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As a formalization of the problem of synthesis train-
able algorithms trends revealing, which is necessary for
applying the algebraic approach of [14], we suggest
the following construction.

Consider a set of finite plane configurations of the

form 8% = (S1, 82, ..., $4) = (!, V1), (2, V), ..., (¢4, v),
wherete R,ve R, << ...<¢4 and, fori=1,2, ...,
d-1,d=21v'< vi*! whenever ¢ = ¢ *!. Endowing a
finite plane configuration with a subscript o, we always

=d
assume that g = (5L, 82, ..., §%,

We denote the set of all d-point plane configurations
by C?¢ = {Sd }. We also define the set of all configura-

tions as C = UCd.

d=1

Configurations 5; and S5 are called shift-equiva-
lent if there exists a vector p* = (£*, v*) € R? such that

S =8, +pt=(dh +1* vh + v¥)foralli=1,2, ...,

. =d =d . .
d, where S| € S1 and S, € S>. In this case, we write
d =

S

A marking vocabulary, or a set of marks, is, by def-
inition, a finite set M = {U, W, ..., 1, }, where r 2> 1. For
instance, a marking vocabulary may have the form M =
{max, min, non}.

The set My =M U {A}, where A ¢ M is a special
mark interpreted as “not marked,” is called the
extended set of marks, or the extended marking vocab-
ulary.

For a given set of marks M and the corresponding

extended set of marks M,, an arbitrary sequence ﬁd
(uh, p?, ..., u9 of length d > 1 is called a marking of
length d (if W' € M) or a partial marking of length 4 (if
we My).
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Note that it is the notion of marked configurations
that allows us to state the training problem as the prob-
lem of synthesizing a correct algorithm for marking
configurations.

We denote the set of all different marks of length d
by M and the set of all different partial marks of length

d by M. We also introduce the sets 0 = \J M" and
d=1

M, = C) M i of all different markings.
d=1
A marked configuration is a pair (S'd, ﬁd), where
$ e C?and i € M?. The marking {1’ is then called a
marking, or complete marking, of the configuration 5.
For i’ € MY, the pair (5, i) is called a partially
marked configuration, and the marking ﬁd is then

called a partial marking of the configuration 5°.

A marking fi° = (!, p2 ..., u%) (complete or partial)
of a configuration 5¢ is said to be an extension of a
marking [if = (Lo, e, ..., Mo ) if, foranyi=1,2, ...,d,
the condition (ty = @) v (ity = A) holds.

Let us introduce a definition of the trend revealing

algorithm as an algorithm for marking finite plane con-
figurations.

Definition 1. A marking algorithm is an arbitrary
algorithm A implementing a mapping A: C — J){ such

that, for any d > 1, we have A(S‘d) = ¢, where e c?
and i’ e M-

An essential special feature of this problem in com-
parison with the general problem of recognition and
classifications, for which the algebraic approach was
initially developed, is the presence of additional condi-
tions (rules) relating geometric characteristics of con-
figurations to possible “reasonable” markings [5].
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Marking axioms, or rules, are defined as a set I'T =
{m,, Ty, ..., W} effectively computable predicates

T \J(CPx MY — {0, 1}
d=1
We use the same symbol I1 to denote the conjunction of
the predicates T;:

I: Q(c"xM”’)—»{o,l}.

d=1

1= A =,

i=1,..,k
Suppose that a system of marking rules Il = {x;,

T, ..., T} is fixed. A marking ﬁd is called suitable for
57 if (Y, g

called suitable for 5 if and only if there exists a com-

) = 1. A partial marking },_lg € Mi is

plete suitable marking Hd being an extension of ag’ .

A system of marking rules Il = {®,, m,, ..., T;} is
said to be shift-stable if and only if
v 51,85 (51255
c
<d —d —d
= v i’ (ST ) = 1) & (TS5, 1Y) = 1).

A markmg algorithm A is called shift-stable if and
only if it identically marks any two shift-equivalent
configurations, i.€.,

¥ 5051 (5125 = A = ASY).

Suppose that a system of marking rules Il = {x;,
T, ..., T} is fixed. Then the algorithms that yield only

suitable markings for all 5% from C are called suitable
algorithms.

In what follows, we assume that a marking vocabu-
lary M and a shift-stable system of marking rules IT =
{rt,, ™,, ..., ,} are given; we consider only shift-stable
suitable algorithms.

An arbitrary finite set of pairs of the form
= Sd(z) T 0 ¢ o,

ﬁii(l) d(l) l— 1 2 }

is called a set of precedents.
Consider a set formed by shift-equivalent configura-

L=G5, ..,
" = (mf. 5. ...

Definition 2. A set L of partially marked shift-
equivalent configurations of length 4 is called contra-

tions 3}1) to which partial markings

—d .
, U; ) are assigned.

dictory if and only if, for any complete marking ﬁ’i =

(U, Ui, ..., u%) € M?from marking suitability for all
configurations from the set, it follows that there are two

equivalent configurations where two marked points
with the same number are marked differently; i.e.,

_ =d -
(vE: 3 ecnGhLih-1)
et IL2..0
= 3 i 3 BrugEHL)A(UgEA).

(1,2, ,d} {1,203
A set H containing no contradictory subsets of shift-
equivalent configurations is called consistent.

This definition applies also to the case of partial

markings of one configuration St =583 =... =51,

to the case where the subset contains several different
partial markings of the same configuration.

In what follows, we assume that a set of precedents

- {(Sd(l) ﬁd(l))‘ d(l)

—d(l) a(), .
L, eMy,;i=1,2,...,q9

d(l) . }

is fixed.

The problem Z of trend revealing consists in syn-
thesizing a suitable algorithm A such that, for all

i=1,2, ..

extension of the marking Hfm
rithm should be such that

, ¢, the complete marking A(S{") is an

; in other words, the algo-

.. —d(i)
Voojiwe i
{1,2,...,dD}

where 797 = A(5!").

)= (1] #£8) = (W =), ()

Note that, if an algorithm A is suitable, then I'l( Sd(l)

7i%) =1 forall 7” = A(5{").
An algorithm A satisfying condition (1) is called

correct for the problem Z.

Definition 3. The trend revealing problem Z is
called solvable if and only if there exists a suitable cor-
rect algorithm A for this problem.

Theorem 1 (a solvability criterion). The problem Z
is solvable if and only if the set of precedents H is con-
sistent.

Definition 4. The problem Z is called regular if and
only if Z is solvable for any suitable partial markings
1Y e M of all configurations 5; from H.

Theorem 2 (a regularity criterion). The solvable
problem Z. is regular if and only if, for any subset H-=

(S B pe (Ll LY (1,2, ... g} u>1)

> My
od®d «dp
of Hsuchthat S;" =S, foranyi,je {I, 1L, ..., 1L},

the marking rules imply the existence and uniqueness of

a suitable marking of the configurations §Z<p), where
el b, ..., L}
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Yet another important special feature of the problem
under consideration is the necessity to formalize and
apply the locality properties [6].

A subconfiguration P( Sd) of a configuration 57 is
by definition, an arbitrary subset of points from 54
P(5") < §°. A subconfiguration Py(5" ) of a configura-

tion S is said to be connected if Po(S* ) = (5%, S+, ...,
SB-1 5P, where 1 Sa<B<d.

A neighborhood of a point §* € 5 isa pair formed
by the point § itself and some connected subconfigura-

tion PO(Sd) of the configuration 5° including this point:
g

0(S, 5" = (8, PSY) = (S, (5% ", ..., P,
where 1<a<i<B<d.
The point S* is called the support point of the neighbor-
hood O(S', 5.
We say that a system of neighborhoods O(S‘d) is
given on a configuration Sd, if each point S’ € 5 s

assigned some neighborhood O(S’, S‘d). A system of
neighborhoods Q is given on C a system of neighbor-
hoods is given for each configuration from C.

A system of neighborhoods O( S’d) of a configura-

N . .
tion S is called trivial if the neighborhood of each
point coincides with the entire configuration, i.e.,

v s 08,3 =
A system of neighborhoods € given on C is called triv-

ial if and only if the system of neighborhoods of each
configuration from C is trivial, i.e.,

v3'vs: 0,5 =5
c
Suppose that a nontrivial system of neighborhoods

Q on Cis given. An axiom I1 = {r, ®,, ..., T} is called
Q-local if and only if

vs‘f“) 552 v s* v sk
d(l) -d(2)
OS5, 51"y = 0(58, 557))

o b

:(Vu n (S5, 10 = m(Sh 1)),

<d(D) d(2)

where b= |0(s% §{™)| = 058, 557|.

A system of axioms I1 = {x,, ®,, ..., m,} is called
Q-local if and only if each axiom from {1 is Q-local.
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Suppose that a system of neighborhoods Q and a
shift-stable €2-local system of axioms Il = {&,, 7,, ...,
T} are given on C.

Definition 5. A marking algorithm A is called
Q-local if and only if, for any configurations $*

5P < Candanyo=1,2,....d(e)and3=1,2,....d(B),

<d(o) <d® B

(0(5% 5" = 0(s", 5'")) = u® = P,

<d(B)

where pu® e ‘@ = A(5"”) and ube @ =5,

Note that the neighborhoods differ from the config-
urations in their structure. In essence, a neighborhood
is a punctured configuration, i.e., a configuration in
which a support point is fixed. For this reason, neigh-
borhoods need their own definition of shift-equiva-

lence: neighborhoods O(S®, S{) = (8%, (897%,
Sy L SY, L, SETYY) and O(SS, 59) = (S5,

(Sg“k, L S SE”)), where k>0 and | =2 0, are
called shift-equivalent if there exists a vector p* =

(t*, v¥) such that S{*" = ™™ + p* for all m € {—,
—k+1,...,1}.

Note that, at m = 0, the shift-equivalence of neigh-
borhoods implies S} = 52 + p*.

Definition 6. The problem Z, is called locally solv-
able if it admits a suitable correct local algorithm A,.

We denote the set of partially marked neighborhoods
of points in configurations from the set of precedents by

0y=10(s]. (5" @ 5. e H. 15" e H).

Theorem 3 (solvability local criterion). The prob-
lem is locally solvable if and only if the set Oy of par-
tially marked neighborhoods corresponding to the set
of precedents H is a consistent set.

Definition 7. The problem Z, is called locally regu-
lar if it is locally solvable for any suitable partial mark-

ings i e M4” of all configurations 5% from H.

Theorem 4 (regularity local criterion). A locally
solvable problem is locally regular if and only if, for
any subset of shift-equivalent neighborhoods of points
from the set of precedents, the marking rules imply the

existence and uniqueness of a suitable marking.

Note that the notions introduced and results
obtained in this paper make it possible to solve the
practically important problem of searching for a min-
imal system of neighborhoods for a given set of prece-
dents f.
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