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Abstract—A multizone survey visualization method is outlined, which is based upon a multizone frame palette
clusterization, expert choice of the colors of some clusters and automatic formation of remaining clusters colors.

1. INTRODUCTION

Present-day approaches to terrestrial surface on-line
monitoring are essentially based on multizone surveys
carried out onboard satellites or aircrafts. Availability
of receiving complexes that are relatively inexpensive,
compact and easy to maintain serves to increase the
number of the users of natural resources satellite infor-
mation. Availability of this information in real time and
a sizable amount of corresponding data pose the prob-
lem of multizone video information on-line visualiza-
tion in order to both analyze it effectively and exploit it
by the users.

A conventional solution to the visualization prob-
lem consists of the following. One chooses three chan-
nels from the set of all spectral channels, and assigns
one of the three basic colors (red, green or blue) to each
of them. The picture obtained from the three mono-
chrome pictures superposition, after some additional
refinement (for example, by the histogram expansion
method) is a visualization result. The deficiencies of
such an approach are evident. For one thing, only part
of the available information (only 3 spectral channels
of 5-10) is used. On the other hand, the resulting colors
often do not adequately represent habitual terrestrial
surface coloration.

The method of attack presented here enables the
user to choose coloration for a set of a single or several
multizone picture fragments, thus training the com-
puter. Thereafter the entire survey, i.e., all the imagery
generated under similar conditions, is automatically
visualized on the basis of the learning in the color pal-
ette constructed in such a way. In this case, information
from all the multizone survey spectral channels is used.

2. FORMULATION OF THE PROBLEM

Let us assume that the multizone survey is carried
out in such a way that all individual pictures in every
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range (single zone pictures) are executed simulta-
neously from the same point, that they represent the
same area, and have the same resolution. Moreover, let
us assume that all the single zone pictures are matched
with respect to all the picture elements (pixels).

Let X be a set of the picture elements which are
arranged as a rectangular matrix. Each ith single zone
picture is a monochrome (gray) one and is specified by
function Fi(x), x € X, which maps the set of pixels X
intothe set /= {0, ..., 255}, which represents 256 levels
of gray color intensity.

The multizone picture consists of m single zone ones
and is depicted by vector function F(x) = (F;(x), ...,
F,(x)) that maps X into integer-valued m-dimensional
cube I'":

Fr X—1 )

Let S € I be an image of a map F. Let us call $ mul-
tizone palette of picture (1). The visualization process
of multizone picture F(x) is reduced to a generation of
the so called visual picture. The visual picture (RGB
image) is a vector function H(x), x € X that associates
every pixel x with vector (R(x), G(x), B(x)) of red, green
and blue color intensities respectively for representa-
tion on the color display.

A peculiarity of the mapping devices most exten-
sively employed at the moment are limitations on the
total number of RGB-colors that simultaneously exist
on the screen. This implies that there can be no more
than M colors in the palette (M =256 is common). Each
color in the RGB palette can be interpreted as a point in
three-dimensional integer-valued cube P.

Thus, the visual picture is a function H(x) that maps
a set X of the pixels into some color palette P,

H: X—P, )
where P is a finite set of M points in the integer-valued
cube P.

In accordance with the notations introduced, the
multizone picture visualization problem is reduced to
the construction of both color palette P and mapping T
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of integer-valued cube /" together with multizone pal-
ette § contained in it, into a RGB-palette P, i.e.,

T. "m— P 3

If the visualization problem is solved and mapping
T is found, direct transformation of an initial multizone
picture to an RGB-image consists of a calculation of
function H(x) = T(F(x)) for all the pixels x € X.

Setting up the problem has the following peculiari-
ties in different applications:

—a great number of the multizone survey spectral
channels (up to m=10);

—a limited number of colors in palette P (M = 100-
120) which owes to the necessity of the part of the color
palette redundancy for different computer system
needs;

—a necessity of immediate visualization in real
time in order to carry out on-line check and control at
the multizone survey operator working place.

3. METHOD OF SOLUTION

The suggested approach consists of constructing a
color RGB-palette P and mapping T on the basis of pro-
cessing a few multizone learning pictures with the par-
ticipation of an operator-teacher (at the preliminary
learning stage).

Following direct visualization of the arbitrary mul-
tizone pictures of the same class as learning ones is
realized then, using on-line palette P and mapping T.
However, in the case of the appearance of multizone
pictures of different classes (change of seasons, area
types, etc.), P and T correction (i.e., additional learn-
ing) is possible.

In order to construct a palette P and mapping 7, a
method is proposed which incorporates the following
stages:

(1) Carry out the multizone palette S clusterization
by its partition to M clusters using the learning pictures.

(2) Choose RGB-colors for each of the M clusters.
Here it is possible to choose colors for some clusters
manually by the teacher-operator. Since the number of
remaining clusters is sufficiently large, the colors for
them may be chosen in an automatic mode.

Thus, two algorithms: one of multizone palette clus-
terization and the other of cluster coloration are the
most essential in this approach.

4. MULTIZONE PALETTE CLUSTERIZATION

Clusterization is based on the construction of the
Voronoi diagram for the integer-valued cube /. Ele-
ments of this diagram (clusters) are loci W, W,, ... , Wy,
that are defined in the following way.

Let R = [0.255] be a segment of the number axis,
R™—m-dimensional cube with side R, and py, ... , py—
points inside R™. Let us associate with every point p;
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called a pole, a Voronoi polyhedra (locus) which is
defined as

W, ={ze R p(z, p)<(zp)), z€ R",
j=1,..,M}, i=1,.,M,

where p(z, p) designates Euclidean distance between
points z and p.

Every set W; consists of all such points of m-dimen-
sional cube R™, the distance from which to the pole p;
does not exceed distances to other poles. The totality of
loci Wi, ..., Wy, is called Voronoi diagram and is a cov-
ering of the cube R™ and, correspondingly, of the inte-
ger-valued cube /™. Loci are convex polyhedra and
intersect each other only at the boundary points. The
problem of localization of the arbitrary sampling point
in Voronoi diagram is reduced to determining the pole
nearest to it from the set of poles py, ..., py.

A peculiarity of the multizone palette S is the fact
that in spite of an immense number of possible vector-
colors (ap to 256™) that could be contained in it, only a
small part of them actually occur in multizone pictures.
Besides, corresponding points are nonuniformly dis-
tributed in /", i.e., they form clusters. Therefore the
problem of multizone palette clusterization is reduced
to the choice of poles taking into account these clusters.

Thus, multizone palette S = {sy, ..., 5,5 5;€ I";j =
1, ..., n} is a set of all the vectors-colors that occur in
the set of the learning pictures. Let us associate with
every point s; a weight D(s;) that is equal to the number
of pixels in the learning pictures which have color vec-
tor s; (i.e., the number of pixels x € X for which F(x) =
5;)-

Since the distances from the points s; to the poles p;
of the clusters determine the degree of their proximity
to clusters, it is natural to take the sum of weighted
square deviations of the points of $ from the corre-
sponding poles p|, ..., py as a criterion of the pole
choice:

M
Apiy s pu) = 3, > P (s, p)D(s).

i=lseSNW,

Now the problem of the cluster poles choice reduces

to determination of a set of M points {py, ..., py} that
minimize A(py, ... , py):
min = A(py, ..., Pu)- 4)
Dis e s Pye R"

Since a search of the global minimum in (4) is a
NP-complete problem, let us use an heuristic algorithm
in order to find an admissible local minimum, similar to

[1].
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For each locus W, let us consider the point c, that is
its center of gravity,

¢, = C(W) = Z Iﬁ(‘j/))s.

seSNW,

It is shown in [1] that if a partition of S to clusters
were not dependent upon the poles py, ..., py location,
using loci ¢, centers of gravity as poles would give min-
imum total square deviation in (4). However, if we allo-
cate poles at the cluster centers of gravity, this immedi-
ately changes Voronoi polyhedra and clusters them-
selves. The concept of the algorithm proposed is to
construct an iterative convergent process of the succes-
sive correction of the poles and cluster centers of grav-
ity.

The process consists of two phases: successive gen-
eration of the cluster poles and following iterative clus-
ter correction. In what follows, both those phases are
implemented in a single algorithm.

Multizone Palette Clusterization Algorithm

1. Generation of the first pole p; as a center of grav-
ity of all the points of §: = W, =S, ¢; := C(S5), p; = ¢;-

2. Let k be the number of generated poles py, ..., py.
Generation of the pole p, . ;:

2.1. Let us find a locus W, with the maximum total

square deviation A, = zs WS p2 (s, PIDC(s)):

r = arg max A;
k

=1, ..,
2.2. Let us decompose locus W, into two subsets
W, =W, U W, dividing it by a (m ~ 1)-dimensional
midpoint hyperplane that is perpendicular to one of the

coordinate axes. We select the coordinate axis with
maximum dispersion of points from § N W, along it.

The hyperplane goes through the points projection
median;

2.3. Let us calculate the centers of gravity of the sets
obtained, W, and W —points ¢, := C(S N W) and
Cev1:= C(S N W), and let us assume that p, := c,,
P+t += Cray

3. Let us correct the location of all the £ + 1 poles
taking into account the pole p, . , generated. In order to
do that:

3.1. For each point s € S let us find the nearest pole
among pi, ..., Pr+1- Thus the set S is decomposed to
k+1subsetsS=S,u...uUS.,;

3.2. In every subset S, let us calculate the new center
of gravity ¢, = C(S,), and let us determine the new loca-
tion of the pole p, :=c,.

4. If k + 1 < M, assign k := k + 1 and pass to the
point 2. If k+ 1 = M and if maxp(c, p,) < €, the process
is finished, otherwise go to the point 3.
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Fig. 1. Multizone palette clusterization

Figure 1 illustrates the algorithm operation when the
number of spectral channels is m = 2 and the number of
clusters is M = 4. Initial points in the multizone palette
are represented by black circles, and cluster centers, by
white squares. Redistribution of the points with respect
to clusters after the poles have been changed is shown
by solid lines. The first four drawings illustrate succes-
sive generation of the cluster poles. The last two draw-
ings present iterations of the correction of cluster cen-
ters’ locations.

It is known from [1] that this iteration process con-
verges sufficiently well to some local minimum for
problem (4), which is quite acceptable for applied prob-
lems.

5. CHOICE OF COLORS
FOR A CLUSTERED MULTIZONE PALETTE

Loci W, ..., Wy, with poles p,, ..., py are con-
structed according to the results of the multizone pal-
ette /™ clusterization. Now every locus should be
assigned some color in the visualization palette P. The
process of the choice of these colors which we call clus-
ter coloring is realized with the help of an operator-
teacher. When analyzing the collection of the single-
zone learning picture fragments at the screen of display,
he can point out any pixel and choose the color from the
visualization palette which should be assigned to it.
When choosing the color, the operator is guided by his
own preferences. One of the coloring versions corre-
sponds to the geographical map coloring: the water sur-
face is blue, mountains are brown with white glaciers,
the woods are green, etc. Since the pixel chosen is
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linked with some vector-color in a multicolor palette
and this vector-color lies in one of the clusters, the same
color chosen by the operator in the visualization palette
can be associated with all the points of the multizone
palette of this cluster. Thus, colors for all M clusters can
be chosen manually, and, by doing so, the cluster color-
ing problem will be completely solved. However, since
number M is too great for manual sorting, we propose
to supplement manual visualization color matching by
automatically coloring the remaining clusters. Its
essence is, on the basis of the operator chosen colors for
clusters Wy, ..., W,, to assign colors to the remaining
clusters Wy, |, ..., Wy, Naturally, the operator has the
possibility of changing the color of any cluster colored
both manually or automatically.

The essence of the automatic choice of colors for the
clusters remaining after manual coloring is linear
interpolation of the function T(p) given at the nodes
Pis ---» Py Values of this function T(p,), ..., T(p,) are
colors prescribed by the operator for clusters W, ..., W,
in the process of manual coloring, i.e., points of integer-
valued cube I°. Performing linear interpolation of func-
tion T(p), we can ascribe to poles p; . |, ..., py the col-
ors that correspond to the rounded off values
T(pi, 1), .--» T(pyp). Thus the problem is reduced to a
multidimensional linear interpolation of the function
given on irregular node mesh.

It is known that the best linear interpolation of func-
tions of the two or three variables on an irregular finite
node mesh is accomplished when we use Delaunay tri-
angulation. Triangulation on a plane is a plane graph,
all faces of which are triangles. Delaunay triangulation
[2] is a triangulation where all triangular faces have
empty circumscribed circles, i.e., such that they do not
contain any graph vertices inside. It is known that for a
given set of general position points (such that no four of
them belong to a single circumference) Delaunay trian-
gulation exists and is unique. Effective algorithms of
Delaunay triangulation construction for a plane [2] and
three-dimensional space [3] are also known.

Employing the Delaunay triangulation for solving
the problem of two or three variable function interpola-
tion is as follows. At first the problem of localization is
solved for an arbitrary test point, i.e., the problem of
" determining a simplex (triangular face in the two-
dimensional case or a tetrahedron in the three-dimen-
sional case) containing this point. Then, both baricen-
tric point coordinates relative to the simplex and func-
tion value at the test point, according to the function
values at its vertices, are calculated. A single constraint
is that the test point should be inside the interpolation
nodes convex shell, because otherwise the test point
localization problem does not have a solution.

The basic idea of function interpolation by
Delaunay triangulation can easily be generalized to a
multidimensional case. Here, m-dimensional triangula-
tion of a general form will be understood as a graph, all
hyperfaces of which are m-dimensional simplexes that
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do not have mutual inner points, and Delaunay triangu-
lation will be a triangulation, all hyperfaces (simplexes)
of which have empty circumscribed hyperspheres.
Then the interpolation problem can also be solved, in
theory, by test point localization and calculating its
baricentric coordinates in the simplex.

However, implementing this idea for the case of
space dimension m > 3 runs into considerable prob-
lems. Algorithms of construction of all the Delaunay
triangulation edges in multi-dimensional cases are
known [4]. But this is not enough to solve the interpo-
lation problem: one must have the triangulation hyper-
faces (simplexes with vertices in nodal points). How-
ever, the number of hyperfaces in triangulation grows
exponentially with space dimensionality m, and its
value is of the order of O(k"?), where k is the number
of triangulation vertices [4]. Thus the construction of
all such triangulation hyperfaces can take an unaccept-
able amount of memory and time. Hence, even for m =
5-6 it is impossible, in practice, to use a traditional line
of attack to construct Delaunay triangulation and then
consequently solve the localization and interpolation
problem for all the test points.

The suggested approach consists of abandoning the
calculation of all the Delaunay triangulation at first, and
constructing, immediately, only its individual sim-
plexes which are necessary in order to solve the test
point localization problem. Naturaily such an approach
can essentially take greater time for localization as
compared with the prior triangulation construction at
the prepossessing stage. But since, in our particular
case, the number of points p,, |, ..., py for which it is
necessary to calculate T(p) is relatively small, these
time expenditures appear to be quite acceptable.

The realization of the suggested approach consists
of two stages. The first stage of initial search is
Delaunay simplex construction, the hypersphere of
which contains the test point. For this stage a “hyper-
sphere inflation” algorithm is proposed. The second
stage incorporates an accurate search of the enveloping
Delaunay simplex that contains the test point. In order
to carry out an accurate search, a simplex tracing algo-
rithm is proposed.

5.1 Construction of Enveloping Hypersphere

Let us introduce the following designations:

P, is a set of interpolation nodes P, = {py, ..., p;} in
m-dimensional space (k > m);

Vy is an N-dimensional simplex in m-dimensional
space (0 < N < m) that is determined by N + 1 vertices
from set P,;

s is a test point due to localization, for which it is
necessary to find a set V,, that forms Delaunay simplex
with circumscribed sphere €(V,,) such that s € Q(V,,);

Ly is linear manifold spanned on the simplex Vy;

uy is the test point s projection on the manifold Ly;
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gy is the center of a m-dimensional hypersphere that
passes through all the points of Vy and contains test
point s;

Zy is a perpendicular dropped from the point gy to
Ly, ie.,

ZN = {qN+t(qN_uN)7te (_°°,°°)}'

A physical model of the algorithm consists in the
process of inflation of a m-dimensional sphere. For the
case m = 2, illustration of this process is presented on
Fig. 2.

The process is initialized from the zero-radius
sphere with a center in test point s. Then, it is “inflated”
(its radius increases, and the center stays put) till its sur-
face touches one of the points of set P, (Fig. 2a). This
point vy is the first vertex of the simplex required, and
it generates set V, = { v, }. Here, the center of the sphere
is gy = 5. Following inflation of the sphere consists of
increasing its radius and shifting its center along the

direction ?q()) so that point v, remains on the sphere
surface. This process continues until the sphere touches
one more point v; from V (Fig. 2b). Point v, is the sec-
ond point of the simplex required, therefore V, = V, U
{v1}. The new center of the sphere is point g;. Further
sphere inflation consists of increasing the radius and

shifting its center along the perpendicular to the line
—_
vV, . This perpendicular passes through the point g,

—_—
and its projection u, on v, v, . Inflation is continued up

to the moment of touching the third point v, of V
(Fig. 2c). This process which is illustrated for a two-
dimensional case, is also easily generalized to m > 2.

Formally, the algorithm can be represented in the
following way.

Hypersphere Inflation Algorithm

1) Initial step—construction of a O-dimensional sim-
plex (N =0):

Find

vy :={ v: p(v; 5) £ p(V, s) }—the nearest to s point of
V;

Vo = { vy}—the set of the simplex vertices;

qo = s—center of the Q(V,) hypersphere which
touches v, and contains test point s in its interior;

Ly—0-dimensional manifold spanned on V; (it is
just the point vy);

uy := vy—the projection of the point g, to Ly;

Zy={qo+ 1(gy— Up), t € (—oo, o) }—the perpendicu-
lar to L, that passes through the point g,.

2) The sphere inflation step and construction of the
next simplex of a greater dimensionality:
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Fig. 2. Sphere inflation algorithm

Let a N-dimensional simplex Vy be constructed, as
well as points gy and uy and manifolds Ly and Zy asso-
ciated with it.

Designate as

[(V, V) - (V07 VO) - (qN9 \ VO)]
(gn—un, v—vy)

of the parameter that determines the location of the

sphere center on the straight line Zy that passes through

all the points of V and some point v.

Then T ;= min{#{V)H(v) 2 1, v € V\Vy} is the
parameter that determines the center of the sphere of
minimum radius which passes through all the points of
Vy and one more point of VAV,

Find

gy .1 = qn + T(gy — uy)—the proper center of this
sphere;

vy . —point of VAV, where the minimum of #(v) is
achieved, i.e., the next point which was touched by the
inflating sphere;

Vet = Vy U {vy,}—vertices of new (N + 1)-
dimensional simplex.

If N + 1 = m, the job is completed, else go to 3.

3) Constructing the projection of the sphere center
on the simplex linear span:

Let uy,; be the projection of gy, on the linear
manifold Ly, ; spanned on the simplex Vy, . Let us

Hv)= the value
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Fig. 3. Simplex tracing algorithm

express uy,  as a linear combination of vertices of sim-
plex Vy. (:

N+1

Uyy1 = Vot 2 (vj=vo)o,
j=1

where i is a solution to the system of linear equations

N
Z(Vj_ Vo Vi~ Vﬂ)a./ = (gye1— Vo Vi~ Voks
j=1

Let N:=N+ 1 and go to 2.

As aresult of the realization of the algorithm, we get
simplex V,, that has a circumscribed hypersphere
Q(V,,) containing a test point s and no points of V. The
computational complexity of the algorithm is deter-
mined by the fact that on each of m steps, sorting of all
the points of V is carried out, and we must solve a sys-
tem of linear equations (point 3 of the algorithm) of
dimensionality N =1, ..., m. This yields an asymptotic
estimate O(mN) + O(m*). Since in all practical prob-
lems m is of the order of ~10, the real time of the algo-
rithm execution is quite acceptable.

5.2 Search of the Enveloping Simplex

In the general case, the simplex V,, constructed does
not necessarily contain test point s in its interior. But
since its circumscribed sphere contains this point, it can
be supposed that the required simplex containing the
test point is somewhere near V,,. The search of this sim-
plex is carried out by a directed sorting of Delaunay
simplexes by the proposed simplex tracing algorithm.
The name of the algorithm can be justified because the
sorting of simplexes is carried out along the direction
from simplex V,, to point s. The idea of the algorithm is
to construct, consequently, several adjacent Delaunay
simplexes until we find one of them which envelops test
point s. An illustration of this idea is presented in Fig. 3
for the case m = 2.
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Let (Ag, ..., A,) be baricentric coordinates of the
test point s in simplex V,,. It means that

5= AVt oo ¥ A, Vs
Ag+ ...+ A, = 1.

This means that if all A; > 0, the point s lies inside
simplex V,,. If this condition is not satisfied, we should
pass from simplex V,, to some adjacent simplex and
check the location of s relative to it. Passing to an adja-
cent simplex consists of the substitution of one of the
vertices of simplex V,, to the other point from V\V,,. In
order to make this process purposeful, it is natural to
substitute the vertex with baricentric coordinate A, that
is negative with the maximum absolute value. This rule
reminds one very much of the corresponding part of the
linear programming simplex-method. A peculiarity of
the simplex tracing is that the vertex introduced into the
simplex (into the basis in terms of the linear program-
ming simplex-method) is chosen in such a way that the
new simplex generated would be a Delaunay simplex.

In the example in Fig. 3, simplex 1 does not contain
test point s, but its circumscribed circumference con-
tains it in its interior. Constructing, subsequently, sim-
plexes 2, 3, and 4, we arrive at the simplex enveloping
the test point (simplex 4).

Formally, the algorithm is outlined as follows.

Simplex Tracing Algorithm

Let point g be the center of an empty sphere of the
simplex V,,,.

1) Calculate baricentric coordinates (Ag, ..., A,,) of
test point s in simplex V,, by solving (2).

2) Find among the baricentric coordinates the mini-
mum one, A* = min{A;, i=1, ..., m}. if A* 20, the job
is completed.

3) Let j* be the index of the minimum baricentric
coordinate. Eliminate vertex v;« from simplex V,,.

4) Look for a new vertex in order to include it in the
simplex. In order to do that find the projection u of
point ¢ which is the center of sphere (V,,), on the set
V,,\M v«} linear span. This is accomplished similarly to
Step 3 of the sphere inflation algorithm.

The search of the introduced vertex is accomplished
by sorting the vertices from set VAV, that lie at the oppo-
site side of the simplex V), hyperface, which is generated
by its vertices V,\{ v;:} relative to the point vj.

m
Direct search of the introduced vertex is carried out
similarly to Step 2 of the sphere inflation algorithm.
The vertex found together with the points from
V.\{v;x} forms the new simplex V,,. When it is con-
structed, we should assume 7 :=  + 1 and go to Step 1.

As a result of executing the algorithm a Delaunay
simplex that contains the test point in its interior is
1998
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Number of iterations of the simplex tracing algorithm

Space Number of interpolation nodes
dimen-

siona]ity k=50 k=100 k=150 k=200
m=2 0.303 0.398 0.303 0.300
m=3 0.979 0.927 0.840 0.987
m=4 1.315 1.525 1.506 1.664
m=35 1.592 2.164 2.418 2.564
m=6 - 2.964 3.412 3.190
m=17 - - 4.230 4.280

found, and baricentric coordinates of this point in the
simplex are calculated.

The calculation complexity of the suggested algo-
rithm is determined by the fact that the number of
sorted adjoint simplexes, in the worst case, can be com-
mensurable with their total number which, as it was

mentioned, has an order of O(n 2) , where 7 is the num-

ber of points in set V. This algorithm has, in practice,
quite acceptable consumption time, as it is demon-
strated by the results of the computational experiment
presented in Table 1. It presents an average number of
iterations (for 1000 experiments) of the simplex tracing
algorithm for space dimensionality m = 2—7 and inter-
polation nodes number k = 50-200.

5.3 Linear Interpolation in the Enveloping Simplex

As mentioned above, if the test point should get into
one of the Delaunay triangulation simplexes with cer-
tainty, it necessarily should lie inside the set of the ver-
tices convex hull. Since any point of m-dimensional
integer-valued cube I" can be a test point, it is necessary
to include all 2™ vertices of cube R™ in the set of inter-
polation nodes V, in addition to poles p,, ..., p;, for
which the operator-teacher has specified RGB-colors.

Since values of function T should be defined at the
interpolation nodes, it is necessary to specify some
RGB-colors to the R™ cube vertices. The calculation
experiments that were executed showed that it is quite
acceptable to assign the black RGB-color (0, 0, 0) to
these vertices.

Let us assume that a Delaunay simplex, which con-
tains test point s, is found and that its baricentric coor-
dinates (Aq, ..., A,) in this simplex are determined.
Then, we determine the color of point s as

T(s) = AT (vo) +... + A, T(v,),

where vy, ..., v, are simplex vertices.

Thus, the suggested algorithm allows one to select
colors for clusters W, , ,, ..., W), using multidimensional
linear interpolation, the colors of clusters Wy, ..., W,
specified by the operator-teacher being given.
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6. CONCLUSION

The method suggested was implemented and tested
when developing the model-prototype of the automated
working place (AWP) of the multizone survey operator.
The design of the AWP was implemented for the survey
automatization including stages of learning and opera-
tion.

On the learning stage, this process includes:

—the viewing of educational gray single-zone pic-
tures;

—automatic clusterization of the multizone palette;

—partial manual coloring of the clustered palette;

—automatic total coloring of the clustered palette;

—the viewing of visual color images of educational
multizone pictures.

On the operating stage viewing of visual images of
current multizone pictures in a real time scale of survey
is implemented.
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