elements are {1, 0, A}.

The symbolic notation for a decision rule is

A
rA({aij})qxl = {0itgxe ralMy ) = 1.

We clearly defined the operation of the product of
operators R, and r,, which is written R, - r4. It reduces
to the successive application of R, and r,.

(62)

Definition 22. The operator R, - 74 = A is called a
standard recognition algorithm or SRA for short.
No. 1
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In what follows, we are mainly concerned with

SRAs. The symbolic notation of the SRA A is the same
as for the arbitrary recognition algorithm

AUyD, 1) = { @ity = T (63)
Clearly, the SRA is a recognition algorithm; that is,

{A}c{A}.
It is easy to show that any recognition algorithm A

can be transformed into the standard A . Indeed, sup-
pose A(ly(D), I(q)) = {B;}, x;- Consider the algorithm
On{B,)gx1= {04} 4, Where {a;} is a numerical matrix
defined by the following relations

1fBljE {0’ 1}’thena,’j=N‘BI:],N>l;
if B;j = A, then a; = 1.

Now we apply the decision rule 7, to {a;},;:

1fa,}_>_NthenS € K,ie.,B;=1;ata;<0: S! e K,
ie,B,=0;

ifO<a, <N, thenB;=A

The definitions of Oy and 7, imply thatA - Oy - 7, =
A and the algorithm (A - Op)r, is thus a standard rec-
ognition algorithm. We proved

Theorem 8. For each recognition algorithm A there

exists a standard recognition algorithm A such that the
equality

A(Io(D), Is(q)) = AUIo(D), Is(q))
holds for each pair (I(0), I{(q)).

In what follows, we are concerned solely with deci-
sion rules r, that satisfy the additional condition.

Let S, ...,
admissible objects and P,(S,) be a predicate which is
rendered as S; € K; (=1, 2, ..., ]). Recall that the
information matrix {(x,.'; }4x 1> such that oc,-? e {0, 1}is

LSy ifal =P(SHG=1,2, ... q,

q

S, be an arbitrary finite collection of

called true for S , ..
i=1,2,...,D.

Definition 23. The decision rule 7, is well-defined if

for any finite collection of admissible objects, S, ..., S ('l ,

there exists a numerical matrix {a;},, such that 7,
transforms {a;},; into a matrix true for A S('I.

In what follows, we consider solely well-defined
decision rules.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol

§ 2. The Linear Space of Recognition Operators

In the recognition operator set {R,}, the operations
of addition and multiplication by a scalar are intro-
duced in a natural way.

Let Ry (oD, Is(@)) = {ay} g1 and Ry (o(D), I5(q)) =
by} gxi-

Definition 24. The operator Ry = R, + R, is the
sum of the operators R, and R, if Ry(Iy(0), Is(q)) =
{eptgxi=ai + byl

The recognition operator R, = ¢ - R,l, ,where cis a
scalar, is called the product of the scalar ¢ times the

operator R,i if

Ro(Io(1), Is(q)) = {c-ay}, .

Theorem 9. Under the operations of addition and
multiplication by a scalar, the set of recognition opera-
tors forms a linear vector space. The multiplication by
the scalar is commutative.

Proof. It readily follows from the fact that the set of
numerical matrices of the same order forms a commu-
tative group under addition. It readily follows from this
fact and from the definition of the recognition operator
that the set of recognition operators forms an Abelian
group under addition. The axioms related to the multi-
plication by the scalar and the distributivity of the mul-
tiplication by the scalar can be verified with ease. The
commutativity of the multiplication by the scalar is
likewise obvious; thatis,a-b- Ry =b - a - R,. The the-
orem is proved.

Thus, from the specified series of SRAs, A, =

(Ras 74), - Ay = (Ry 14), We can generate new algo-

rithms, A = (2'
In this case, the algorlthm Aiscalled linearin A ... A,.
The collection A, ... A, is the basis of A. Let there be
specified a collectlon {A} of SRAs with a fixed deci-
sion rule ry.

Definition 25. The linear closure L{A} of the set
(model} {A} is the collection of recognition algorithms
linear in all possible finite bases from {A}, with a fixed
decision rule r.

Clearly, each algorithm B in L{A} is representable
as A =( 2 a;R  r). The definition permits the con-

A€ (A}
struction of a linear closure for any model J{(A) of rec-
ognition algorithms.

If SRA is replaced by recognition operators in Def-
inition 25, the result is the definition of the linear clo-
sure L{R,} for the set {R,} of recognition operators.

Finally, let there be specified a set (model) of
SRAs, M = {(R4rs)}. with different decision rules.

We represent the model J){ as U, W(r,). Here, W(ry)

a,R,ry), where a; are constants.
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is the collection of all the algorithms of the model ¢
with the fixed decision rule r,.

Definition 26. The set L(J?) =

is called the linear closure of the model J¢.
Let there be given a finite set of models, %, ..., J%,.

M = {(Ryr)}, Rie {R}, rie {ril,
i=1,2,...,¢t
Definition 27. The linear closure of the models
My, . Wy is the set LA, _, LD )y =LA, ..., M.
Any algorithm A in L(J¢,, ..., IN,) can be constructed
as follows. From the set \_J); _ I, , we select the basis

A}, ..., A (i.e., an arbitrary collection of algorithms

with the same decision rule r), A = (R4r4), ry = r, and

R, =2P:c,~RA,.

i=1

The proof of the last assertion stems readily from
the definitions of the linear closure of a model and of
the linear closure of the collection of models. It suffices
to demonstrate that

L(Qim,) . L(QL(EIR,-)). (64)

i=1 i=1

L(Vi(ra))

ra€ {ry}

Generally, recognition operators R, can be applied
to parts of I,.We, henceforth, consider linear closures of
models, where different terms are the same operators
applied to different parts of I(K|, ..., K}). In these cases,
we explicitly indicate the part of I, where the operator
R, is active.

§ 2. Extremum Algorithms in Linear Closures
of Models. Complete Models

Consider the general form of the quality functional

~ [ ~A ' ~ ' ~ A '
fq(p(a'(sl)9(x (Sl))’ cevy p(a(Sq)’(x (Sq))),
where 0.(S;) is the true information vector of §;, and

o’ (S))is the information vector of S; formed by the
algorithm A.

Recall that £,(0, ..., 0) is the absolute maximum over
the entire domain of f,; that is, f, achieves its absolute

maximum if &(S})=&" () G=1,2,..., ).
Let there be specified a learning information I, and

an arbitrary finite control sample S, ..., S ,'1 in M, such
that I, belongs to the set of admissible learning infor-
mations, [, € {I,}.

Definition 28. The model I is well-defined if for

any Iy, g, S , ..., S, in 0 there exists the algorithm A

such that the quality functional f, achieves its absolute
maximum on A.

Let the model I be composed of A = R,r,. Let
M(R,) denote the collection of recognition operators of
the model .

Definition 29. The model J)¢ is called complete if
for any Iy, g, S, ..., S, the set of matrices of dimen-
sion g x I: Ry{Io(K, ..., KD, I(Sy, ..., S;)} = M(Ry),
R, € I{R,}, contains the basis in the space of numer-
ical matrices of dimension g x . The collection JJ¢{R,}

of operators in the complete model is called the com-
plete collection,

Theorem 10. If the model I is complete and the
algorithms in I have only well-defined decision rules,
the model I has a well-defined linear closure LCIN).

Proof. Let there be given an arbitrary finite control
sample Sy, ...
descriptions {I(S)), ..., I(S;)} = I{(g). The basis in
M, consists of g - | matrices M, ..., M7°!,

q

Consider the decision rule r. Since we are concerned
solely with well-defined decision rules, there exists a
numerical matrix M(S) = {a;}, , such that (M (S5)) =
{P{(S;)},x; that is, the information matrix r(M(S)) is a
matrix of true information vectors for objects S , ..., S}

(recall that the predicate P/(S;) is rendered as “object

, S, , initial information I, and a set of

S} is a member of K;”).

Now it suffices to construct the matrix M (S) using
(Io(D), Is(g)). Since the set of matrices, M{R,}, contains
the basis and it is finite (consists of g - [ elements), it is
possible to select g - I operators R, , ..., R A, that,
when applied to (/()), Is(g)), generate the basis matri-
cesM!', ..., M7,

Then (by the definition of the basis in linear space)
there exist constants a,, ..., a,.; such that

q-1 .
My(S) = Y a;- M.
i=1
g !
The recognition operator R, = 2 a,- R, is partof the
i=1
closure of the system of operators, which contains the
operators Ry , ..., RAq -

Consider the algorithm (R,r) = A, where R, =
q !
> a;-R,. Clearly, AUyD, Is@) = {0}

i=1

{P,(s;)} |
gx!
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Then p(0, (S7), @(S;)) = p(x, %) = 0; ie., the
function p satisfies the axiom of distance: p(a, a) = 0.
Therefore, the quality functional is

Fo(P(0(S1), 04 (S1))s ooy POG(S,), 04(S})))
= £(0,0, ..., 0, 0).

By definition, the functional f, reaches its absolute
maximum on the set (0, 0, ..., 0, 0). So, the linear clo-
sure L(I) of the model I is correct. The theorem is
proved.

Corollary. If the model I is complete (and hence
well-defined), then the model IN' with one fixed deci-
sion rule r and the collection of recognition operators
MUR,) is complete and thus well-defined.

Consider one application of Theorem 10.

We review the case where the information

1K, ..., K)) = I(]) and the descriptions {I(S}), ...,

I(S ('] )} = I(g) of the objects to be recognized are spec-
ified in standard form.,

Consider R algorithms with piecewise-linear sepa-
rating surfaces and parameters v, ..., ¥,, (the model
My, D) where R, = ... = R;. The descriptions of
objects S, ..., S, included in [, and the descriptions
I(Sy), ..., I(S('I) are points in n-dimensional Euclidean
space. The separation is done by one surface R for all
classes. The algorithm is defined by giving the surface

R and the parameters vy, ..., V,,, which are the weights
of objects Sy, ..., S,

The following additional constraints are imposed
further on the standard learning information I, =
(I(Sl)’ &' (Sl)’ Tt I(Sm)’ &' (Sm))

1. The vectors 0.(S;) do not contain symbols A and
are true for §; that is, if 0.(S;) = (0oy; ... ), then o is
the value of the predicate Pj(S,), which is rendered as
“S; is a member of K;.”

2. Represent the set {S), ..., S,} = W U W, the

subsets W; and W(,) being disjoint and composed of
the elements S; for which o; = 1 and 0,5 = 0, respec-
tively (i=1,2,....,m;j=1,2,...,0]).

Condition: Wll, oA W:, ifv2u(u=1,2,...,1).Con-
dition 2 means that for each pair of classes, K, and K,

the learning sample has at least one object that is a
member of K, and is not a member of K .

In addition, we assume that S, e (S, ..., S} (=
1,2,...,q).
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Theorem 11.! The class of recognition operators
R, defined by a piecewise-linear separating surface R

and parameters {Y;, ..., Yu} = {Y(5)), ..., (S0}
(7; 2 ¢ > 0) is complete.

Proof. Fix an arbitrary control sample, S, ..., S, .

Demonstrate that the set of matrices M, , generated by
the operators R, from the standard initial information
(Iy(D), I{(g)) contains the basis in the linear space of
numerical matrices of dimension g X /.

The proof consists in direct construction of the oper-

ators Rf;’ in L(R,) (the linear closure of the class R))
which transforms (Iy(]), Is(q)) into a numerical matrix,

{bw};‘i ;> such that b; = 1 and the remaining b,,, = 0
(i=1,2,...,q,j=1,2, ..., D. It is obvious that the

matrices {bw};’i, form the basis in the set M, of

numerical matrices of dimension g X [.

1. Construct an arbitrary piecewise-linear surface R,
subject to the following constraints:

1°. R\(S})>0;

2°. RU(S,)) >0 for all S, in W} ;

RIS, NS0, v=1,2,..,i-1,i+1,...,q;

4°. R\(I(S,)) < O for all S, in W .

Suppose Y; = ... =Y,,= N where N> 1 and k is a nat-

ural number. Evaluate the matrix {r;‘,}qx ; into which
the operator R, transforms the initial information.

Recall that for the objects S, such that 1
0"+ 0"
Q) +Q, +1

and for the objects S, such that

R(S))>0: r), =

0l 10
0, +0,

' 1
RS)HZ0: r,, = ———m—,
oy +0, +1

where Q. is the sum of the weights ¥, of the elements
S, belonging to S 7, such that o, o, € {0, 1}; 0, is
the value of the vth coordinate in the information vec-

tor G.(S)); o, is equal to 1 if S‘l,m2 includes the objects S,
that satisfy the inequality R(S,) > 0 and o, = 0 otherwise.

1 After the manuscript had been sent to press, the author received
more general results [81].
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By construction of R, (constraint 1°): R,(I(S})) > 0.
For it, the set S “,I consists of the objects that belong to
le- (constraint 2° for the construction of R)). and the

set S3°
straint 4° in the construction of R;). Since {§,, ...,

0 1
W, W,
sidering that y, =

consists of the objects that belong to W;) (con-
Sm} =

the sets So' and S, are empty for S, . Con-
.. =Y, = N¥, we get r,-lj =m - N

We evaluate r,lv forv=1,2,..,j~-1,j+1,...,1L

Let us show that in this case rw <m - 1. Indeed, under
additional constraint 2 on the initial information,

W} 2 W‘l, . Therefore, there exists at least one element
S, in W; which does not belong to W‘l, ,orS, e W‘l, and
R(S,) £0.

Consider the sets S * for S}. We have R(S}) > 0

and R(S) >0, (S, € W} )} and the vth coordinate of the
information vector 0.(S,) is 0. Therefore, for S; the ele-

ment S, belongs to the set S, 10

Consequently, there is no term 7y, = Y(S,) = N* in the
numerator of the expression for r;,, whereas it appears
in the denominator. We have

k k
<™ NN (65)
N +1
Itis easy to show that foru=1,2,...,i—-1,i+1,...,1

the quantities v; ; are 0. Indeed, by the construction of

R,(S,) < 0and for S, S;.)O
and "’

II. Draw again an arbitrary piecewise-linear sur-
face R, that satisfies constraints 1° through 4°. Here,
constraints 2° through 4° are the same as in [ and con-

straint 1° is altered: R,(S,) < 0. Again, all y, =

0 " 1
=W;,S; =W;,and the

0t
sets §; are empty.

Similar to I, we analyze the matrix {r,fv}qx, into
which the operator defined by the specified set R,, ¥,
<o s Y transforms (Iy(0), Is(q)).

t Ll '
WS S S

Note that for the objects S, .. g

nothing changed as compared to 1. Therefore,

rio= . for u#i, v=1,2,..,1L (66)
It is easy to show that
r; = 0. 67)

ij
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Indeed, the sets Qy, and Q,, are empty for S; rela-
tive to R, and K;.

The inequality

r.<m-1, v=1,2,... I (68)

v =

J-Lj+1, ..,

can be proved in the same way.

The following assertion follows from (66) through
(68) and from similar results in I:

Let R}{ “ and Ri’ * be the operators defined by the sets
RV =... Yn=NYand (R, ¥, = ... =Y, = N¥), respec-
tively. Then the operator R: = ! z (R}{ o Ri’ k)

m-N

appears in the linear closure L(R,) of the class of oper-
ators defined by the piecewise-linear separating surface
R and by the set of parameters vy, ... ¥,, and

Mgy = RyUo(D, I5(9))

00 0 0 O 0 O
00 0 0 O 0O O
= a; ap atj—l 1 az]+l dj.y Ay
00 0 0 O 0 0
00 0 0 O 0 O
Here,
laiu|<2(’" D ymt2, - 1j+1, L

Clearly, the sequence M :X, converges uniformly to

the matrix {bw}
elements are 0.

ax1» Where b; = 1 and the remaining

The collection of the numerical matrices M, ; gener-
ated by operators in the linear closure L(R,) form a finite-
dimensional linear vector space. It contains its limit
points with a bounded norm. So, {b,,},7, € M, (i =
1,2,...,q9,j=1,2,..., ). The theorem is proved.

Corollary. The class of recognition algorithms (Ry, ry)
defined by the collection of piecewise-linear separating
surfaces R, ..., R, (the elements of each class are sep-
arated by a surface of their own) and by the parameter
set Yy, ..., Yy, (the model My (Y, D) is complete.
The proof follows from the fact that the subclass

Rl =...= Rl - R

is complete.
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§ 3. Extremum Algorithms in Linear Closures
of Models. Weak Completeness of Models?

The definitions of a well-defined and complete
model introduced in the preceding section make it pos-
sible to formulate two constraints under which the lin-
ear closure of a model contains an algorithm exactly
accurate on each control sample of fixed length.

As a result, weak constraints are imposed on the
class of decision rules and rather strong constraints on
the class of recognition operators of the model JJ¢. Let
us introduce another condition for the model to be well-
defined, in which more rigorous constraints are
imposed on the class of decision rules and weaker con-
straints on the class of recognition operators of the
model JI¢.

Definition 30. The model J){ (the collection of rec-
ognition operators, J{(R,)) is complete in the weak
sense if for any Iy, g, S, ..., S, the set of matrices

MR, = {R (D), I(g))} of dimension g X [ includes
the subset of matrices {M;’i,} i=12,..,4q9,j=
1, 2, ..., D such that

1°. The element that is maximum in modulus in
M;iz = {cij}qxl is ¢;;

2°. ¢;;> ¢y, for (u, 1) # (i, j).

In what follows, we assume that the elements Sy, ..., S

2 Mm

whose descriptions constitute [ satisfy the condition

DEW, =K {S) ... Sy} = W, =K, N (S, ... 5,},
J=12,..,Lu#j.

Let the learning information I, include descriptions
I(S) = (a,, ..., a,) and the control sample include
descriptions I(S;) = (b, ..., by,) (u=1,2, ..., m, i =
1,2,...,9).

Definition 31. The set I = {KS)), ..., kS,), K(S}), ...,
IS ; )} is called correct if for each pair (S, , S, ) and for
each K one can find a S, € K; and a feature r(u = u(v; w),
r = r(u, w)) such that p (a,,, b,,) < pla,,, b,,) (1 < v,

w < n, vZw, 1 £r<n). The standard information that
contains the correct set / is called correct.

Consider the estimates calculation model %€, P ? )

defined as follows.

1. The system of reference subsets consists of sub-
sets of length 1 of the set {1, 2, ..., n}; that is, in the
notation of Section I, Chapter II the parameter k is 1.

2
2. The proximity function B is a threshold one
where € = 0 and it depends on the parameters €,, ..., €,,.
The parts of ® § in the subclass in question consist each

2 See Note 1.
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of one element. Suppose ®S, = a,, ®S, = b,;

By (®S,, ®S;)=1=B(a,, b, if and only if p{a,;, b,) <
gi’ 1 <i< n.

3T(SH=0- 3 (S Y,p, Blay, by

S,e W, i=1
The estimates T(S,) (t=1,2,...,4,j=1,2, ...,

9
Sn)’ P =
(p, ... p,),and ? = (Y, ... V,»)- The set of the operators

. 2
are functions of the parameters € = (g, ...

that evaluate the estimates I'( S;) from the initial infor-
mation is denoted by RA(?-: , ]v) , ?).

Let {Iy, I(S}), ..., I(S;)} = {1, q} be the collec-
tion of sets for which {I(S,), ..., I(S,)), I(S} ), ..., I(S; )}
is correct,

Theorem 12. The set RA(E, 3, ?) is weakly com-
plete on Iy, q) (é =1).

Proof. It is required to demonstrate that for all pairs
GpGa=1,2,..,qj=1,2, ..., 1) the linear closure

L(RA((?: , 1_5 , ?)) contains an operator Rf;j which trans-

forms the initial information in (I, q) into a matrix
{T,},x: where the element T'; is the only maximal ele-

ment. It takes several steps to construct Ri{j .

1. Fix an object S, and a class K;. By Definition 31,
for any S, it is possible to find a feature r and an ele-

ment S, € W such that p(a,,, b;) < p{ay, b,,). Intro-
duce the operator R;. In defining it, all p;, except p,, are

set equal to 0 and p, = P > 0; all parameters ?, except
Y.» are set equal to O and y, = 1.

The parameter €, is chosen so as to satisfy the ine-
quality

P A@ur biy) <€, < P(@y, byy). (69)
The remaining €; are selected arbitrarily.

Equation (69) implies that the operation of R,'; on
(Iy(D), 1)) yields the matrix {l",f; } in which

r,=P, 0,=0C, <P, (v,s)#(w,j). (70)

Clearly, the operator ZW MR,Y; = R,(S} ) occurs in

the linear closure L(RA(Z: , 3, ?)). It follows from the
definition of R,(S) ) and (70) that in the matrix

RAL(D, 1)} = (Tt
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1°.T; =(¢-1)-P;

2°.T,; S(g-2)-P, u#i;

. <(g-1)-P v=1,2..qt=12 ..j-
Lj+1,..,1L

2. Fix the class K;. Since le o W,1 , it is possible in
the set Sy, ..., S,, to select the elements S,.r r=1,2,...,
j—=1,j+1,..., D) that belong to K; and do not belong to
K,, respectively. Construct operators Rf in which the
parameters are defined as follows: Y(S; ) =y; =1 and
the remaining y;,=0and p, = ... = p, = P (the quantity P
here is the same as in constructing the operators R,-'; )
if I(S)=(a; ... a,) and I(S,) = (b, ...
Pai> byy).

The operator Rf transforms the initial information
into a numerical matrix, {I',,(r)} where

4°. T, (r)=0;

5T =n-P;

6°. The remaining elements T, (r) < n - P.

b,.), then g, >

The operator R; = ZRf occurs, obviously, in
r#j

L{RA(E , 13) , ?)}. As follows from its definition and the
properties in 4° through 6°, in the matrix R; oD, 1) =

{TueY gt
7°.T; =(-1)-n-P;

2

2 .
8. T, <y, w#i;

9°.Thy <(U=2)-n-P<(-1)-n-P=T}.

3. The operator R;=R,(S;) + Ré transforms the ini-
tial information into the matrix {I',,,},;, such that

10°.T;=P(U-1)-n+q-1);

11°.T; =T, =P, (rt) # (i, j).

We set R;’j = R;;. The theorem is proved.

Corollary. In L{RA(?: , Z , '?)} for each pair (i, j) (i=
1,2, ...q;j=1,2, ..., ) and each correct standard
learning information there exists an operator Ry(S |, K),

where N is an arbitrary integer, that transforms the cor-
rect standard sample into a numerical matrix, {T';,} 41
such that

Iy-L,w2N, (uv)#(i)).

The proof follows from 11° in the proof of the theo-
rem if we set P = N.
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Generally speaking, the operator model JIU(R,),
complete in the weak sense, is not complete. But the
addition of one more operator can make it complete.
Consider an operator R in the space of numerical matri-
ces

R({aij}qxl) = {bij}qxl’

where b,, = 1ifa,,=maxa; (i=1,2,...,q,j=1,2,
..., D) and b,,, = 0 in the other cases.

Definition 32. The model (R, - R) is called an ele-
mentary extension of the recognition operator model
MUR,}.

Theorem 13. The elementary extension JUR, - R)
of the weakly complete model I(R,) is a complete
model.

Proof. The application of operators in JJ¢{R,} to I,
and I(S}, ..., S,) in the weakly complete model
W¢{R,} can generate a number of g - [ matrices

{re, Yoxi w=1,2, ..., q- 1) such that the only maxi-

mal element of {I") } is TI';. The application of the
operator R to these matrices produces matrices that
form the basis in the space of numerical matrices
{a,.}4x:- The theorem is proved.

Let J{A} be an SRA model, I = {R,r,}, with
well-defined decision rules r,, such that J{R,} is
weakly complete. Let also R be the operator that locates
the maximum.

From the foregoing, it is easy to prove

Theorem 14. The model M{A} = (R, - R - ry} is
complete and, hence, well-defined.

The model J)¢ {A} is called an elementary extension
of the model J{A}.

In many cases, the completeness of a model is tech-
nically more difficult to prove than its weak complete-
ness. On the other hand, an elementary addition to the
set of recognition operators does not practically com-
plicate the model. The new model is complete on the
same set {/;} and, hence, well-defined.

For sufficiently broad classes of decision rules, the
models in which the collection of recognition operators
is weakly complete have the property of being well-
defined.

Let the set J(R,) posses on {I,} the property of
weak completeness and also an additional property. For

any positive Q and N, N < @, there exist operators Rg’ N
(i=1,2...,qj=1,2, .., 0D such that RZ"(ly) =
{Tuolgxr maxl, =T;=Qand';-T,, 2N, (uv) # (i, ).

Weakly complete models possessing the additional
property are called regular models.

Theorem 15. The model M = {R(E, B, ¥)} is a
regular model.
Vol. 8
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Proof. 1. As follows from the proof of Theorem 12
and its corollary, there exists, in L(J)0), an operator R,

(see 10° in Theorem 12) which is an operator R,? ¥ with

Q' .\
. Then it
(-D-n+g-1 08
oN N
easy to indicate y such thaty - R, = R,/ ', where

N'y = N and N is an arbitrary posmve number smaller
than Q' - y.

2. In the model L{R(%, 13) , ?)} for any constant c,
there exists an operator R, that transforms [, into a
matrix, {I",}, <, where all T, = ¢

an arbitrary Q' and N' =

Clearly, it suffices to prove the assertion for c = 1. If
IS)=(ay .- Ay =12, ....,myand S;)=(b,, ... b,),
then ¢, > maxpJa,, b,) (i=1,2,...n,t=1,2,...,9).

With the parameters g, ..., €,, thus chosen, Q =

1

— and
I(W,)
I'(S$) = p.-
JAT [N
(W) ,§
| 1 1
Weset7 —— =N.Thenforp,=~,i=1,2,..,n,
ww;) n’
and v, = ;1 we have I'(S,)=1fori=1,2,...,q
N|w)|
andj=1,2,..., L
3. Clearly, R. " +Ry_p., = RZ".

The theorem is proved.
To begin with, consider the simplest functional deci-
sion rules of order 1 with constants 0 < ¢, < ¢y, (j=1, 2,

LD S e K ifa,>cyand S, € K, if a, < ¢, for
¢y, < @, < ¢y, the decision rule produces OL =A.

Theorem 16. The model (R, - r,} with a regular
set I{R,} and decision rules of order | with constants
cyandcy, (j=1,2,...,1) is well-defined.

Proof. Consider an arbitrary finite control sample of

admissible objects S, ..., S; and their true informa-

tion vectors 0.(S}) = &; = (0 ...
a, = (o, ... o). Partition the objects numbered (i, j)
(i=12,...,q;j=1,2,..., 1) into subsets M, such that:
(i,j)e Myifo,=0and M: (i,j) e M,if o, = 1.

Suppose max ¢, = b,, minc;,=b,and bj;=b, - b,.

OL”), veey d(S'q) =

J J
For each pair of objects numbered (i, j), from M, we
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select in L{J(R,)} an operator Rg’N (see the defini-

tion of the regular model) such that
by-by,
(M )’

where W(M,)) is the cardinality of the set M.
The operator 2( neM Rg’N
, € 1

matrix {I',},,, where

1°.1f (i, j) € My, thenT';> b, +€> ¢y,

2°.1f (i, j) € My, then T, < cy,.

The first assertion trivially follows from (71). Let us
prove 2°. In R,QN Iy = {Fg’ } the quantity F,,V Q-
ary My <ba=bn=
minc,.

J

By applying the decision rule to {I';},,,, we get

true information vectors &.(S,) (i=1,2, ..., q).

The above construction is feasible because mincy, >0
7

Q=b,+e>by2c,, O>N>Q~ (71)

on [, produces a

N < Then I',, < WM XQ -

and so N < Q. The theorem is proved.
Corollary 1. If the model IN = (R, - r,} with the

regular I{R,} contains for each I, an R,lf such that

R,I,O (lp) = {T,},x; and T, = const, then the model
WUR, - ry)is well-defined under decision rules with
arbitrary ¢, and ¢y, ¢y, < ¢y

Proof. It suffices to consider the case where

maxc,, 2 0 and minc;, < 0. To begin with, consider the
! J
new decision rules where ¢,, = ¢, + max|c| + 6 and
J

¢y, = ¢), + max|cy| + 8", 8" > 0. These new decision

J
rules obey Theorem 16. Having considered then the

operator z(w)e Mle’N
Corollary 1.
Corollary 2. The model (8,

IR, = {R(E, 3, ?)} and the decision rules are of
order 1 with arbitrary constants ¢\, and c,, such that
cy<cy(=1,2,..., 1) is well-defined.

Indeed, in proving the theorem we constructed the

— Rmax|c;,| + 8", we prove
I

3, ?) where

2 > . .
operator R(E, 3, Y) which for an arbitrary correct I
constructs the matrix {I',},,;, where I', = 1.

If we consider an arbitrary decision rule of order 1
with the functions f,(x), ..., fi(x) monotonically increas-
ing, defined on the entire number axis, and unbounded
from either above or below, then clearly, the theorem
remains valid as do its corollaries.
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For threshold decision rules of order f with con-
stants c¢,; and c,;, the theorem on the well-defined prop-
erty of models remains valid under additional constraints

on the basis of the decision rule. Let f ,’ (x5 ..o Xp) satisfy

the conditions:

j
1°, fla, .
Xj— X1);

— g
X) =Y (X = X5 ooy X=X 15 Xjs Xjy g

Xj, ceey

2°. \y,j is monotonically increasing in each of the

arguments Xj= X[y cous Xjy ouey Xj— Xp5
. J
3 WM WG (Cys vvvs G5 X5 Cja 1y ner €) =00
X, oo
(o] —_—
4. lim \U,(Cl,.. ] l,x C+1,...,Cl)——°°
X, = —e0

Conditions 3° and 4° are satisfied for any constant in
Cls voos Gt Cjn 1 +os Cpo

The decision rule where all functions of the basis
satisfy conditions 1° through 4° is a monotone rule.

We say that LR ,)) contains constants if for any
initial information (/o(l), I(q)) there exists R, in
LER(R,)) such that Ry(In(D), Is(q)) = {a,}, x;» Where
a;=1.

Theorem 17. The regular model whose linear clo-
sure contains constants and whose decision rules are
monotone functional threshold rules of order 1 is a well-
defined model.

Proof. It is exactly the same as that of Theorem 16.
So, we give only an outline without going into a
detailed explanation of individual steps.

Suppose ¢f = minc;; and ¢;' = maxcy,.
J J

Divide the pairs of objects numbered (i, j) into sets
M, and M, using the information vector matrix

{Q(S)}gx
Using the property of regularity and construction of

the theorem, form on the basis of (Iy({), I{(g)) a matrix

{a;} gxi such that its elements a;, (i, j) € M, are so great

that y/ (@j— a1 ..s Qys ...y A —ay) > cf,and a;, (i,j) €
M,, are 51gn1ﬁcantly greater than a;; for (i, j) € M,.

The difference between ay, (i, j) € M, and

a; (i, j) € M, is chosen to make possible a shift of the

elements of the matrix {a;} (the subtraction of the con-
stant NV from the elements of the matrix) such that

-N, .. apg)>cy, (,j)e My,

(72)

ag)<ct, (i, j) € M,.

j
yi(a;—a;, ..

.y at] l]

J
yila;—a;, ...,a;—N, ...,a;—

Any shift by N is feasible because the model con-
tains constants.
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The existence of N such that conditions (72) are sat-
isfied is guaranteed by the regularity of the model and
by properties 1° through 4° of the basis of the decision
rule.

CHAPTER 1V
OPERATIONS ON RECOGNITION ALGORITHMS

Similarly to how the addition of recognition opera-
tors and their multiplication by a scalar was introduced
in Chapter IlI, we can treat operations on recognition
algorithms as operations on the information matrices

{05 ot = AUG(K 1y ooy K, I(SY, oy 1))

However, whereas the set of recognition operators
forms linear vector space, i.e., algebra with “good prop-
erties,” such good operations are nonexistent in sets of
information matrices. We can introduce and analyze
operations with poorer properties. By applying them to
simple models of recognition algorithms, we can obtain
and investigate more sophisticated models.

§ 1. Element-Wise Operations
on Information Matrices

Let the addition A + B of recognition algorithms be
defined as the element-wise addition of appropriate

information matrices. That is, if A(/y) = {OL } and

B(l,) = {(xi] }, then (A + B)({) = {(x,j + Ot,j }. Since the
elements of information matrices take only the values
{0, 1, A}, the addition of algorithms in this case is
defined by specifying the operation on a set of three ele-
ments. Then it is natural to require that the following
conditions be satisfied:

1°. Associativity;

2°. a + a = a, preservation of an element;

3°.0+Ae {0,A}, 1+ Ae {1, A}, preservation of
a set;

4°. commutativity.

It is easy to prove

Theorem 18. There exist seven operations of addi-
tion of algorithms with properties 1° through 4°. All of
these operations are listed in Table 4.

Proof. That conditions 1° through 4° are satisfied for
the @ operations specified by Table 4 can be checked
directly. The other operations (totaling 24) do not have
the property of associativity. Suppose, for example,
O0+1=A Weset0+A=gqgy,and 1 + A =a,. Then

I.GOA:O,G1A= 1,then(0+0)+ 1 =A¢O+(O+ 1)=0

2.a00=0,a;,=A,then (0+0)+ 120+ (0+1).

3. agy = A, a;, = A, operation 1, element O of opera-
tion is absent.

4. ap=Aa=1,then(1+1)+0=#1+(1+0).

The other cases can be analyzed in the same way.
The theorem is proved.
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Corollary. Of the seven semigroup operations in
Table 4, none is a group operation. Two of them have a
zero operation element.

None of the operations introduced in Table 4 are
interesting.

Suppose that, on evaluating a property S; € K

. I
., A, delivered the answers o;,

algorithms A, A,, ..

2

1 .
O, ..., 0. Then o; ® ... ® a = A if among o

there is at least one A or (x?j # 1or Otfj # 0 under the
first operation (g = 1, 2, ..., n). The remaining opera-
tions reduce to specifying the order in {0, 1, A}:

2nd: A>1>0;

3rd: 1 > A>0;

4th: 1 > 0> A;

5th: A>0>1;

6th:0>A>1;

Tth: 0> 1> A

D . 1

The application of these operations to o.,; © ... @ oc,"j
yields a result equal to the maximum element in the
respective order in the set { Oc,-li s eeen a?j }. This means,
for example, that under operation 4 one positive

answer, S; € K;, cancels any count of negative answers

S; € K;and “Ido not know” answers.

§ 2. Multiplace Operations on Information Matrices

The results in § 1 show that operations on informa-
tion matrices and, hence, on recognition algorithms are
bound to depend significantly on the number of algo-
rithms involved in a given operation and, possibly, on
the order in which the algorithms are applied to the ini-
tial information. Such operations were applied in devel-
oping new models. Here are two examples.

I. Consider R algorithms A, ..., A, with linear sep-
arating surfaces R, ..., R,. The problem is one of clas-
sification with two intersecting classes, K| and K,. With

respect to the object S;, each of the algorithms A, deliv-
ers the answer: S} € K, (R(S) 20,0, =1)or S| €

K, (R(S)) <0, oy = 0). To the vector (o}, ... o))
thus obtained, we apply the Boolean function i(x,, ..., x,)
’1, if the number

1 n
of ones among (Q;;...0;;)

is greater than or equal

to [’ﬂ+ 1,

LO in all other cases.

n
B 0yy) =

f((x,-l,, ..
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Table 4

o 8 o+f

1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
0 1 A 1 1 1 0 0 0
0 A A A A 0 A 0 0
1 0 A 1 1 1 0 0 0
1 1 1 1 | 1 1 1 1
1 A A A 1 1 A A 1
A 0 A A A 0 A 0 0
A 1 A A 1 1 A A 1
A A A A A A A A A

That is how the committee method is described [61].

II. The descriptions of objects are defined by collec-
tions of binary features. It is known that objects S|, ..., S,,
are members of K, and objects S, , |, ..., S, are mem-
bers of K,. The classes are disjoint.

Consider the not everywhere defined functions
FdS)=1,i=12,...,m;
Fi(I(S) =0, i=m+1,..,t,
on the other collections, the function F; is not defined;
Fy(I(S)) =0, i = 1,2,...,m;
F(IS) =1, i=m+1,...,1¢,

on the other collections, the function F), is not defined.

Consider contracted or irreducible DNF’s @, and ®,
which implement the functions F; and F), respectively
[5, 6].

Let S be an object to be recognized and /(S) be its
description by the system of binary features.

AlgorithmA;: o, () =1 (Se K)if F,©S) =1,
o (5)=0 (Se K)if F,((S)) = 0.
Algorithm A,: o) () =1 (Se K)) if F,(I(S)) = 0.

al(S)=0 (Se K))if F,d(S)) =0.

Algorithm A;: This is an estimation algorithm with
the leaming information I(S)),

o (Sy), ..., I(S), 0.(S,). The algorithm
is chosen so that ()cl3 S e {0,1}.

Perform on the collection (x; S, 0(,2 ), 0(?(5) the
operation defined by the Boolean function flx, y, 2): if
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x =y, then flx, y, 7) = x; if x # y, then fix, y, z) = z. The
algorithm that reduces to performing f on ocll ),

oclz S), 0c13 (8) is described in [5, 6]. The function fadmits
a simple notation: f=x - (y v z) vy - z. It implements
the committee method as applied to algorithms A, A,,
and A,

The examples analyzed above make the basis for the
following definitions.

Let there be given the model ¢ of recognition algo-
rithms and all possible finite ordered collections of
algorithms A,, ..., A, in J). Let the evaluation of the

predicate P(S;) = (S, € K)) by the algorithms A, ..., A,
n t

result in o, i» Oy € {0, 1, A}, respectively.

i

Definition 33. In a model X, the operation F =
fi(x), ..., fix1, ..., x,), ...) is specified, if a sequence
fis «--s J ... Of ternary logic functions is defined.

e O

The arguments of the functions f; take values from
the set {0, 1, A} and the domain of definition for f; is
likewise {0, 1, A}.

We use the symbolic notation f,(A, ..
new algorithm (A, ..., A,, f,):

1 n 1 n
(Al’ veey An’ f,,)((xij, veny 0‘:‘1) = fn(aij’ S (Xij).

The collection of algorithms (A, ..., A,, f,), n =
1,2, ..., 1, ... is denoted by F(IN) (here we consider all
possible ordered collections of algorithms A,, ..., A,
from the model 7).

Definition 34. The set F(J) is called the functional
closure of )t over the sequence F.

., 4,) for the

Since there exist 3% distinct ternary logic functions
of variables x, ..., x,, the function £, in F can be chosen
in 3% distinct ways. Therefore, a very great number of
different functional closures F(JJ?) can be constructed
from the model )¢ by means of different F.

Note that ternary logic functions were investigated
in detail by Yablonskii [74]. On this basis and adding
some later studies [1, 2, 59], we can offer formulas that
present ternary logic functions as superpositions of ele-
mentary functions. A convenient system of these ele-
mentary functions is

fi(x))=0, frlx)=1,

() A for x =i
lx = .
J 0 for x#i,

f3(x) = A’

where i =0, 1, A, min(x, y), and max(x, y). The last two
functions are defined relative to the order0< 1 < A{74].

The presentation of ternary logic functions as the
superposition of the above elementary functions is sim-
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ilar to the presentation of a Boolean function as DNF.
Indeed,

f(xqy ooy X1, X,) = max{minj,(x,),
f(xla s Xy 1 0)’ min[jl(xn)’ f(xla cees Xy s 1)]9
min[jA(xn)’ f(xh e Xy 1 A)] }

Thus, formulas can be set up for functions in F and
the algorithms (A,, ..., A, f,) operate efficiently.

For the considerations of content, F can not include
arbitrary f,,.

Consider the classes of ternary logic functions from
which the functions f,(x;, ..., x,) can be chosen in F.

The first series of constraints is:
1°. f(a, a, ...,a,a)=a,ae€ {0,1,A};

2°. f(ay, ...,a)€ {ay,....a,} it {a,, ..., a,} is {0, A}
or {1, A}.
Indeed, if none of the algorithms A, ..., A, evalu-

ated (S € K)) = 1, then it makes no sense to combine the
results and to assume that (S € K)) = 1. The same holds
for(Se K;)=0.

The set of fthat satisfy conditions 1° and 2° form a
closed class G, of the functions that preserve the sets
{0}, [31 }, {A}, {0, A} and { A, 1}. This class has a finite
basis.

The second series of conditions is as follows. Let

floy, 0y, ., 0) =0, e {0, 1, A}. Replace any of the
values ;, Q,, ..., ¢, by &.. We obtain a new collection,
(o, ..., 0 ):

30 fl(0 5 oeny O ) = 0L

The system of the functions f that satisfy condition 3°
forms the class G,.

It is natural to consider below the functions in F
from 6, N G,.

The third series of conditions is as follows. Let x,
y and z be the numbers 0, 1 and A in the collection
Xy eoey Xy

40'f;z(xl’ sy xn) = (p(x, Y Z).

The functions that satisfy 4° do not form a closed
class.

5°. Suppose ©(x, y, 2) = f,(x;, -.
Then, if the collection (x;, ..., x, ) has x' ones, y'
zeros, and z' — A symbols, such that
@x2x,y<y7<z
Mx<xy2y7<z
)X sx,y<yz7<z
and if o € {0, 1, A} and the corresponding conditions
(a), (b) and (c) were satisfied, then

fa(xy, ...

31t was Yablonskii who told the author that the class o, has a finite
basis.

. X)) =0l

’x;z) = (P(x', )",Z') = o.
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The functions that satisfy conditions 4° and 5° are
naturally called committee functions. The class of these
functions is denoted by K.

The models F(JN) are naturally generalized into
models (F, ... F))(P?), where the property S € K; is
evaluated for each K;by the functions F,G=1,2,..., D.

§ 3. Other Operations on Recognition Algorithms

1. The product of recognition operators. Let the
operators R, in the model 2 include in their domain
the learning informations where the objects are
described by collections of numerical features.

Suppose R4(Io(D), Is(q)) = {a;} 4«1

Then
R4(I(S)), &(Sl), o IS, &(Sm); IS, ..., S,.)
= {bi/}mx[ = RA([O(1)9 ]S(’n))'
Suppose IA(S) = (b;y, ..., by) and IA(S, ) = (a,, ..., ay)

(i=12,...mu=12,...,¢q).Then

Ru(IM (1), 6US)), .oy I(S,), 6(S,.), (S} ... S)))

= {a,'/} = R,y Ry (1y(D), I5(g)).
gxl

The successive application of R, and Ry to (Iy(D),
I¢(q)) is called the product of R, and R, (denoted by
RA * RA')'

By considering the operations of addition, multipli-
cation, and multiplication by a scalar on recognition
algorithms we can easily introduce polynomials from
recognition operators.

2. Additions to the feature space. The estimates
(a, ..., ay) calculated by operators for S;and similar
estimates for S, ..., S,, can be introduced as values of
new features in /(S;) and I(S,)) (i=1,2, ..., q, u =

1,2, ..., m). A new feature is interpreted as follows:
The algorithm A (the operator R,) established that the

estimate of S;(S,) for class K; is a; (a,). By the same
token, new features can be added when the algorithm A,
A € IR, established that the property S, e K; has the

value (xi/; e {0, 1, A}.

The operations examined in this section can derive
new models from those constructed previously.

PATTERN RECOGNITION AND IMAGE ANALYSIS
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CHAPTER V
METHODS FOR CONSTRUCTION
OF STANDARD RECOGNITION ALGORITHMS
OPTIMAL IN TERMS
OF THE QUALITY FUNCTIONAL

§ 1. Optimization Within One Parametric Model

Consider the model J{A} = {R,r,} of recognition
algorithms represented as (R4r4) such that R,(/(]),

IS), o S))) = LajY s and rafag), = {0},
where a,{; are numbers and oc,f; e {0, 1, A} (i =
1,2, ..,q,j=1,2,...,D.

We assume that the matrix {(13-} is defined by

learning information, by the collection of descriptions
of objects to be recognized, and by the collection of

. ] 1
numerical parameters &, , ..., T, , so that

A A, 1
(lij = a,vj(TCI,..., TC,)
The matrix {oc,-/;} is defined by the matrix {a,-/;} and by

. . 2 2
the collection of numerical parameters 7, ..., ®, . In

this case, the model J) is called a parametric model.

We consider functional decision rules with thresh-
old constants c;; and cy;.

The linear forms L; (=1, 2, ..., ) of all or some ele-
ments of the matrix {a,},; are usually taken to form
the basis of decision rules.

In what follows, we consider solely linear quality
functionals (Definition 10 in Chapter I).

The problem of selecting from (/y(/), I(q)) the algo-
rithm A extremal in the model J){ consists in finding a

. W1 Al .

collection of parameters &, ..., &, of the recognition
2 2 . .

operator and ft;, ..., &, of the decision rule which

defines the algorithm A € I such that

~ Al Al A2 A2
O(A) = O(Ry, ..., R, R, .., Ry) = fr‘na%(p(A)

2

1 2
= max o(my, ..., T, T, ooy Ty, )

Ae A(nll, ...,1:,',1:12, ..‘,nf,)
The second problem is to select in J¢ a set I that

contains algorithms extremal in terms of an arbitrary
(Io(D), I(q)), where I, € {l,} is the set of admissible

learning informations and I(S,1 | I(S; ) are admissi-
ble descriptions of an arbitrary finite collection of
admissible objects.

To begin with, consider the first problem. Let there
be given a functional decision rule f(x,y, ..., x,.,) with
threshold constants c¢;; and c,;. Then the value which
the function f(a,, ..., a,.) takes on the elements of the
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matrix {a;} determines the choice of the number
1, 0, or A, according to which the following inequality
is satisfied: f; > ¢, or f; < ¢yj (¢); £ f; < ¢3)). From this
value, thereward y; (i=1,2,...,9,j=1,2,...,]) is then
uniquely determined. Recall that f; can depend solely
on a part of the element ay, ..., a,.; (f; = flay), f; =
f}(aila cees @)

Having a method whereby the quality functional can
be evaluated for any fixed collection of parameter val-
ues, we can seek an extremum algorithm using the local
descent method, the random search method, the
directed search method, or a combination thereof.
A great number of such studies were undertaken for
estimation algorithms [15-17, 23, 38, 39, 42} and for
other algorithm models.

Special mention should be made of the studies
reported in [40, 41, 70], which offer a way to find a
good initial approximation for model parameters.

Another idea advanced in [20, 21, 62] is that the
quality functional is replaced by a simpler functional
and optimal parameter values are found for it explicitly
or by simple computational procedures. The applicable
optimization methods are many and diverse.

In this area, there is one large subclass of prob-
lems that can be described and solved in a unified
manner [35].

Consider a functional ¢(A) which is equal to the
fraction of correct predictions (Definition 10). Given
threshold functional decision rules, we can easily write

the condition for Pj(S,f) to be correct calculated as an
inequality. If P(S;) = 0, then
fj(a“, ey ai1)<C1j (73)
or
fj(azl(nll9 oo 7'5:1)’ cees ail(nll’ oo Tctl)) <€y e
For P(S,) =1,
1 1
fj(all(n]l’ vy ntl)’ ey ail(nly seey nt )) < Czj . (74)
Writing ¢ - [ inequalities of the form (73) or (74) for
each pair (K;, S;) gives the system
fj(a“,...,a”) = Cuj’ ue {1,2},
i=12,...,q, j=12,..,L
The optimal quality functional defined by Table 3

(75)

. i 1
corresponds to the collection of parameters &, , ..., T,

that define f; and of threshold constants cy; and c,; such
that the maximum number of inequalities is satisfied
in (75). To find an algorithm optimal in terms of the
quality functional, it is necessary to pick in (75) a max-
imally consistent subsystem and to solve it.

The parameters thus found define the optimum algo-
rithm.
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The problem of selecting a maximally consistent
subsystem in a system of inequalities for any assort-
ment of functions f; can be reduced to a standard dis-
crete extremum problem.

Assign Boolean variables y,, ..., y,.; to the inequali-
ties in (75). Introduce the Boolean function x(yy, ..., 4.1
as follows. Let o = (¢, ..., a,,.;) be a Boolean vector
such that o; € {0, 1}. In &, we select all coordinates
that take value 1. Let them be numbered iy, iy, ..., i;.

In (75), we select a subsystem of inequalities com-

posed of the inequalities numbered iy, i, ..., i. We
denote this subsystem by (i, iy, ..., i) ot by o(a).
We put
1, if the subsystem O(iy, ..., i)
is inconsistent
X(Os ooy O ) =

0, if the subsystem G(iy, ..., i)

is consistent.

Recall the definition of the monotone Boolean func-
tion £. Let, on a set of binary collections ¢. of the same

length, there be specified the partial order relation: o =

©f ... ) <SP =B ... BYif o, <P Gi=1,2, ..., n).
The function f is monotone if the relation o < [~3
implies that {a) < f([~3 ). Upper 0 (or lower 1) of the
monotone fis a point ¥ such that {y) =0 (or {y)=1)
andf(é) =1forall & # ¥ such that 5> 7 (orf(é) =0
for & < 7).

The upper zero & is called maximal (or the lower
unit & is called minimal) if |6 is maximal (or mini-
mal) over the set of upper 0’s (or of lower 1°s). As usual,
by the norm of the binary vector ||o| is meant the num-

ber of unit coordinates in ¢..

The consistent subsystem of inequalities is a irre-
ducible one if the addition of any inequality makes it
inconsistent.

The monotone function is uniquely defined by spec-
ifying the set of its lower 1’s or of its upper 0’s. With
respect to the function ¥, there is

Theorem 19. The function X(x,, ..., X,.;) is a mono-
tone Boolean function. The set of consistent sub-
systems (75) is in one-to-one correspondence with the
set of O’s of the function 7. The set of irreducible sub-
systems is in one-to-one correspondence with the set of
upper O’s of the function ). The set of upper O’s with a
maximum norm is in one-to-one correspondence with
the set of maximally consistent subsystems.

Proof. By its construction, the set of 0’s of the func-
tion 7 is in one-to-one correspondence with the set of
consistent subsystems of the system (75).
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The monotony of the function  follows from two
obvious assertions:

(a) If an inequality is added to an inconsistent sub-
system, the new subsystem remains inconsistent.

(b) If an inequality is removed from a consistent
subsystem, the new subsystem remains consistent.

If a subsystem corresponds to other than a maximal
upper zero 0., then a B can be found such that (B ) =0,

B = a; all unit coordinates 0. retain that value and at
least one new unit coordinate is added. This new coor-
dinate is numbered u. By construction of ¥, the system
6(0) U u is consistent, and, hence, the system o(Q ) is
not a irreducible one. The correspondence of maximal
upper 0’s to maximal consistent subsystems is obvious.
The theorem is proved.

We reduced the problem of finding a maximally
consistent subsystem in a system of inequalities to the
search for the maximal upper O of a monotone Boolean
function.

This latter problem is a well-known problem and its
solution was the subject of many studies. Some of them
[51, 52] were done in terms of the theory of monotone
Boolean functions and others in terms of the theory of
inequalities. They can be restated in terms of the theory
of monotone Boolean functions, though. The standard
formulation in the search for the maximal upper O is
this. Let there be specified an elementary operator B

which, given a point o, evaluates (0 ), supplements
the definition of o in terms of monotony, and verifies
the termination criterion. The termination at & guaran-
tees that O is the maximal upper O of the function .

It is required to construct an algorithm that can indi-
cate an upper O for ) with the operator B applied a num-
ber of times which is minimal for the given ). Actually,
the application of the operator B is not always efficient
because there is a need, in applying the operator B, to
verify the consistency of a subsystem. We do not dwell
on this issue in this paper.

The problem of minimizing the number of times for
the application of the operator B was solved in Shan-
non’s statement [43].

We denote the minimal number of times that the
operator B is applied in the search for the maximal
upper 0 of the function flx,, ..., x,) by W(n) and L(n) =
max (n) over the monotone functions of n variables.
It is required to evaluate L(n) and to construct the algo-
rithm that would guarantee that for any monotone
fix, ..., x,) the maximal upper O is found in at most
L(n) steps. This algorithm was constructed in [43]
where it is shown that

2

L(n) = C,
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Actually, the algorithm optimal in Shannon’s sense
has a limited domain of applicability (L(n) increases

n

with increasing n as c27 ). The algorithms used in real-
n

ity either (1) limit themselves to finding a certain num-
ber of upper (’s and selecting an element with a maxi-
mum norm among them [51, 52] or (2) start from a cer-

tain initial point o, where (o) is evaluated and
conduct a directed selection of subsequent points for
the application of B, considering the information accu-
mulated about the function . The procedure can be ter-
minated at any step and 0 is delivered, having the max-
imum norm among the other 0’s. Here is one example
of this procedure [35].

To begin with, several points o, ..., ¢, are chosen
at random, the operator B is applied there and the func-
tions x(0, ), ..., X(©., ) are evaluated. The procedure is
carried on until the values thus obtained include at
least one zero and at least one unit. Among (o) (i =
1,2,...,1), we chose zero with a maximum norm N and
put x = O at all points where the norm is not greater than N.

The number of these points is denoted by Q, and

their set by M. Count the number of points 8, located
in the set E,\M,, not smaller than the number of Is of
the function y (the set M;). We denote the number of
these points by Q,. We set y =0 on Myand x =1 on M,.

The above procedure is called the recovery of the
function that has at least one upper 0 with a maximum
norm, common with x, or the ) recovery.

In the set (0, ), ..., x(,), we fix at least one 0 with
a maximum norm. This O is delivered when the proce-
dure terminates after calculations at 0., , ..., C,.

The next point is selected by applying the following
procedure.

Suppose

O O
Po(X) - Q0+Q}’ pl(X) = Q0+Q1,

where [ is an arbitrary point where the value of y is not

known in the course of % recovery. This point is
assigned the quantity

Q(B) = POAO([S) +pr Al(ﬁ)s (75"

where AO([S) and AI(B) are the numbers of points
where the value of y is not known or where it will be

known provided x(B) = 0 or, respectively, x(B) =1

after the y recovery from the point B of the function
constructed previously. For the next application of B,
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we select the point B at which the procedure yields
maxy(B).
p

In actual computational schemes, the form of (75"
can be modified: either an upper or a lower estimate Q

can be calculated instead of the exact value Q([~3 ), or,

lastly, [~3 can be selected to deliver a local extremum for
oB).

If x(B) = 0, then the point B is fixed; if x(B) = 1,
then O selected at the previous step is retained. In the
case of termination at some step, the fixed O is deliv-
ered.

The second problem, that of identifying the set
which is known to contain all algorithms extremal on
arbitrary finite samples of admissible objects, is solved
as follows.

Consider a submodel J)¢'(A) in the model I(A), and
ascertain whether the model J¢'(R,) is complete or
weakly complete.

If PU(R,) is a complete model and 7 is an arbitrary
well-defined decision rule, then the model L{J¢(R,) - r}
obviously satisfies the statement of the second prob-
lem.

In the case of weak completeness, an arbitrary func-
tional decision rule with a basis of monotonically
increasing functions can be taken as r. In some cases, it
can be additionally required for the threshold constants
to be strictly positive.

For example, it is shown in Chapter 111 that in an esti-
. . > >
mates calculation model with parameters (k, €, €, ;—7) Y,

it would suffice to set k = 1 and € = 0 and to seek an
extremum solely on the operators representable by lin-

ear combinations of operators in L{E&, B, 7)}.

§ 2. Optimization in Linear Closures

Let there be given parametric models I, =
{(R4, 74D} -oos My = {(Ry, 1)} Form a linear clo-
sure LT, ..., IR,); that is, a collection of algorithms

1 kt k i
L={cRy +...+ Ry, r}, where rc \_J _,r, and

Ry € R, (i=1,2,...,k). Then LN,, ..., M,) is again a
parametric model: the parameters of models I, ..., I,
are combined and the parameters ¢, ..., ¢; are added. In
the new model, we can again solve the optimization
problem. But with large k or when some ﬁDE are them-
selves specified by a large number of parameters, the
real optimization in L runs into major difficulties. An
approximate optimization can be achieved in two
stages, as follows.

PATTERN RECOGNITION AND IMAGE ANALYSIS

1°. Select extremum algorithms A¥ in IN; (i =
1, 2, ..., k) (or representative algorithms in each of the
models). Suppose A = (R}, ry ).

2°. Consider the algorithms ( Zc,ijl » T ), where
ra, € L. From this set, select an algorithm extremal in

terms of ¢, ..., ¢, and in terms of the parameters of the
decision rule r, .

Let R (o(D), Is(@)) = {ay, } (i=1,2, ..., k). Hence,
k
if A=(Ry- 1), where Ry = Y c;R¥ , then

1= 1

k
R (Io(D), Is(q)) = {Zcia;t} = {dut}qxl‘

i=1
If decision rules are defined by the linear forms
b{x, +...+b] x;and cy;= ¢3;=0, then the system in (75)
consists of the inequalities

k k
b{(z cie aij) +o+ b{(z ¢ a{;j] >0  (76)

i=1 i=1

for pairs (S, , K) such that S, € K; and

k k
b{(Zafj : ciJ +.. 4 b{(Zci : a,",) <0 (77
i=1 i=1
for pairs (S;, K)) such that S; e K;.

By combining (76) and (77), we obtain a system of
g - | inequalities (or / in the case of disjoint classes)
bilinear in b{ s eees b,’ and ¢y, ..., ¢, in k - [ unknowns.
Then the maximally consistent subsystem can be
selected by any of the known methods (e.g., see [60]).
Thus, once algorithms were chosen in each model, the
coefficients of a linear combination of algorithms and
the coefficients of linear decision rules can be found by
solving a relatively simple extremum problem.

Note that linear closures can involve operators from
one model but acting on different parts of the initial
information.

§ 3. Optimization in Functional Closures
Similarly to § 2, let N =W, U ... VI, i.e., let I
be a system of models Jt,, ..., IN,. Let an algorithm
A¥ (i=1,2, ..., n), optimal with respect to the control

sample S, ..., S, , be constructed in each of IR, The
objective of the optimization is to match a ternary logic
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function £, such that f,(A", ..., A}) is an algorithm

optimal in terms of the quality functional ¢(A).
Consider linear functionals @(A). Suppose that the

evaluation of the property S; € K; by the algorithm A}

resulted in (x,f‘j (i=1,2,..,q¢,j=1,2,..,Land u=
1,2, ..., n). Suppose that actually the predicate S; € K;

is equal to a;. Then, for S! € K; to be evaluated cor-
rectly, the necessary and sufficient condition is

- | n
f,,((xij, ceey a,-j = (xl'j,
o;e {0,1,A}, o;e {0, 1}.
Similar conditions are written for all (i, j).
The result is a system of g - [ equations for f,. Gen-

erally, this system is inconsistent.

Suppose that in defining the function f, the collec-

i n
l] PEERETY (X.lj
In a linear quality functional, the pair (o

(78)

tion o is assigned the value &; € {0, 1, A}.
if OL,,) iS
assigned a reward, Y; = Y(a;, O;). The value of the

functional is (—1—1—1 ZYU . The objective is to define f; so
iJ

. 1
as to maximize q_—l ;y,j.
In the space of collections (OL,; y eees OLZ-) = &ij (i=
1,2,...,qandj=1,2, ..., [, we select all subsets {M}
of identical collections.

. . . - >
Consider this arbitrary subset M = {Qi,j,, ..., Qij, }.

If it consists of a single element &,;,-, then, in keeping
with (78),

F(8y) = 0. (79

Then the corresponding equation in (78) is satisfied.

If the subset M = { &i, iy oo &i,j, } consists of more than
one element, then, considering that (_))t,-, g == (_X)i,j,,
we have f,( &i,jl) = ... =f,,(&i,j,) = Ot:j . The quantity

afj can take one of three values, 0, 1, or A. Suppose
ae€ {0, 1, A}. Set

a 1
W) = — Y(o, o). (80)

)y

4, i)e {(fpjl), ey (il-il)}
Select the value o* that leads to max @y, (A). It is
o
t d 2
assumed that o; =f,(Qj,) = ... =f (%) = o*.
By selecting the subsets M in turn, we define f, on

. 1 . ..
all collections (o, ..., oc;} ) in a similar way.
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Theorem 20. The function f, defined by the algorithm

described above delivers an algorithm f(Af, ..., A))

optimal in terms of the linear quality functional.

Proof. Due to the linearity, @(4) = z O (A).
Me{M}

It suffices to demonstrate that all @, (A) are maxi-
mal on the selected f,. For M composed of more than

one element, the maximality of @, (A) follows from
the construction of f, on collections in M. For one-ele-
ment M, the optimality of (p,?} (A) follows from the con-
straint: Y(0y;, 0y) = Y(0y;, O;) for a; # o, The last ine-
quality readily stems from the definition of the quality
functional as a sequence of functions such that each
function fip;, ..., p,) achieves its absolute maximum
on the collection (0, ..., 0). Since Y(x, y) = ¥(p(x, ¥)),
then y(p(a;, @) = ¥(0) = ¥(p(e;, O;;)). The theorem is
proved.

Note that it takes not more than 3 - [C]—z—q computa-

tions of functionals @;; (A), such that o€ {0, 1, A}, to
construct the optimal f,,.

The definition of f, can be supplemented to include

. . 1 .
collections which are not members of { o, ..., OL,-"j }} in

more than one way. For example, we can select a sup-
plemental definition such that f; is realized by the sim-
plest formula in the selected basis. It is most convenient
to consider the system of functions 0, 1, A, jy(x), j,(x),
Jalx), max(x, y), and min(x, y) in the order 0 < | < A.

For such a system, it is easy to introduce a ternary logic
equivalent of DNE. Select a supplementary definition in
which this equivalent DNF has a minimal complexity or
cannot be simplified any more in a system of identity
transformation (an equivalent of the irreducible DNF).

If £, is chosen in the class of functions that satisfy
the first series of constraints (§ 2, Chapter IV), then the
construction of an optimal f, is complicated only
slightly. Then £,0, ... 0) = 0, f(1, ..., 1) = 1, and
f(A, ..., A)=A. On the sets M composed of collections
containing solely {0, A}, or solely {1, A}, we can check
the values 0, A or 1, A, respectively, disregarding the
number of collections in M.

The problem of choosing an optimal f, remain rather
simple to achieve even if we require that f, should sat-
isfy both the first series of constraints and the constraint
Fxy, oo X)) = Q(x, y, 27) from the third series. Then all
classes M which have the same numbers of 1s and Os
are combined in one class M(x, y 7). On the collections
of each class from M(x, y z) the function f, should then
take one value. Therefore, for each M(x, y, z), the value
o is chosen from the sets {0, A}, or {1, A}, or {0, I, A}

according to (pl(tx/[(x, ¥,2) (A4).
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