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Abstract

 

—Combinatorial cross-validation functionals that characterize the generalization performance
of learning algorithms are considered. Upper bounds are derived that are tighter than those in the Vap-
nik–Chervonenkis statistical theory. The initial data set is not assumed to be independent, identically dis-
tributed, or even random. The effect of localization of an algorithm family is described, and the concept
of a local growth function is introduced. The basic principles of statistical theory are revised by using
the combinatorial approach. The basic causes of complexity bound overestimation are analyzed.
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In learning theory, the generalization performance of a learning algorithm is characterized by the prob-
ability of an error. Unfortunately, this hypothetical quantity cannot be calculated or sometimes even satis-
factorily evaluated, for example, in the case of small data sets. At the same time, in practice, any learning
system deals only with finite data sets, both training and testing. Therefore, it is reasonable to characterize
the generalization performance of algorithms with respect to finite data sets. Learning performance is
empirically quantified by using independent testing sets, bootstrap, or cross-validation [1]. It is shown in
this paper that upper bounds for cross-validation performance functionals can be derived without resorting
to probability theory. Moreover, those bounds are tighter than traditional probability bounds.

The basic concepts related to the learning problem are introduced in Section 1. The basic principles of
the Vapnik–Chervonenkis statistical theory [2] required for further consideration are briefly described in
Section 2. Combinatorial functionals that characterize the performance of a given learning method on a
given finite data set are defined in Section 3.

In Section 4, upper bounds for combinatorial functionals are derived, which are similar to bounds on the
probability of a uniform convergence of the error frequencies on two subsets. The similarity of these bounds
suggests that cross-validation functionals are, at least, no worse than probability functionals when used to
characterize the generalization performance. However, there are conceptual differences between them. First,
combinatorial bounds hold for any (not necessarily random, independent, and identically distributed (i.i.d.))
data set. Second, combinatorial bounds depend not on the complexity of the entire algorithm family but
rather on the complexity of its local subset consisting of algorithms really obtained in training. Thus, the
uniform convergence principle becomes redundant, and the algorithm family turns out to be a secondary
construction with respect to the learning method.

The relationship between combinatorial and probability performance functionals is discussed in Section
5. The upper bounds for combinatorial functionals can easily be extended to the corresponding probability
functionals. Thus, we can say that the “correspondence principle” holds for the transition from the statistical
theory to the more accurate combinatorial theory.

In Section 6, the combinatorial approach is invoked to revise the basic principles of the statistical theory,
including the correctness property of learning algorithms, the functional of uniform relative convergence of
frequencies, the method of structural risk minimization, and the concept of effective VC-dimension. The
basic causes of overestimated complexity bounds for learning performance are analyzed in Section 7.

This paper presents the proofs of the theorems stated in [3].

1. THE LEARNING PROBLEM

We are given an object space 

 

X

 

, an output space 

 

Y

 

, and a set 

 

�

 

 of mappings from

 

 X

 

 to 

 

Y

 

, which are called
algorithms, meaning that they are effectively computable functions. It is assumed that there exists a target



 

1998

 

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

 

      

 

Vol. 44

 

     

 

No. 11

 

      

 

2004

 

VORONTSOV

 

function 

 

y

 

* : 

 

X 

 

 

 

Y

 

 not necessarily in 
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, whose values 

 

y

 

i

 

 = 

 

y

 

*(

 

x

 

i

 

)

 

 are known only on the objects of a finite
training set 

 

X

 

l

 

 = {

 

x

 

1

 

, …, 

 

x

 

l

 

}

 

.
The learning problem is to construct an algorithm 

 

a

 

* 

 

∈

 

 

 

�

 

 satisfying the following three requirements.
First, it must return given outputs on training objects: 

 

a

 

*(

 

x

 

i

 

) = 

 

y

 

i

 

, 

 

i

 

 = 1, 2, …, 

 

l

 

. Here, equality is regarded
as exact or approximate, depending on the particular problem under consideration. In [4], these require-
ments are called 

 

local constraints

 

 to emphasize that they concern a finite number of training objects and
admit effective verification in a finite number of steps.

Second, additional general constraints can be imposed on 

 

a

 

*

 

 as on a mapping from 

 

X

 

 to 

 

Y

 

. For example,
these can be symmetry, continuity, smoothness, monotonicity, etc., constraints or their combinations.
Requirements of this kind are called in [4] 

 

universal constraints

 

 to emphasize that they are independent of
a particular training set and are related to the mapping as a whole. As a rule, they do not admit effective
verification and are taken into account on the stage of the algorithm design. Generally, the universal con-
straints are expressed by the condition 

 

a

 

* 

 

∈ 

 

�

 

u

 

, where 

 

�

 

u

 

 is a given set of algorithms specific of the prob-
lem.

Third, the desired algorithm 

 

a

 

*

 

 must display the ability to generalize, i.e., to approximate the target func-
tion 

 

y

 

*

 

 not only on the objects of the training set but also on the entire set 

 

X

 

. This requirement can be for-
malized by using various quality functionals, some of which will be considered below.

The frequency of errors made by an algorithm 

 

a

 

 

 

∈

 

 

 

�

 

 on a set of objects 

 

X

 

p

 

 = {

 

x

 

1

 

, …, 

 

x

 

p

 

} 

 

is

where 

 

I

 

(

 

x

 

, 

 

y

 

) 

 

is an 

 

indicator

 

 

 

function

 

 that takes 1 if the output 

 

y

 

 is erroneous for object

 

 x

 

 and takes 0 other-
wise. The choice of an indicator is problem-specific, and it depends primarily on the nature of 

 

Y

 

. In classi-
fication problems when 

 

Y

 

 = {0, 1}

 

, it is usually defined as

for a given function 

 

δ

 

(

 

x

 

)

 

. Here and below, square brackets are used to denote the natural mapping of a logical
quantity to a number: [False] = 0 and [True] = 1.

The use of a binary error indicator allows one to use a uniform approach to a wide class of problems,
including both classification and regression.

2. STATISTICAL THEORY OF LEARNING

The Vapnik–Chervonenkis statistical theory [2, 5] assumes that 

 

X

 

 is a probability space and all the sets
considered are i.i.d. The learning process constructs an algorithm 

 

a

 

*

 

 from a given family of algorithms 

 

A

 

 

 

⊂

 

� 

 

by

 

 minimizing the empirical risk

 

:

The family can contain many algorithms that minimize the empirical risk. However, details of the learning
method are disregarded, and it is assumed that any of them can be selected.

The performance of 

 

a

 

*

 

 is characterized by either the probability of an error or the frequency 

 

ν

 

(

 

a

 

*, 

 

X

 

k

 

)

 

of errors on some unknown testing set 

 

X

 

k

 

. This quantity cannot be calculated explicitly, but it is proved to
be quite close to the empirical risk 

 

ν

 

(

 

a

 

*, 

 

X

 

l

 

) 

 

if the uniform deviation of the error frequencies on two sets is
small:

 

(2.1)

 

In general, the algorithm returned by the learning method is unknown in advance. For this reason, one esti-

mates a maximum deviation on the worst algorithm. If 

 

(

 

A

 

) 

 

 

 

0 

 

as 

 

l

 

  

 

∞

 

, then the frequencies of
errors on two sets are said to converge uniformly. This is a sufficient condition for the 

 

learnability

 

 of an algo-
rithm family.

For 

 

l

 

 = 

 

k

 

 and any probability distribution on the object space, we have the estimate (see [5])

 

(2.2)
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p
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where ∆A(2l) is a complexity measure called the growth function of the algorithm family A.
Definition 1. The growth function ∆A(L) of an algorithm family A is the maximum number of distinct

binary vectors [I(xi, a  generated by all possible algorithms a ∈ A on an arbitrary set {x1, …, xL}.

Obviously, ∆A(l) does not exceed 2L. The smallest h for which ∆A(h) < 2h is called the VC-dimension of
∆A(l). If such an h does not exist, then the family is said to have an infinite VC-dimension. If A has a finite
VC-dimension h, then the growth function is a polynomial in L:

(2.3)

In this case, the uniform convergence of frequencies takes place. Thus, the learning performance in statisti-
cal theory can be estimated if one knows the sample size and the VC-dimension of the algorithm family.

The calculation or estimation of the VC-dimension is a complicated problem for most particular families.
It is well known that the VC-dimension of linear decision rules is equal to the number of free parameters or
to the dimension of the linear space in which the separating hyperplane is constructed. Bounds on the VC-
dimension were obtained for neural networks [6], decision trees and decision forest [7], correct algebraic
closures of the estimate-calculating algorithm submodel [8], committees of linear inequalities [9], and many
others.

Statistical bounds substantiate the method of structural risk minimization, which tries to select a sub-
model of algorithms having an optimal complexity. In this method, a structure of nested subfamilies A1 ⊂
… ⊂ Ah = A of increasing VC-dimension is fixed, and the learning problem is solved for each subfamily.
The algorithm providing the least upper bound for ν(a, Xk) is selected from the resulting algorithms.

Unfortunately, bound (2.2) is highly overestimated. The values it gives for the sufficient size l of training
sets are considerably greater than numbers of objects encountered in practice. Table 1 shows l as a function

of the VC-dimension h, accuracy ε, and the quality . The right part of the table corresponds to  = 1
and demonstrates the range of applicability of bound (2.2). For smaller l, the bound exceed unity, i.e.,
becomes trivial. The overestimated bound in structural risk minimization may lead to excessive simplifica-
tion of algorithms [10].

The overestimation of statistical bounds follows from their excessive generality. They correspond to the
worst case and do not take into account three important characteristics of the problem and of the learning
process. First, these are the characteristics of the objects distribution: they can belong to a subspace of lower
dimension. Moreover, this exclusive case is typical of many machine learning tasks, because its dependent
or nearly dependent features. Second, these are the characteristics of the target function itself: it can be
smooth, symmetric, monotonic, or can have other specific properties, which sharply narrows the space of
admissible solutions. Third, these are the characteristics of the learning method: it may have the ability to
fit a given task bounding effectively the working subfamily of algorithms really obtained by learning.

3. COMBINATORIAL FUNCTIONALS OF LEARNING PERFORMANCE

The principle of empirical risk minimization within a fixed family can be criticized as an insufficiently
accurate formalization of the learning process. First, it is unclear where the boundary of the family lies. It
may happen that a very large family is formally written, while in practice the learning process generates
algorithms only from its small part. Second, many algorithms are capable of minimizing empirical risk, but
we always select a single solution. The explicit specification of the method that gives this solution would
take into account the specific features of the learning process. Third, some learning methods exhibiting good
performance in practice do not minimize the empirical risk. They include cross-validation methods and
techniques based on external criteria, in particular, group method of data handling (GMDH) [11], explicit
optimization of margins [12], boosting [13], bagging [14], etc.

Definition 2. A learning method is a mapping µ that transforms an arbitrary finite training set Xl to an
algorithm a = µ(Xl). The method µ is also said to construct an algorithm a from the training set Xl.

A learning method µ is assumed to construct algorithms by selecting them from a family A ⊆ �u. It is
also assumed that µ is symmetric; i.e., the result µ(Xl) does not change under an arbitrary permutation of the
elements in the training set.

Definition 3. An algorithm a is called correct on a data set Xl if ν(a, Xl) = 0. A method µ is called correct
on Xl if the algorithm µ(Xl) is correct on Xl.

xi( ) ) ]i 1=
L

∆A L( ) CL
0 … CL

h 1.5
Lh

h!
-----.≤+ +≤

Pε
lk Pε

lk
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In general, the small frequency ν(µ(Xl), Xl) of errors on a given training set Xl does not guarantee that
the algorithm will perform well on other data sets.

The frequency ν(µ(Xl), Xk) of errors on a given test set Xk that, in general, does not intersect with Xl is
also an incomplete characteristic of learning performance. A shortcoming of this functional is that it fixes
an arbitrary partition Xl ∪ Xk of the data set into a training and a testing subset. If the value of ν(µ(Xl), Xk)

is sufficiently small, there is no guarantee that ν(µ( ), ) will again be small for another partition  ∪

 of the same set. This leads to the natural requirement that the functional characterizing learning perfor-
mance on a finite set must be invariant under arbitrary permutations of the set.

Let l and k be arbitrary fixed numbers, L = l + k, and XL = {x1, …, xL} be a given set. Denote by ( ,

), n = 1, 2, …, N all possible partitions of XL into a training and a testing subset of size l and k, respec-

tively. The number of partitions is equal to .

The following functionals characterize the generalization performance of a learning method µ on a finite
set XL and have the required invariance.

1. The complete cross-validation functional [1] is defined as

2. The functional of mean deviation of the frequency of errors on the testing set from the frequency of
errors on the learning set is

where (z)+ = z [z > 0] for any real z.

3. The cross-validation functional insensitive to a minor fraction of errors ε made on the testing set is
defined as

4. The cross-validation functional insensitive to minor deviations of the frequency of errors on the testing
set from the frequency of errors on the learning set is defined as

X1
l X1

k X1
l

X1
k

Xn
l

Xn
k

CL
l

Qc
lk µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ).

n 1=

N

∑=

Qd
lk µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ) ν µ Xn

l( ) Xn
l,( )–( )+,

n 1=

N

∑=

Qε
lk µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ) ε>[ ], 0 ε 1.≤ ≤

n 1=

N

∑=

Qν ε,
lk µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
k,( ) ν µ Xn

l( ) Xn
l,( )– ε>[ ], 0 ε 1.≤ ≤

n 1=

N

∑=

Table 1

h
 = 0.01  = 1

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2

0 60106 2404 601 150 14054 562 140 35

2 295074 9012 1946 408 245330 6963 1423 273

5 673222 19884 4192 848 623320 17823 3664 711

10 1307418 38160 7974 1589 1257471 36095 7444 1452

20 2579359 74855 15572 3082 2529396 72789 15043 2944

50 6401335 185193 38433 7575 6351365 183127 37903 7437

100 12775769 369275 76581 15075 12725798 367208 76051 14937

Pε
lk Pε

lk
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The mean frequency of errors on the training set is defined as

In what follows, we drop the arguments (µ, XL) of functionals and the superscripts lk indicating that the
functionals depend on both training and testing sets sizes.

The definitions above imply that Qc ≤ Qd +  and Qν, ε ≤ Qε. If µ is a correct learning method on all

subsets of size l, then  = 0, Qc = Qd, and Qν, ε = Qε. The following two-sided bounds are less obvious.

Lemma 1. For arbitrary µ, XL, and ε ∈ [0, 1],

Proof. The first two bounds follow directly from the definitions and

which holds for any x and ε in [0, 1].
The third bound follows from the first and the second one:

The lemma is proved.
These bounds suggest that the functionals are interchangeable. The choice of a particular functional is

not very important and can be inspired by a priori preferences or the convenience of bounds derivation.

4. LOCAL COMPLEXITY AND BOUNDS FOR LEARNING PERFORMANCE

In practice, the target function and the learning method are always fixed and the training set is finite. For
this reason, only a finite part of the family can be obtained by learning, while the other algorithms remain
unused or very rarely used. We shall call this effect the localization of the algorithm family. The most inter-
esting are situations when the complexity of a local subfamily is considerably lower than that of the entire
family A.

The localization effect removes the artificial ban against using complex algorithms. It is more important
to develop a learning method capable of fitting a given task and of localizing a suitable effectively working
domain of the family rather than of limiting a VC dimension of the entire family. A perfect learning method
must generate algorithms close to the target function. It is of no matter how many algorithms that are not
close to the target function are contained in the family. This property will be referred to as the localizing
ability of a learning method.

Definition 4. The local family generated by method µ on a set XL is the set of algorithms

Definition 5. The local growth function (µ, XL) of method µ on a set XL is the number of distinct

binary vectors [I(xi, a  generated by all algorithms a in (µ, XL).

The local growth function differs substantially from the growth function of the entire family ∆A(L). The
former depends on a particular set, the learning method, and the ratio between l and k. The local growth

function is bounded above by , while ∆A(L) ≤ 2L. It does not exceed ∆A(L).

Definition 6. The incorrectness degree of method µ on a set XL is the maximum frequency of errors made
on all training subsets of size l:

In what follows, we use the shortened notation , , and , with the arguments (µ, XL) dropped.

νL
l µ XL,( ) 1

N
---- ν µ Xn

l( ) Xn
l,( ).

n 1=

N

∑=

νL
l

νL
l

εQε Qc ε 1 ε–( )Qε, εQν ε, Qd ε 1 ε–( )Qν ε, ,+≤<+≤<

εQν ε, Qc ε 1 ε–( )Qν ε, νL
l .+ +≤<

ε x ε>[ ] x ε 1 ε–( ) x ε>[ ],+≤<

εQν ε, εQε Qc Qd νL
l ε 1 ε–( )Qν ε, νL

l .++≤+≤<≤

AL
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l( )  n 1 2 … N, , ,={ }, N CL
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∆L
l

xi( ) ) ]i 1=
L AL
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σL
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l( ) Xn
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n 1 2 … N, , ,=
max=

∆L
l AL

l σL
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Theorem 2. Let the incorrectness degree of method µ on a set XL be σ = (µ, XL). Then, for any ε ∈
[0, 1),

(4.1)

where (ε, σ) is defined as

Proof. On , we introduce an equivalence relation: for arbitrary a and a' in ,

i.e., algorithms are equivalent if they make errors on the same objects of XL. This relation splits  into
classes, denoted by Ami, where m = 0, 1, …, L is the number of errors made on XL by algorithms of a given
class; i = 1, 2, …, ∆m is the index of a class among all the classes whose algorithms make n errors; and ∆m

is the number of ways of obtaining m errors on XL by all possible algorithms of . The number of all equiv-
alence classes is equal to the local growth function of method µ on XL:

(4.2)

Equivalence on algorithms generates equivalence on partitions if, for arbitrary n and u in {1, 2, …, N}, we

set n ~ u ⇔ µ( ) ~ µ( ). This yields the equivalence classes Nmi = {n | µ( ) ∈ Ami} on the partitions
set, which are in one-to-one correspondence with the classes Ami .

Summing the partitions over each equivalence class separately, we write the quality functional

The functional value does not change if the algorithm µ( ), n ∈ Nmi is replaced by an arbitrary element
ami of Ami. Since the sum vanishes for m ≤ εk and m > k + σl, it suffices to sum only over m ∈ M(ε, σ):

(4.3)

The inner sum γmi is estimated from above by replacing the equivalence class Nmi with the set of all parti-
tions. Denoting by s the number of errors on the training set (0 ≤ s ≤ σl), we sum the partitions for each s
separately:

The inner sum is equal to , which is the number of partitions of the set of size L into two subsets
such that exactly s errors out of m ones are contained in the subset of size l. Thus,

σL
l
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Since this quantity is independent of i, it can be taken out of the sum over i. By using (4.2), we arrive at

Substituting the bound for γmi into this inequality gives the desired result. Theorem 2 is proved.

Corollary 1. For l = k and arbitrary µ and XL, the functional  satisfies the Vapnik–Chervonenkis
bound up to the replacement of the growth function of the entire family by the local growth function:

(4.4)

The proof is derived from the following facts. The local growth function (µ, XL) does not exceed the

growth function ∆A(L) of the entire family, the combinatorial factor (ε, σ) is a nondecreasing function of

σ, and (ε, 1) ≤ 1.5  for l = k (see [2]).

The strengthening of the bound is achieved primarily due to the modification of the quality functional
caused by discarding the redundant requirement of uniform convergence. This result was first mentioned in
[15].

Note that, in general, there is no reason to take the same value for l and k, except for the convenience of
estimating the combinatorial factor.

By Lemma 1, similar bounds hold for other combinatorial functionals. A more accurate technique pro-

duces somewhat stronger upper bounds for  and .

Theorem 3. Let the incorrectness degree of method µ on a set XL be σ = (µ, XL). Then, for any ε ∈
[0, 1),

(4.5)

where

and M(ε, σ) and S(ε, σ) are the same as in Theorem 2.

Proof. The inequality (x)+ ≤ ε + (x – ε)+ holds for any x ∈ � and ε ≥ 0 and implies that

By analogy with the proof of the preceding theorem, we introduce classes Ami of equivalent algorithms
and classes Nmi of equivalent partitions and then choose a single element ami from each Ami, where m is the
number of errors made by the algorithm ami on the entire set XL, m = 0, 1, …, L, i = 1, 2, …, ∆m. Summing
the partitions over the equivalence classes separately gives

Since the sum vanishes for m ≤ εk and m > k + σl, it suffices to sum only over m ∈ M(ε, σ):

(4.6)
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The inner sum  is estimated from above by replacing the equivalence class Nmi with the set of all par-
titions. Denoting by s the number of errors on the training set (0 ≤ s ≤ σl), we sum the partitions for each s
separately:

The inner sum is equal to , which is the number of partitions of the set of size L into two subsets
such that exactly s errors out of m ones are contained in the subset of size l. Thus,

Since this quantity is independent of i, it can be taken out of the sum over i in (4.6). By using (4.2), we arrive
at

Substituting the bound for  into this inequality gives the desired result. The theorem is proved.

Theorem 3 and  ≤  +  imply an upper bound for the cross-validation functional.

Corollary 2. Let the incorrectness degree of method µ on a set XL be σ = (µ, XL). Then, for any ε ∈
[0, 1),

(4.7)

Bounds (4.5) and (4.7) involve the artificially introduced parameter ε. To eliminate it, we have to solve
an additional minimization problem over ε.

5. PROBABILITY FUNCTIONALS AND THE CORRESPONDENCE PRINCIPLE

The results above allow us to propose a nonprobabilistic theory of learning performance.

Unlike , the combinatorial functionals depend on the learning method and a particular data set, which
is not necessarily i.i.d. Again assuming that X is a probability space and XL is a random i.i.d. set, the expec-
tation of combinatorial functionals takes the form of probabilistic quality functionals:

The first line expresses the well-known fact that the complete cross-validation Qc gives an unbiased esti-
mator of the probability of an error [2]. The other functionals are also unbiased estimators of the correspond-
ing probability functionals and have a clear interpretation.

Any upper bound for a combinatorial functional can easily be transformed into an upper bound for the
corresponding probability functional by taking the expectation of the both sides of the inequality.

The probability functionals introduced above provide a more accurate characterization of learning per-

formance than the Vapnik–Chervonenkis functional , because they are free from the redundant require-

ment of uniform convergence. As follows from definitions,  is an overestimated upper bound for E ,
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which in fact describes the learning performance:

(5.1)

Thus, the correspondence principle holds for the transition from the Vapnik–Chervonenkis statistical the-
ory to the more accurate combinatorial theory of learning performance.

Bounds in the statistical theory are derived under assumption that objects are drawn independently from
an unknown probability distribution. Now, it turns out that the same bound holds for an arbitrary data set,
which is not necessarily i.i.d. Moreover, the use of probabilistic quality functionals may lead to excessive
intermediate steps in the derivation of bounds and to their degraded accuracy (a typical example is the basic
lemma in the statistical theory [2, p. 219].

The rejection of the independence assumption seems to be surprising at first glance. In probability the-
ory, the independence of a set means the invariance of a probability measure under all possible permutations
of the set. In the proof of Theorem 2, the same role is played by the invariance of the quality functional under
all possible permutations of the set (the symmetry of the functional). This requirement can be viewed as a
weakening of the independence hypothesis under which the constraint is moved from the initial data to the
quality functional. Note that all the combinatorial functionals defined above are symmetric.

Thus, the nature of bounds (4.1) and (4.5) is purely combinatorial rather than probabilistic and follows
from the discrete nature of the error indicator I(x, y) and from the symmetry of the quality functional.

6. SOME PRINCIPLES OF STATISTICAL THEORY REVISITED

1. The combinatorial bounds derived above depend on the incorrectness degree σ. In the Vapnik–Cher-
vonenkis theory, the extreme cases were only considered: σ = 0 (deterministic case) and σ = 1. It is of inter-
est to analyze intermediate situations with 0 < σ < 1.

The combinatorial factor (ε, σ) is a monotonically nondecreasing function of σ. It has its minimum
at σ = 0 when the learning method is correct. The maximum value is reached at σ = 1, when there is no prior
knowledge of the number of errors made in the learning.

In the case of a correct learning method, the combinatorial factor can be simplified:

If h is the VC-dimension of a local subfamily, then (2.3) and Theorem 2 give the following bound:

Table 2 presents the required size l of a training set computed from this equation. The results are much
better than those presented in Table 1.

As σ increases, (ε, σ) grows very quickly and its value becomes comparable (in order) with (ε, 1)
for σ ≈ ε. Thus, acceptable numerical bounds for l (at least, not exceeding 103) can be obtained only for a
correct learning method and families of an extremely low local VC-dimension.

The combinatorial approach provides a new view of construction of correct algorithms. Obviously, the
structure of the algorithms has to be more complex to ensure their correctness. According to the statistical
theory, this leads to a considerable increase in the growth function, against which a decrease in the combi-
natorial factor is unnoticeable. Thus, the statistical theory suggests that the correctness on a training set is
not expedient. In the combinatorial approach, the more complex structure of an algorithm does not neces-
sarily lead to a considerable increase in the local growth function. In this case, the correctness of the learning
algorithm becomes extremely desired, because this sharply reduces the combinatorial factor. Note that the
construction of correct algorithmic structures is a central idea in the algebraic approach to pattern recogni-
tion [16].

2. The statistical theory acknowledges that uniform convergence is a redundant requirement. To estimate
the frequency ν(a, Xk) of errors on a testing set from the frequency ν(a, Xl) of errors on a training set, it suf-
fices to require uniform convergence in the domain of minimal frequencies rather than on the entire family.
The statistical theory says that this domain is difficult to describe explicitly and proposes a partial solution
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to the problem. Specifically, the functional of uniform relative deviation of frequencies on two subsets is
introduced with the bound obtained in [2]

where

It is easy to show that this bound can be derived from combinatorial formula (1.4) by substituting

ε   ε. It only estimates the combinatorial factor in a different manner but does not describe the
effect of the family localization. No relative bounds are required when we use (4.1).

3. Combinatorial quality functionals have an undoubted advantage over their probability analogs: the
former can be measured from a given data set. This makes it possible to reject the overestimated upper
bounds in structural risk minimization. Moreover, nested subfamilies of growing VC-dimensions do not
need to be constructed in this case. A more general approach is, given a fixed set of learning methods
µ1, …, µT, to select the best one by using the cross-validation criterion on a given finite training set. Note
that it is this approach that was recommended for practical applications in [2], although without revealing a
clear connection with the basic theoretical results. Empirical studies [10] also show that this model selection
technique is preferable to the structural risk minimization and to the minimum description length principle
[17], which both represent various formalisms for the notion of complexity.

4. In [18], the effective VC-dimension was introduced and it was shown that statistical bounds remain
valid if the VC-dimension is replaced by the effective VC-dimension. A method for measuring the effective
VC-dimension from a given data set was also proposed in [18] for two-class classification problems. Empir-
ical measurements of the VC-dimension are expedient for two reasons. First, one fails to obtain analytical
bounds on the VC-dimension for many families of algorithms. Second, the effective VC-dimension in a par-
ticular problem can be considerably lower than the complete VC-dimension.

The idea of the method is to measure, for different sample sizes l, the value of the functional on the left-
hand side of the inequality

where C is a constant and k = l.
Next, it is assumed that, for some values of C and h, the dependence of the left-hand side on the sample

size has the same algebraic expression as the right-hand side. The corresponding value of h is called the
effective VC-dimension. This assumption is well confirmed in the case of linear decision rules [18].
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h
 = 0.01  = 1
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0 800 160 80 40 200 40 10 5

2 2900 460 200 85 2100 300 130 50

5 6300 980 420 170 5500 820 340 130

10 12000 1840 780 315 11200 1680 700 275

20 23500 3560 1510 600 22800 3420 1430 560

50 58200 8780 3710 1470 57400 8620 3630 1430

100 107000 17500 7380 2920 107000 17340 7300 2880
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An elegant method that avoids the calculation of the supremum was proposed for measuring (A). In

classification problems with two classes, the maximization of ν(a, ) – ν(a, ) is equivalent to the min-

imization of ν(a, ) + ν(a, ), where  is obtained from  by replacing the original classifications
with erroneous ones. If µ minimizes the empirical risk, then the difference of the frequencies is maximized

by the algorithm an = µ(  ∪ ). Then

(6.1)

The measurement itself is to estimate this sum from a smaller number of partitions chosen at random.
The measurement accuracy can easily be estimated by the law of large numbers.

The effective VC-dimension takes into account a particular distribution of objects but ignores specifics
of the target function and of the learning method, because the algorithm is intentionally trained to make
errors. In the case of linear decision rules, the effective VC-dimension is equal, with high accuracy, to the
dimension of the subspace containing the set [18].

In the combinatorial approach, the uniform convergence functional (A) is replaced by the cross-val-

idation functional . The measuring procedure (6.1) remains the same, with the only difference being

that an = µ( ); i.e., it is not required to introduce artificial errors in the training set.

In this case, a new concept—the local effective VC-dimension—arises, which is the value of h for which

the dependence of  on L is best approximated by

In contrast to the effective VC-dimension introduced in [18], the local effective VC-dimension takes into
account everything: the features of the distribution of objects, the features of the target function, and the fea-
tures of the learning method.

A comparison of the VC-dimension with the measured effective VC-dimension can reveal how well the
method captures the effective VC-dimension of the object space [18].

A comparative measurement of the effective VC-dimension and the local effective VC-dimension can
reveal how significant the localization effect is, i.e., how well the given learning method is adjusted to a par-
ticular target function on a particular training set.

7. CAUSES OF OVERESTIMATED COMPLEXITY BOUNDS

To analyze the causes of overestimated complexity bounds for learning performance, let us consider the
ratio of the right- to left-hand sides of (4.4):

In each of the fractions, the numerator is an upper bound for the denominator. The three ratios on the right-
hand side of the equality describe the respective three basic causes of overestimated complexity bounds for
learning performance.

The first cause is that the effect of localization is neglected. The complexity of the finite algorithm sub-

family  resulting from learning can be considerably lower than the complexity of the entire family A.

The second cause is associated with the relative error in the exponential bound for the combinatorial fac-
tor, which noticeably increases with l, in contrast to the absolute error. To obtain bounds applicable in prac-
tice, one needs to calculate or tabulate rather complicated combinatorial expressions.

The third cause is the error in the decomposition of the cross-validation functional into the product of

the local growth function  and the combinatorial factor . This cause seems to be most important,
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because it stems from the transition from performance analysis to complexity analysis and is associated with
the nature of complexity bounds. This cause is intrinsic both to probabilistic and combinatorial bounds
based on the growth function.

A promising approach to improving the accuracy of bounds is to give up the complexity characteristics
of an algorithm family. Bounds of this kind are well known for stable algorithms [19] and convex hulls of
classifiers [20]. In [19, 20], only the specific features of the learning method were taken into account, while
the features of a particular training set and the target function were ignored. The resulting bounds are still
highly overestimated, and the sufficient sample size is about 104 objects.

There is reason to believe that acceptable numerical bounds can be obtained only by using a priori knowl-
edge of the properties of the training set and the target function. Note that the correspondence between the
training set (local information) and a priori constraints (universal information) are studied in detail in the
theory of universal and local constraints [4, 21] in terms of the theory of categories and the algebraic
approach to pattern recognition [16]. The algebraic theory makes it possible to verify the consistency of
these two types of information and to constructively describe irredundant classes of algorithm models that
ensure the existence of correct algorithms. However, generalization bounds are out of the scope of this the-
ory. In general, the influence of a priori knowledge on the quality of the target function is the most compli-
cated and least studied problem. The combinatorial approach substantially facilitates the development of
this direction. For example, a nonprobabilistic bound for Qc has been derived in the case when the target
function is monotonic or nearly monotonic and the learning method generates only monotone mappings [3,
22]. That bound is always less than 1, does not depend on the complexity of the family (which is known to
have an infinite VC-dimension), and is much tighter on small sets than the bounds obtained in [23, 24].

ACKNOWLEDGMENTS

I am deeply grateful to Yu.I. Zhuravlev for his encouragement and to my teacher K.V. Rudakov for his
interest in this study and valuable remarks. This work was supported by the program “Algebraic and Com-
binatorial Methods in Mathematical Cybernetics” of the RAS Department of Mathematical Sciences, by the
Russian Foundation for Basic Research (project nos. 02-01-00325 and 01-07-90242), and by the Russian
Science Support Foundation.

REFERENCES

1. R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” Proceed-
ings of 14th Int. Joint Conf. on Artificial Intelligence, Montreal, PQ, 1995, IJCAI-95 (Morgan Kaufmann, San
Francisco, 1995), pp. 1137–1145.

2. V. N. Vapnik, Estimation of Dependences Based on Empirical Data (Nauka, Moscow, 1979; Springer-Verlag, New
York, 1982).

3. K. V. Vorontsov, “Combinatorial Bounds for Learning Performance,” Dokl. Akad. Nauk 394, 175–178 (2004)
[Dokl. Math. 69, 145–147 (2004)].

4. Yu. I. Zhuravlev and K. V. Rudakov, “On the Algebraic Correction of Procedures for Data Processing (Transfor-
mation),” in Problems in Applied Mathematics and Computer Science, Ed. by O. M. Belotserkovskii (Nauka, Mos-
cow, 1987), pp. 187–198 [in Russian].

5. V. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).
6. M. Karpinski and A. Macintyre, “Polynomial Bounds for VC-Dimension of Sigmoidal Neural Networks,” Pro-

ceedings of the 27th Annual ACM Symp. on the Theory of Computing, Las Vegas, USA, 1995 (ACM, New York,
1995), pp. 200–208.

7. Yu. Yu. Dyulicheva, “Bound for the VSD of an r-Reduced Empirical Forest,” Tavrich. Vest. Inform. Mat., No. 1,
31–42 (2003).

8. V. L. Matrosov, “The VC-Dimension of Algebraic Extensions of a Model for Estimate-Calculating Algorithms,”
Zh. Vychisl. Mat. Mat. Fiz. 24, 1719–1730 (1984).

9. V. Mazurov, M. Khachai, and A. Rybin, “Committee Constructions for Solving Problems of Selection, Diagnos-
tics, and Prediction,” Proc. Inst. Math. 1, 67–101 (2002).

10. M. J. Kearns, Y. Mansour, A. Y. Ng, and D. Ron, “An Experimental and Theoretical Comparison of Model Selec-
tion Methods,” 8th Conf. Comput. Learning Theory, Santa Cruz, 21–30 (1995).

11. A. G. Ivakhnenko and Yu. P. Yurachkovskii, Modeling of Complex Systems from Experimental Data (Radio i
Svyaz’, Moscow, 1987) [in Russian].

12. L. Mason, P. Bartlett, and J. Baxter, “Direct Optimization of Margins Improves Generalization in Combined Clas-
sifiers,” Tech. Report Dept. Systems Eng. (Australian Natl. Univ., 1998).



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 44     No. 11      2004

COMBINATORIAL SUBSTANTIATION OF LEARNING ALGORITHMS 2009

13. R. E. Schapire, Y. Freund, W. S. Lee, and P. Bartlett, “Boosting the Margin: A New Explanation for the Effective-
ness of Voting Methods,” Ann. Stat. 26, 1651–1686 (1998).

14. L. Breiman, “Bagging Predictors,” Mach. Learning 24 (2), 123–140 (1996).
15. K. V. Vorontsov, “Quality of Dependences Estimated from Empirical Data,” Abstracts of the 7th All-Russia Conf.

on Mathematical Methods in Pattern Recognition, Pushchino, 1995, pp. 24–26 [in Russian].
16. Yu. I. Zhuravlev, “Correct Algebras over Sets of Incorrect (Heuristic) Algorithms, Parts I–III,” Kibernetika, No. 4,

5–17 (1977); No. 6, 21–27 (1977); No. 2, 35–43 (1978).
17. J. Rissanen, “Modeling by Shortest Data Description,” Automatica 14, 465–471 (1978).
18. V. Vapnik, E. Levin, and Y. L. Cun, “Measuring the VC-Dimension of a Learning Machine,” Neural Comput. 6,

851–876 (1994).
19. O. Bousquet and A. Elisseeff, “Stability and Generalization,” J. Mach. Learning Res., No. 2, 499–526 (2002).
20. P. Bartlett, “The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights Is

More Important than the Size of the Network,” IEEE Trans. Inform. Theory 44, 525–536 (1998).
21. K. V. Rudakov, “Universal and Local Constraints in the Correction of Heuristic Algorithms,” Kibernetika, No. 2,

30–35 (1987).
22. K. V. Vorontsov, “Estimation of the Performance of a Monotone Decision Rule out of a Training Set,” in Proceed-

ings of Int. Scientific Conf. on Intellectualization of Data Processing (Krymsk. Nauch. Tsentr NAN Ukr., Tavrich.
Nats. Univ., Simferopol, 2002).

23. A. N. Semochkin, Bounds on the Performance Functional for Class of Algorithms with Universal Monotonicity
Constraints, Available from VINITI, No. 2965-B98 (1998).

24. J. Sill, “The Capacity of Monotonic Functions,” Discrete Appl. Math. (Special Issue on VC-Dimension) 86, 95–
107 (1998).


