
Cooperative Coevolutionary Ensemble Learning

Daniel Kanevskiy and Konstantin Vorontsov

Computing Center of the Russian Academy of Sciences.
Vavilov st. 40, 119991, Moscow GSP-1, Russia
kanevskiy@forecsys.ru, voron@ccas.ru

Abstract. A new optimization technique is proposed for classifiers fu-
sion — Cooperative Coevolutionary Ensemble Learning (CCEL). It is
based on a specific multipopulational evolutionary algorithm — cooper-
ative coevolution. It can be used as a wrapper over any kind of weak
algorithms, learning procedures and fusion functions, for both classifica-
tion and regression tasks. Experiments on the real-world problems from
the UCI repository show that CCEL has a fairly high generalization per-
formance and generates ensembles of much smaller size than boosting,
bagging and random subspace method.

1 Introduction

Combining classifiers is one of the most prominent techniques currently used
to augment the accuracy of learning machines. A large number of combination
schemes have been proposed in the literature [1].

Boosting is probably the most popular combination technique [2]. Base clas-
sifiers are trained in sequence so that each focuses its attention on the “hardest”
examples poorly classified by the previous ones. Outputs of the base classifiers
are aggregated by the weighted voting. Boosting is simple and powerful, yet it
suffers from certain disadvantages. First, the greedy sequential strategy takes
into account only the previous classifiers but not the next ones, thus each base
classifier turns out to be suboptimal in composition. Second, outliers become
“hardest” examples with a high probability, thus concentration on them may
weaken base classifiers. To compensate these drawbacks boosting generates ex-
haustively large number of base classifiers. Generalization error of boosting may
reach its minimum at thousands of base classifiers [3].

Bagging trains classifiers independently on different parts of training set, thus
making them sufficiently diverse [4]. Training subsets are created by drawing ob-
jects randomly with replacements from the initial training set. Base classifiers
trained on these subsets are aggregated using simple or weighted voting. Bag-
ging is rather effective on small data sets and when base learning algorithm is
instable, that is small changes in the training set lead to significantly diverse
classifiers [5]. Otherwise bagging does not improve the performance of a single
classifier much [6]. Also, though the bootstrapping procedure helps to maintain
the diversity, no optimization is made to select training subsets. Then the result-
ing composition may be rather far from optimal. Like boosting, these drawbacks
are compensated by taking exhaustive number of classifiers.

2 Daniel Kanevskiy and Konstantin Vorontsov

Random Subspace Method (RSM) trains base classifiers independently on the
same training set using different random subsets of features [7]. Outputs of the
obtained classifiers are aggregated by simple majority voting. RSM helps to
struggle with the curse of dimensionality and is useful when the number of
training objects is small compared to the number of features [8]. Again, the dis-
advantage is that a little optimization is made to select features subsets carefully,
which leads to exhaustively large number of base classifiers.

Evolutionary Algorithms are frequently used in pattern recognition for fea-
ture selection and classifiers fusion. For example, [9] exploits a genetic optimiza-
tion technique to choose different subsets of features for the constituents of the
ensemble, and also the type of each base classifier. The fitness function used in
this approach is claimed to be advantageous, because it evaluates the perfor-
mance of the combination, not of the single classifiers. But the encoding of the
chromosome strongly depends on the number of classifiers in the ensemble, so
it must be prespecified. This often leads to another branch of resource-intensive
research aimed to choose the best ensemble size. A canonical genetic algorithm
is used in [10] to independently choose a separate feature subset for each base
classifier. After the subsets are chosen, one of the known fusion techniques (boost-
ing, bagging) is applied without further ensemble optimization. This approach
implicitly feeds different base classifiers with different subsets of objects and
features, but no global optimization is used to choose the subsets, that would
optimize the performance of the ensemble as a whole.

Some contributions use genetic optimization to choose a subset of classifiers
from a wider set of pretrained ones. They may strongly depend on the type of
the learning machine such as neural networks [11], or exploit some additional
information such as reliability measures [12]. Both approaches do not optimize
the ensemble globally, leaving this task to the local optimization.

The latter two approaches are combined in [13], where a two-level multi-
objective genetic algorithm is suggested. The first level finds the Pareto-optimal
front of feature subsets, while the second chooses the best ensemble of classifiers
among those trained on the Pareto-optimal subsets. The chosen classifiers are
then averaged to produce the final output. This also reduces the fusion problem
to a number of independent optimization tasks, and no global optimization is
held to make classifiers work together. And still the number of classifiers can not
be chosen automatically.

There are also a technique specific to neural networks that incorporates the
power of evolutionary optimization with thoroughly selected heuristics [14]. This
technique automatically determines the number of hidden neurons in NN and the
number of NNs in the ensemble. But a greedy optimization technique (though
with feedback) des not allow to take advantages of classifiers cooperation.

In this paper we use a special kind of evolutionary algorithm, inspired by the
symbiosis in nature, and called cooperative coevolution [15]. It allows to optimize
all base operators and fusion function simultaneously, learns base operators to
cooperate rather than to solve the problem individually, and choose the number
of operators dynamically, thus obtaining an accurate small size ensemble. This

Cooperative Coevolutionary Ensemble Learning 3

technique is appropriate to any type of base classifiers and fusion functions for
both binary and multiclass classification. It can be easily propagated to regres-
sion tasks also. We embody this approach into a new ensemble learning algorithm
called Cooperative Coevolutionary Ensemble Learning (CCEL). Section 2 intro-
duces necessary notations. Section 3 describes the universal CCEL framework.
Section 4 specifies it for the linear fusion. Section 5 presents experimental results
and compares CCEL with other popular linear fusion techniques.

2 Definitions and Notation

We consider an input space X, an output space Y and a given finite dataset
D = {xi, yi}

ℓ
i=1 of pairs from X × Y . Elements of X are described by n features

gj : X → Vj , j = 1, . . . , n, where Vj is a set of all permissible values of the
feature gj . The goal is to learn a function a : X → Y that approximates the un-
known dependence of outputs from inputs. Approximation quality of a function a

on a finite set U ⊂ D is measured by empirical error :

Q(a, U) =
1

|U |

∑

xi∈U

L(a(xi), yi),

where L(y, y′) is a real-valued loss function that gives a deviation of the out-
put a(xi) from the truth yi.

For the sake of generality and following algebraic approach to pattern recog-
nition [16] we introduce an intermediate space R and suppose that function a has
a form of superposition: a(x) = C(b(x)) for any x ∈ X, where b : X → R is called
base learner, and C : R → Y is a fixed function. For example, in two-class clas-
sification Y = {−1,+1}, if R = R, C(b) = sgn(b), then b(x) is a real-valued
classifier. In multiclass classification Y = {1, . . . ,M}, the reasonable choice is
R = R

M , C(b1, . . . , bM) = argmaxy∈Y by. Regression and binary-valued classifi-
cation are trivial examples with the most natural choice R = Y , C(b) = b.

An ensemble of base learners b1(x), . . . , bp(x) aggregated by a fusion func-

tion F : Rp → R is defined as superposition:

a(x) = C
(
F

(
b1(x), . . . , bp(x)

))
. (1)

Linear fusion also called weighted voting is a most popular example:

F (b1, . . . , bp) = α1b1 + · · · + αpbp. (2)

Here the usual requirement αi ≥ 0 means that F must be a monotone function
of its arguments. Less known are non-linear monotone fusion functions for both
classification and regression tasks [17].

Learning algorithm as a mapping µ : (U,G) 7→ b that generates base learner
b : X → R using a finite subset of objects U ⊆ D described by a finite subset of
features G ⊆ {g1, . . . , gn}. For example, µ may be an empirical error minimizer:

µ(U,G) = argmin
a∈A(G)

Q(a, U),

where A(G) is a set of functions that uses only features from G.

4 Daniel Kanevskiy and Konstantin Vorontsov

3 Cooperative Coevolutionary Ensemble Learner

In this section we propose a generalized evolutionary algorithm for global opti-
mization of composition (1). It uses a fixed learning algorithm µ to train base
learners b1, . . . , bp. We do not restrict neither a family of algorithms A(G) nor
an optimization technique that the learning algorithm µ may apply.

The evolution forms a set of p(t) isolated populations Π1(t), . . . ,Πp(t)(t) at
each iteration t = 1, . . . , tmax. Each population Πj(t) is a set of N0 individuals.
Each individual is a binary vector of the length ℓ + n, which encodes a subset of
objects U ⊆ D and a subset of features G ⊆ {g1, . . . , gn}. So, each individual vj

from Πj(t) can be considered as a pair vj = (U,G) and thus can be fed to the
learning algorithm µ to obtain a base learner bj = µ(vj).

The evolution process starts from a single population initialized at random,
see step 1 of Algorithm 1. Populations evolve independently except one but very
important thing: the fitness ϕ(vj) of individual vj is evaluated by the quality of
the ensemble (1), in which j-th position is occupied by bj , and others are the
most fitted base learners b∗s, taken by one from each population Πs(t), s 6= j:

ϕ(vj) = Q
(
F (b∗1, . . . , b

∗

j−1, µ(vj), b
∗

j+1, . . . , b
∗

p(t)),D
)
.

This is a main distinguishing property of the cooperative coevolution. Another
ways exist to choose representatives from other populations, but the fittest ones
are argued to be better if the evaluation involves only one collaboration [18].

All populations go through a common generational loop. Genetic operations
(crossover and mutation) are applied to the individuals, creating offsprings, that
form an intermediate populations Π ′′

j . The main population for the next gen-
eration consists of a number of most fitted individuals, selected from the in-
termediate population, and a few elite individuals, transferred from the pre-
vious main population unchanged. For each generation t the best composition
F (b1, . . . , bp(t)) is selected and saved.

Populations may be added or erased during the evolution, changing the size p

of the ensemble. A population is erased when its contribution into the ensem-
ble remains too small for a number of generations. New population is created
when the evolution comes into stagnation. The evolutionary process stops, when
changing the size p does not cease the stagnation.

Now we give details of heuristics governing the evolutionary process. There
is quite a number of ways to define them, and our choice is based on either our
or other available empirical observations.

Init(N0) generates N0 random individuals. Two probabilities: of adding an
object px and a feature pg are parameters also. We’ve chosen these to be 0.5
both, but prohibited the chromosomes with less than 25% objects or features.

Select(Π,N) is chosen to be the deterministic truncation selection. It re-
turns a subset of N fittest individuals from the population Π. In CCEL it is
used twice: first, when N2 elite individuals are transferred to the next genera-
tion (step 4); second, when N0 best individuals from intermediate population
are taken to form the population of the next generation (step 6).

Cooperative Coevolutionary Ensemble Learning 5

Algorithm 1 Cooperative Coevolutionary Ensemble Learner (CCEL).

Require:

Sample D = {xi, yi}
ℓ
i=1;

Base learning algorithm µ;
Parameters: tmax, px, pg, pm, N0, N1, N2, d1, ε1, d2, ε2, d3, ε3;

Ensure:

ensemble F (b1, . . . , bp);

1: initialize a single population:
p(1) := 1; Π1(1) := Init(N0);

2: for all generations t := 1, . . . , tmax do

3: for all populations Πj(t), j := 1, . . . , p(t) do

4: create an intermediate population:
Π ′

j := Crossover(Πj(t), N1);
Π ′′

j := Mutation(Π ′

j) ∪ Select(Πj(t), N2);
5: fix the best individual v∗

j and corresponding b∗j :
v∗

j := arg min
v∈Π′′

j

ϕ(v); b∗j := µ(v∗

j); Qt := ϕ(v∗

j);

6: keep top N0 individuals:
Πj(t + 1) := Select(Π ′′

j , N0);
7: if Contribution(Πj) is small then

8: delete population Πj ; p(t + 1) := p(t) − 1;
9: if Stagnation(Q, t) then

10: add population Πp(t)+1(t + 1) := Init(N0); p(t + 1) := p(t) + 1;
11: if Termination(Q, t) then

12: exit;
13: return ensemble F

(
b∗1, . . . , b

∗

p(t)

)
.

Crossover(Π,N1) is the uniform crossover operator, generating N1 new in-
dividuals (offsprings) in the following way. Two individuals (parents) are taken
at random from the population Π and the offspring inherits every chromosome
bit equiprobably from one of the parents.

Mutation(Π) is the usual bit-flip operator that makes random changes in
the bits of the individuals in Π. The canonical choice for the bit-flip probability
is pm = 1

k
, where k is the length of the chromosome. In our experiments we used

a greater value, which seems to provide better exploration of the search space
in combination with the elitist strategy [19].

Contribution(Πj) evaluates the contribution of the population Πj to the
ensemble using the take-one-out procedure. Two ensembles are constructed: with
and without the j-th base learner, and their respective qualities Qjt and Q̄jt

are estimated. The contribution is defined as their average difference for the last
d1 generations: 1

d1

∑t
τ=t−d1+1

(
Q̄jτ −Qjτ

)
. If the contribution is smaller than ε1,

the population is erased and the size of the ensemble decreases by one.

Stagnation(Q, t) checks a stagnation criterion for the sequence Q = {Qt}
at the time t. New population is created when no significant quality growth
happens last d2 generations: Q∗

t−d2
− Q∗

t < ε2, where Q∗

t = min{Q1, . . . , Qt}.

6 Daniel Kanevskiy and Konstantin Vorontsov

german CV run=2, fold=4

0.50

0.52

0.54

0.56

0.58

0.66

0.68

0.70

0.72

0.74

0.76

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

2

4

Fig. 1. Main characteristics of the evolution process as functions of generation num-
ber t. On the top chart: the thick curve is the margin functional Q̃ on the training set
with values along left vertical axis; the thin curve is the correct answers rate on the
test set with values along right vertical axis. The bottom chart show the number of
populations p(t) that is equal to the size of composition.

Termination(Q, t) is a criterion of a lingering stagnation: Q∗

t−d3
− Q∗

t < ε3,
where d3 ≫ d2 is assumed. At least several unsuccessful changes of the ensemble
size p should be made before stopping the whole process.

The contribution, stagnation and termination criteria allows to control the
number of populations dynamically [15]. A typical example of how CCEL works
is shown at Fig. 1. Here several attempts to create and erase a population was
made before termination criterion has stopped a process. Note, that the struc-
tural change of a composition always leads to the significant drop of the quality
on both training and test samples, but after a few generations it rehabilitates.

Now the universal CCEL framework is fully defined, except one thing: noth-
ing was said about the optimization of the fusion function F . Although this
framework allows to add another population of fusion parameters and proceed
in the same manner, this approach is computationally ineffective. Instead we sug-
gest to use a fast optimization procedure specific to the given fusion function.
In the next section we demonstrate this for the linear fusion.

4 CCEL for Linear Fusion

In this section we consider the liner fusion function (2) for binary classification
task assuming Y = {−1,+1}, C(b) = sgn(b).

A wide variety of weight optimization techniques is known [1]. The trivial one
is the simple voting, when αj = 1 and no tuning is necessary. The other end of
the stick is the Support Vector Machine (SVM), that allows one to obtain near-
optimal weights, but seems to be too slow for evolutionary algorithms. In this
work we use the näıve Bayes assumption that base classifiers are independent.

Cooperative Coevolutionary Ensemble Learning 7

This allows to calculate weights by explicit formula:

αj = ln
|S| − Ej + 1

Ej + 1
,

where Ej is the number of errors that the classifier bj makes on a sample S ⊆ D.
In CCEL each base algorithm is trained on its own subsample U ⊂ D, therefore
three variants of weight estimation are possible: from training S = U , from
testing S = D \ U , or from full sample S = D. Our preliminary experiments
showed that the second variant is the best. Additionally, if Ej ≥ 1

2 |S|, then αj

is taken to be zero, so the algorithm bj is excluded from the ensemble.
The quality functional Q(a, U) is commonly defined as the error rate of an

ensemble a on a sample U . Yet linear classifiers are known to generalize better
when the direct maximization of margins is used [20]. For the composition (2)
the margin of an object xi is defined as

M(xi) =
yi

∑p

j=1 αjbj(xi)∑p

j=1 αj

.

Margin M(xi) can be thought as a distance from the object xi to the classes
boundary. If the margin is negative, M(xi) < 0, then the composition makes

an error, a(xi) 6= yi. Hence we suggest the quality functional Q̃, defined as the
average margin of the training objects:

Q̃(a, U) =
1

|U |

∑

xi∈U

M(xi) → max
a

.

A number of our preliminary experiments has shown, that Q̃ really outperforms
both the standard error rate functional and its combinations with the explicit
diversity measures [21].

Further heuristic simplifies the Contribution procedure in the case of linear
fusion: the contribution of Πj can be evaluated as the average weight of the j-th

base classifier for the last d1 generations: 1
d1

∑t

τ=t−d1+1 αj(τ). When this value
becomes too small, the population is erased.

Yet another linear-specific heuristic is the “1-3 rule”. As a weighted voting
of two classifiers makes no sense (the one with larger weight always wins), then
the 1-element ensemble is always increased to 3 elements.

Finally, note that the multiclass version of the margins functional is also
available due to [22].

5 Experimental Results

In this section the linear fusion CCEL is compared experimentally with other
linear methods: boosting, bagging, and RSM.

The base algorithm was taken to be the näıve Bayes classifier [1]. Its learning
algorithm is very fast, what is very important for the resource-intensive evolu-
tionary techniques. On the other hand, the quality of this algorithm is rather

8 Daniel Kanevskiy and Konstantin Vorontsov

Table 1. Bias and variance estimations through 10 runs of 10-fold cross-validation for
12 problems from the UCI repository.

Problem Bayes CCEL boosting bagging RSM
bias var bias var bias var bias var bias var

Cancer 5.24 0.37 3.14 0.32 3.01 1.74 5.32 0.36 4.17 0.77

Credit-a-1 14.07 1.15 11.50 1.46 14.80 1.59 14.13 1.07 13.76 2.53

Credit-a-2 15.05 0.85 12.74 1.42 13.81 4.85 14.81 1.05 14.77 1.56

Credit-g 28.23 3.84 21.04 4.74 24.46 5.02 27.57 3.73 27.61 4.54

DBC 11.04 0.47 4.64 0.74 9.29 15.71 10.82 0.57 10.64 0.64

Heart 16.78 2.64 15.44 2.71 13.73 10.38 16.45 2.87 16.60 2.83

Hepatitis 15.11 1.82 14.12 4.27 15.25 4.65 14.40 2.40 15.19 2.26

Liver 28.51 7.90 23.77 11.06 24.50 10.34 28.25 8.31 28.40 8.18

Diabetes 29.27 2.49 21.60 2.06 18.40 12.99 28.76 2.69 28.44 3.13

Survival 23.69 7.60 23.01 4.67 21.03 6.09 23.87 6.34 23.51 8.99

Tic-tac-toe 24.61 4.30 18.82 5.80 32.56 0.73 25.01 4.02 24.51 4.73

Voting 5.82 0.79 4.03 0.57 4.94 1.31 5.81 0.73 6.09 0.92

moderate, because the underlying assumption of features independence does not
hold for most real-world problems. Note also that näıve Bayes classifier is rarely
used as ensemble building block because of its very low variance, which prevents
standard fusion techniques from improving its quality. The low variance leaves
the only way of significant performance improvement: reducing a bias. Both
bagging and RSM are known to fail in reducing bias, while boosting sometimes
effectively trades off bias for variance and vice versa. To estimate how CCEL
works in these terms we made empirical evaluation of bias and variance using
a standard technique from [23]. Results are summarized in Table 1.

We compared CCEL with the base classifier, AdaBoost, bagging, and RSM.
For the latter three methods the ensemble size was fixed to be p = 250 [4]. The
experiments were made on 12 two-class problems from the UCI repository [24].
Table 2 summarizes the average test error.

The results verify the assumption that bagging and RSM fail to improve
the quality of the low-variance base classifier. CCEL competes with boosting in
bias reduction, while preserving substantially lower level of variance. As a result,
CCEL outperforms others in 11 problems from 12.

6 Conclusions and Open Problems

Cooperative coevolution is a very natural approach to ensemble learning. It trains
base learners to cooperate with each other rather than to solve the problem in-
dependently. Each base learner tends to specialize on its own subset of objects
and subspace of features. This results in significant reduction of the ensemble
size compared to standard techniques. CCEL takes 3–6 base learners whereas
boosting, bagging and RSM require hundreds. CCEL is applicable to base learn-
ing algorithms and fusion functions of any type, though it is also open to any

Cooperative Coevolutionary Ensemble Learning 9

Table 2. The test error rates with standard deviations (in percents) averaged through
10 runs of 10-fold cross-validation for 12 problems from the UCI repository. For CCEL
the average size of the ensemble is written in parentheses.

Problem Bayes CCEL boosting bagging RSM

Cancer 5.55 ± 0.26 3.46 ± 0.37 (3.16) 4.14 ± 1.48 5.63 ± 0.24 4.97 ± 0.40

Credit-a-1 15.22 ± 0.39 12.96 ± 0.57 (2.48) 25.23 ± 6.65 15.20 ± 0.42 15.31 ± 0.62

Credit-a-2 15.94 ± 0.40 14.16 ± 0.53 (2.99) 17.72 ± 2.86 15.87 ± 0.45 16.12 ± 0.48

Credit-g 32.07 ± 0.67 25.78 ± 0.65 (1.74) 29.48 ± 0.93 31.30 ± 0.67 32.11 ± 0.71

DBC 11.50 ± 0.30 5.38 ± 0.44 (2.66) 25.00 ± 7.22 11.40 ± 0.27 11.24 ± 0.35

Heart 19.42 ± 0.92 18.15 ± 0.85 (3.32) 24.11 ± 6.47 19.31 ± 1.16 19.35 ± 1.19

Hepatitis 16.93 ± 1.06 18.38 ± 1.43 (2.87) 19.90 ± 1.80 16.80 ± 1.14 17.32 ± 1.46

Liver 36.42 ± 1.86 34.38 ± 0.95 (1.95) 34.84 ± 2.45 36.56 ± 1.88 36.48 ± 1.77

Diabetes 31.76 ± 0.63 23.66 ± 0.43 (2.30) 31.39 ± 2.05 31.45 ± 0.68 31.53 ± 0.58

Survival 31.29 ± 2.58 26.21 ± 1.02 (2.02) 27.12 ± 1.56 30.22 ± 2.77 32.41 ± 3.24

Tic-tac-toe 28.92 ± 1.02 24.61 ± 1.11 (2.59) 33.29 ± 0.40 29.03 ± 0.96 29.20 ± 1.07

Voting 6.61 ± 0.60 4.60 ± 0.46 (3.53) 6.25 ± 0.65 6.54 ± 0.40 7.0 ± 0.75

type-specific heuristics. CCEL yields good results even for such stable and inac-
curate algorithm like näıve Bayes. Finally, analysis of the CCEL results can tell
much about the structure of the problem. For example, one can determine most
important features and filter out some useless objects (outliers).

The only disadvantage of CCEL is the training speed: the solution of a middle-
size problem takes a few minutes on usual PC. On the other hand, CCEL is very
suitable as “anytime” learning algorithm that may be interrupted at any moment
to return a solution, and then continued to learn more [25].

Further development of CCEL seems very promising in many directions:
increasing the algorithm’s speed, application to various base classifiers and fusion
functions, finding optimal combinations of heuristics.

References

1. Kuncheva, L.: Combining pattern classifiers. John Wiley & Sons, Inc. (2004)
2. Schapire, R.: The boosting approach to machine learning: An overview. In: MSRI

Workshop on Nonlinear Estimation and Classification, Berkeley, CA. (2001)
3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:

International Conference on Machine Learning. (1996) 148–156
4. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3) (1998) 801–849
5. Dietterich, T.G.: An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning 40(2) (2000) 139–157

6. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36(1-2) (1999) 105–139

7. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8) (1998) 832–844

10 Daniel Kanevskiy and Konstantin Vorontsov

8. Skurichina, M., Duin, R.P.W.: Limited bagging, boosting and the random subspace
method for linear classifiers. Pattern Analysis & Applications (5) (2002) 121–135

9. Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algo-
rithms. IEEE-EC 4(4) (2000) 327

10. Guerra-Salcedo, C., Whitley, D.: Genetic approach to feature selection for en-
semble creation. In: Proceedings of the Genetic and Evolutionary Computation
Conference. Volume 1., Morgan Kaufmann (1999) 236–243

11. Zhou, Z.H., Wu, J.X., Jiang, Y., Chen, S.F.: Genetic algorithm based selective
neural network ensemble (2001)

12. Stefano, C.D., Cioppa, A.D., Marcelli, A.: Exploiting reliability for dynamic se-
lection of classifiers by means of genetic algorithms. In: Int. Conf. On Document
Analysis and Recognition ICDAR03, Edinburgh (UK), August 3-6. (2003) 671–675

13. Oliveira, L., Sabourin, R., Bortolozzi, F., Suen, C.: Feature selection for ensem-
bles: A hierarchical multi-objective genetic algorithm approach. In: International
Conference on Document Analysis and Recognition, Edinburgh-Scotland, IEEE
Computer Society (2003)

14. Islam, M., Yao, X., Murase, K.: A constructive algorithm for training cooperative
neural network ensembles. IEEE Transactions on Neural Networks 14(4) (2003)
820–834

15. Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation 8(1) (2000) 1–29

16. Zhuravlev, J.I.: An algebraic approach to recognition or classifications problems.
Pattern Recognition and Image Analysis 8(1) (1998) 59–100

17. Rudakov, K.V., Vorontsov, K.V.: Methods of optimization and monotone correc-
tion in the algebraic approach to the recognition problem. Doklady Mathematics
60(1) (1999) 139

18. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) (2001)

19. Andre’s Pena-Reyes, C.: Coevolutionary Fuzzy Modeling. Springer-Verlag New
York (2004)

20. Mason, L., Bartlett, P., Baxter, J.: Direct optimization of margins improves gen-
eralization in combined classifiers. Technical report, Deparment of Systems Engi-
neering, Australian National University (1998)

21. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning 51(2) (2003) 181–207

22. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. In: Proc. 17th International Conf. on Machine
Learning, Morgan Kaufmann, San Francisco, CA (2000) 9–16

23. Webb, G.I.: MultiBoosting: A technique for combining Boosting and Wagging.
Machine Learning 40(2) (2000) 159–196

24. Blake, C., Merz, C.: UCI repository of machine learning databases. Technical
report, Department of Information and Computer Science, University of California,
Irvine, CA (1998)

25. Russel, S.J., Zilberstein, S.: Composing real-time systems. In: IJCAI. (1991) 212–
217

