COMPUTER SCIENCE

Correct Sigma-Pi Extensions of One Admissible Class of Algorithms

Z. M. Shibzukhov

Presented by Academician Yu.I. Zhuravlev July 28, 2003

Received August 5, 2003

Special Sigma-Pi extensions of one class of algorithms are used here for effectively constructing correct recognition algorithms based on standard training data in the algebraic approach to recognition problems [1]. An admissible class of algorithms is defined that transform the set of original descriptions of analyzed objects into a set of sparse vectors (internal representation) satisfying one natural requirement, which can be viewed as a variant of logical consistency of internal representations of various objects and classes. Algorithms in a Sigma-Pi extension are multilinear forms of algorithms from an admissible class. For a standard recognition problem, it is shown that there exists a nonempty set of correct algorithms from the Sigma-Pi extension of a given finite set of algorithms from an admissible class if it satisfies a simple easily checkable condition. The corresponding algorithmic operators from the Sigma-Pi extension can be constructed following a simple constructive learning recurrence procedure, which converges in a finite number of steps.

ADMISSIBLE CLASSES OF ALGORITHMS AND DECISION RULES

Let \mathfrak{S} be a class of analyzed objects. For each object $S \in \mathfrak{S}$, its standard description $\mathbf{x}(S) = (x_1(S), x_2(S), ..., x_n(S))$ is defined; here, $x_i \colon \mathfrak{S} \to \mathbf{D}_i$, where \mathbf{D}_i is the set of all values of the *i*th component of the standard description. For each object $S \in \mathfrak{S}$, standard data $\mathbf{y}(S) = (y_1(S), y_2(S), ..., y_m(S))$ are also defined; here, $y_j \colon \mathfrak{S} \to \mathbf{E}_j$, where \mathbf{E}_j is the set of all values of the *j*th component of the standard data.

Suppose that we are given a finite training set of analyzed objects $S = \{S_k\} \subseteq \mathfrak{S}$, where k = 1, 2, ..., N; $X = \{x_k\}$ is the corresponding set of standard descriptions, where $\mathbf{x}_k = \mathbf{x}(S_k)$; and $\mathbf{Y} = \{y_k\}$ is the corresponding set

of standard data, where $\mathbf{y}_k = \mathbf{y}(S_k)$. Consider the problem $\mathbf{Z}(\mathbf{X}, \mathbf{Y})$ of constructing an algorithm \mathbf{A} such that $\mathbf{y}(\mathbf{x}) \equiv \mathbf{A}(\mathbf{x})$ on \mathbf{X} . The algorithm \mathbf{A} is then called correct for the problem $\mathbf{Z}(\mathbf{X}, \mathbf{Y})$.

Let \mathfrak{Y} be a class of algorithms $\Upsilon: D_1 \times D_2 \times ... \times D_n \to \mathbb{K}^K$, where \mathbb{K} is a ring without zero divisors. Let a finite subset of algorithms $\Upsilon = \{\Upsilon_1, \Upsilon_2, ..., \Upsilon_K\} \subset \mathfrak{Y}$ be given. We use the notation $U = \Upsilon(X) = \{u_k\}$, where $u_k = \Upsilon(x_k)$.

For an arbitrary $u \in \mathbb{K}^K$, we define the function

$$\delta(u) = \begin{cases} 1, & \text{if } u \neq 0 \\ 0, & \text{if } u = 0. \end{cases}$$

For an arbitrary vector $\mathbf{u} \in \mathbb{K}^K$, we define the function $\delta(\mathbf{u}) = (\delta(u_1), \delta(u_2), ..., \delta(u_K))$. Admissible classes of algorithms and admissible sets of algorithms are defined below.

Definition 1. A finite set Υ of algorithms is admissible for X and Y if $U = \Upsilon(X)$ and Y satisfies the admissibility condition

$$\delta(\mathbf{u}_{k'}) = \delta(\mathbf{u}_{k''}) \Rightarrow \mathbf{u}_{k'} = \mathbf{u}_{k''} \wedge \mathbf{y}_{k'} = \mathbf{y}_{k''}.$$

Let \mathcal{X} be a class of sets of standard descriptions $\mathbf{X} \subseteq \mathbf{D}_1 \times \mathbf{D}_2 \times ... \times \mathbf{D}_n$, \mathbf{Y} be a class of sets of standard data $\mathbf{Y} \subseteq \mathbf{E}_1 \times \mathbf{E}_2 \times ... \times \mathbf{E}_m$. Denote by $\Im(\mathcal{X}, \Im)$ the class of problems $\mathbf{Z}(\mathbf{X}, \mathbf{Y})$, where $\mathbf{X} \in \mathcal{X}$ and $\mathbf{Y} \in \Im$.

Definition 2. \mathfrak{A} is an admissible class of algorithms for \mathfrak{X} and \mathfrak{Y} if, for any pair of finite sets of standard descriptions $\mathbf{X} \in \mathfrak{X}$ and standard data $\mathbf{Y} \in \mathfrak{Y}$, there exists a finite admissible subset of algorithms $\mathbf{Y} \subset \mathfrak{A}$.

Let $\mathbf{dr} \colon \mathbb{K}^m \to \mathbf{E}_1 \times \mathbf{E}_2 \times ... \times \mathbf{E}_m$ be a decision rule.

Definition 3. A decision rule **dr** is admissible for **Y** if, for any vector $\mathbf{s} \in \mathbb{K}^m$, any values $0 \neq p_t \in \mathbb{K}$ $(1 \leq t \leq l)$, and any element $\mathbf{y} \in \mathbf{Y}$, there exist vector weights $\mathbf{w}_t \in \mathbb{K}^m$ (t = 1, 2, ..., m) that solve the equation

$$\mathbf{dr}(\mathbf{s} + p_1 \mathbf{w}_1 + \dots + p_l \mathbf{w}_l) = \mathbf{y}.$$

Let us define the class of decision rules \Re that are admissible for \Re .

ul. Shortanova 89a, Nalchik, 360000 Russia

e-mail: szport@fromru.com

Research Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center, Russian Academy of Sciences,

Definition 4. A class of decision rules \mathfrak{R} is admissible for \mathfrak{Y} if, for any $Y \in \mathfrak{Y}$, there exists a decision rule $dr \in \mathfrak{R}$ that is admissible for Y.

ORDERED SPARSE DESCRIPTIONS OF OBJECTS

A vector $\mathbf{u} = (u_1, u_2, ..., u_K)$ is sparse if there is an index $1 \le i \le K$ such that $u_i = 0$. Let $\mathbf{I} = \{i_k\}$ be a sequence of multi-indices, $\mathbf{i}_k \subseteq \{1, 2, ..., K\}$. For definiteness, we assume that the indices in \mathbf{i}_k are arranged in increasing order.

Definition 5. A sequence U is ordered relative to zeros (briefly, zero-ordered) with respect to I if for any pair j < k, there exists an index $i \in \mathbf{i}_k$ such that $u_{ji} = 0$ and $u_{ki} \neq 0$.

If $\mathbf{i}_k = \{1, 2, ..., K\}$ for all k, then $\{\mathbf{u}_k\}$ is said to be ordered relative to zeros. For example, any sequence $\{\mathbf{u}_k\} \subseteq \{0, 1\}^n$ not containing identical vectors can be ordered relative to zeros. Let $\{\mathbf{c}_k\}$ be an arbitrary sequence of vectors from \mathbb{K}^K that contains no sparse vectors, and let $\{\mathbf{u}_k\}$ be ordered relative to zeros. Then the sequence $\{\mathbf{c}_k \odot \mathbf{u}_k\}$, where \odot denotes the componentwise multiplication of vectors, is ordered relative to zeros.

Let **U** and **Y** be sets satisfying the admissibility condition. Then $\mathbf{U} = \{\mathbf{u}_k\}$ consists of sparse vectors (except for possibly one vector) and is ordered relative to zeros.

For an arbitrary U that is ordered relative to zeros, we denote by $\Im(U)$ the set of all sequences of multiindices I such that U is zero-ordered with respect to I.

ALGORITHMIC Sigma-Pi OPERATORS AND Sigma-Pi EXTENSIONS

Let \mathbb{K} be a ring with no zero divisors, for example, $\mathbb{Z}_p(p)$ is a prime number), $\mathbb{GF}(p^m)$, \mathbb{R} , or \mathbb{C} .

We define Sigma-Pi functions having the representation

$$sp(\mathbf{u}) = \Theta(\mathbf{u}) + \sum_{k=1}^{N} w_k p(\mathbf{u}, \mathbf{i}_k),$$

where $\theta(\mathbf{u})$ is an arbitrary function from \mathbb{K}^k to \mathbb{K} , $w_k \in \mathbb{K}$,

$$p(\mathbf{u},\mathbf{i}_k) = \prod_{i \in \mathbf{i}_k} u_i,$$

and $p(\mathbf{u}, \emptyset) \equiv 1$. The class $\mathfrak{S}\mathfrak{P}$ consists of algorithmic Sigma-Pi operators that can be represented as a composition of the form

$$spo = dr \circ sp(u),$$

$$\mathbf{sp}(\mathbf{u}) = (\mathbf{sp}_1(\mathbf{u}), \mathbf{sp}_2(\mathbf{u}), ..., \mathbf{sp}_m(\mathbf{u})),$$

where $\mathbf{dr} \in \mathfrak{R}$ and $\mathrm{sp}_1(\mathbf{u}), \, \mathrm{sp}_2(\mathbf{u}), \, ..., \, \mathrm{sp}_m(\mathbf{u})$ are Sigma-Pi functions.

Definition 6. The Sigma-Pi extension $\mathfrak{SP}(\Upsilon)$ of a set of algorithms $\Upsilon = {\Upsilon_1, \Upsilon_2, ..., \Upsilon_K}$ is the following set of algorithms:

$$\mathfrak{S}\mathfrak{P}(\Upsilon) = \{ \operatorname{spo} \circ \Upsilon : \operatorname{spo} \in \mathfrak{S}\mathfrak{P} \}.$$

Theorem. Let $Y \in \mathcal{N}$ be a finite set of algorithms that is admissible for X and Y, and let $dr \in \mathcal{N}$ be a decision rule that is admissible for Y. Then one can construct an algorithmic Sigma-Pi operator $spo \in \mathfrak{SP}(Y)$ such that $spo \circ Y$ is correct for X and Y.

The corresponding algorithmic Sigma-Pi operator can be constructed by using a recurrence learning procedure based on U and Y, whose elements are previously reordered so that U becomes zero-ordered with respect to some sequence of multi-indices $I \in \mathfrak{I}(U)$ [2, 3]. In the general case, one can construct a set of such Sigma-Pi operators by using various I. To reduce the complexity of algorithmic operators, it is possible to use a procedure for constructing minimal (with respect to \subset) sequences of multi-indices $I \in \mathfrak{I}(U)$ [2, 4], where $I \subset I''$ if $\mathbf{i}'_k \subseteq \mathbf{i}''_k$ for any k and there is at least one k such

 $I' \subset I''$ if $i'_k \subseteq i''_k$ for any k and there is at least one k such that $i'_k \subset i''_k$.

Definition 7. The Sigma-Pi extension $\mathfrak{S}\mathfrak{P}(\mathfrak{A})$ of a class \mathfrak{A} of admissible algorithms is the following class of algorithms:

$$\mathfrak{S}\mathfrak{P}(\mathfrak{A}) = \{ \mathbf{spo} \circ \Upsilon \colon \mathbf{spo} \in \mathfrak{S}\mathfrak{P}, \Upsilon \subset \mathfrak{A} \}.$$

Theorem. If a class \mathfrak{A} of algorithms is admissible for \mathfrak{X} and \mathfrak{Y} and if a class \mathfrak{R} of decision rules is admissible for \mathfrak{Y} , then the Sigma-Pi extension $\mathfrak{S}\mathfrak{P}(\mathfrak{A})$ is correct for the class of problems $\mathfrak{P}(\mathfrak{X},\mathfrak{Y})$.

ALGORITHMIC SIGMA²-PI OPERATORS

Let **U** be ordered relative to zeros, and let $I_k(\mathbf{U})$ be a set of multi-indices **i** such that, for any j < k, there exists i such that $u_{ji} = 0$ and $u_{ki} \neq 0$. For $I_k \subseteq I_k(\mathbf{U})$, we define functions of the form

$$\mathrm{spn}_k(\mathbf{u}, I_k) = f \circ \mathrm{sp}_k(\mathbf{u}, I_k),$$

$$\operatorname{sp}_k(\mathbf{u}, I_k) = \sum_{\mathbf{i} \in I_k} c_{\mathbf{i}} \cdot \operatorname{pn}(\mathbf{u}, \mathbf{i}),$$

where f is an arbitrary function from \mathbb{K} to \mathbb{K} such that $f(s) = 0 \Leftrightarrow s = 0, c_i \in \mathbb{K}$, $\operatorname{sp}_k(\mathbf{u}_k, I_k) \neq 0$, and

$$pn(\mathbf{u}, \mathbf{i}) = g_{\mathbf{i}} \circ p(\mathbf{u}, \mathbf{i}),$$

where g_i are arbitrary functions from \mathbb{K} to \mathbb{K} such that

 $g_i(s) = 0 \Leftrightarrow s = 0$. Consider functions of the form

$$Sp(\mathbf{u}) = \Theta(\mathbf{u}) + \sum_{k=1}^{N} w_k spn_k(\mathbf{u}, I_k).$$

Define the class $\mathfrak{S}^2\mathfrak{P}$ of algorithmic Sigma²-Pi-operators of the form

$$\mathbf{Spo}(\mathbf{u}) = \mathbf{dr} \circ \mathbf{Sp}(\mathbf{u}),$$

$$\mathbf{Sp}(\mathbf{u}) = (\mathrm{Sp}_1(\mathbf{u}), \mathrm{Sp}_2(\mathbf{u}), ..., \mathrm{Sp}_K(\mathbf{u})).$$

Definition 8. The Sigma²-Pi extension $\mathfrak{S}^2\mathfrak{P}(\Upsilon)$ of a given set Υ of algorithms is the following set of algorithms:

$$\mathfrak{S}^2 \mathfrak{P}(\Upsilon) = \{ \mathbf{Spo} \circ \Upsilon \colon \mathbf{Spo} \in \mathfrak{S}^2 \mathfrak{P} \}.$$

Theorem. Let $Y \subset \mathcal{X}$ be a finite set of algorithms that is admissible for X and Y, and let $dr \in \mathcal{R}$ be a decision rule that is admissible for Y. Then one can construct an algorithmic Sigma²-Pi operator $\mathbf{Spo} \in \mathfrak{S}^2 \mathcal{Y}(Y)$ such that $\mathbf{Sp} \circ Y$ is correct for X and Y.

The corresponding generalized Sigma-Pi operator can be constructed by using a similar constructive learning procedure based on **U** and **Y**, whose elements are previously reordered so that **U** becomes ordered relative to zeros. In the general case, it is possible to

construct a set of such generalized Sigma²-Pi operators by using various sets $\{I_k\}$.

Definition 9. The Sigma²-Pi extension $\mathfrak{S}^2\mathfrak{P}(\mathfrak{N})$ of a class \mathfrak{N} of admissible algorithms is the following class of algorithms:

$$\mathfrak{S}^2\mathfrak{P}(\mathfrak{A}) = \{ \mathbf{spo} \circ \Upsilon \colon \mathbf{spo} \in \mathfrak{S}^2\mathfrak{P}, \Upsilon \subset \mathfrak{A} \}.$$

Theorem. If a class \mathfrak{A} of algorithms is admissible for \mathfrak{X} and \mathfrak{Y} and if a class \mathfrak{R} of decision rules is admissible for \mathfrak{Y} , then the Sigma²-Pi extension $\mathfrak{S}^2\mathfrak{P}$ (\mathfrak{A}) is correct for the class of problems $\mathfrak{Z}(\mathfrak{X},\mathfrak{Y})$.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 01-01-00142), the Sixth Contest of Scientific Projects of Young Scientists of the Russian Academy of Sciences (project no. 111), and state contract no. 10002-251/OMN-2/024-115/120503-062.

REFERENCES

- 1. Yu. I. Zhuravlev, *Selected Scientific Works* (Magistr, Moscow, 1998) [in Russian].
- Z. M. Shibzukhov, Neĭrokomp. Razrabotka Primen., No. 5, 50 (2002).
- 3. Z. M. Shibzukhov, Dokl. Akad. Nauk **388**, 174 (2003) [Dokl. Math. **67**, 134 (2003)].
- 4. Z. M. Shibzukhov, Zh. Vychisl. Mat. Mat. Fiz **43**, 1260 (2003) [Comp. Math. Math. Phys. **43**, 1209 (2003)].