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Abstract-—The paper sets out the general principles that underlie discrete methods of information analysis in
recognition problems. An approach is proposed whereby recognition procedures can be constructed using log-
ical functions. Basic models are described and matters related to an assessment of complexity in their realiza-

tion are discussed.

INTRODUCTION

The paper deals with an inquiry into a crucial issue
of classical pattern recognition—that of a search for
informative fragments in the descriptions of objects
being recognized. Such fragments act as elementary
classifiers and enable one to distinguish between
objects falling in different classes. This issue remains
topical because in the statement of a practical recogni-
tion problem, original descriptions of objects usually
contain all observable and measurable characteristics or
parameters. The objects are thus described by several
tens or even hundreds of variables. In particular, this is
true of medical diagnosis, geological, engineering, and
sociological forecasting, and elsewhere. It is this circum-
stance, that is, the high dimension of descriptions, that
largely make impossible for procedures of traditional
computational mathematics to be directly applied to rec-
ognition problems and makes it necessary to resort to
original mathematical constructions in their own right.

Note that in an analysis of complex descriptions by
statistical methods one has to accept on trust additional
hypotheses of probabilistic character, i.e., to impose
rather strong requirements for spaces of objects under
study. In addition, for the results obtained by statistical
procedures to be reliable, extremely large arrays of pre-
cedents (learning information) must be available. That
is why special emphasis is currently being placed on
direct methods for the synthesis of optimal (proper) algo-
rithms (the algebraic approach [28, 29, 32, 44-49]) and
the combinatorial analysis of description space structure
(1-7, 11, 12, 14-16, 18, 19, 21-27, 30, 33, 34, 42, 43,
53, 54] based on the findings and ideas of discrete analy-
sis, which provides the framework for the present work.

The tools and procedures of discrete mathematics
have several advantages to offer. Above all, it is possi-
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ble to obtain a result even if there is no information
about the applicable distribution functions and the
available learning samples are small. In many cases,
however, it is difficult, if feasible at all, to apply the dis-
crete approach because of the purely computational dif-
ficulties associated with the need to carry out an exhaus-
tive search. In particular, there arises the ‘“‘canonically
difficult” problem of building all irreducible (irredun-
dant) coverings for a Boolean matrix, which may be for-
mulated as the problem of transforming the conjunctive
normal form of a logical function into its disjunctive
form—the problem known from classical works of
S.V. Yablonskii [55], and others.

Since the 1960s, many researchers have made
attempts to find algorithms and procedures effective in
a sense. In the mid-1970s, the first truly efficient proce-
dures were developed for the cases of practical impor-
tance that are encountered in the synthesis of recogni-
tion algorithms, and a theoretical justification thereof
was given. In particular, an approach was proposed
whereby recognition problems could be handled by dis-
crete analysis techniques. In a sense, it was asymptoti-
cally optimal from the viewpoint of computational dif-
ficulty. Its basic idea was to drop some of the conditions
that the sought informative fragments of an object
description should meet and to develop an approximate
solution. This would result in a set of fragments rather
close in properties to the sought one. Within the frame-
work of this idea, a new method was proposed for the
search of irreducible coverings for a Boolean matrix
[15, 16, 18, 19, 21, 22, 25].

The method was tested in quite a number of prob-
lems, such as the search for irredundant representative
descriptors, the search for irredundant tests, and the
search for maximal conjunctions of logical functions.
In addition, it was demonstrated by modifying some
well-known concepts (e.g., the concept of an irreduc-
ible covering for a Boolean matrix) that the above prob-
lems have much in common in solution methodology
[21, 22, 25].

A most important thing about the results thus
obtained was that they led to efficient algorithms useful
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in applied recognition problems [8, 17, 20]. This is
noteworthy, since the number of fragments increases
exponentially with the dimension of a description, it
would be unreal to look for a way out solely in ever
faster and more powerful computers.

Sections 1 through 4 of this paper characterize
briefly the mathematical methods used in pattern recog-
nition, describe the discrete approach, and define the
principles on which logical recognition procedures are
built. Also, a brief historical overview is given of the
results achieved in developing asymptotically optimal
discrete methods of information analysis in recognition
problems. These sections give a fairly full idea about
the subject of the study.

Sections 5 through 7 sum up the results reported in
(15, 16, 18, 19, 21, 22, 24, 25].

Section 5 introduces the concept of a irredundant
covering for an integer-valued matrix, which is basic to
all of the technique described. An asymptotically opti-
mal algorithm for the search of two types of irredundant
coverings is proposed and substantiated. The first type
arises when we build informative fragments generated
by irredundant representative descriptors and irredun-
dant tests. The second is encountered when we must
transform the normal forms of logical functions. Asymp-
totic estimates are given for the typical numbers of irre-
dundant coverings and the typical length of a irredundant
covering. Taken together, the ideas and results stated in
this section provide a methodological basis common to
all the subsequent sections.

Section 6 deals with what are known as the metric
properties of sets of elementary classifiers with the pro-
viso that the number of features is significantly greater
than that of objects in the learning sample. Asymptotic
estimates are given for typical numbers of representa-
tive descriptors, for the typical length of a representa-
tive descriptor, for the same typical characteristics of a
set of irredundant representative descriptors and a set of
irredundant tests. The asymptotic estimates given in
Section 5 are used there.

Using the same technical basis (the construction of
irredundant coverings), Section 7 develops asymptoti-
cally optimal methods of construction and examines
the metric properties of the abridged disjunctive normal
forms (cnfs) of completely defined and partial two-val-
ued functions. These constructions are primarily of
interest to classical discrete mathematics.

1. MATHEMATICAL METHODS
OF PATTERN RECOGNITION

The theory and practice of recognition have advance
in several directions, and quite a number of approaches
thereto have been accumulated by now. In most cases,
the central problem is the synthesis of algorithms,
extreme in accuracy in a particular sense, for a specified
learning sample.
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The mathematical methods used in pattern recogni-
tion may arbitrarily be divided into four classes: (1) sta-
tistical methods [9, 10, 38-40], (2) optimization meth-
ods for many-parameter recognition models [50-52],
(3) methods based on the idea of joint application and
adjustment of sets of recognition algorithms from heu-
ristic families [26, 28, 29, 32, 35-37, 44-49], and
(4) discrete methods of information analysis and algo-
rithm synthesis [1-7, 11, 12, 14-16, 18, 19, 21-27, 30,
33,34, 42,43, 53, 54]. We note here that this study used
the discrete approach, and the sections that follow
examine it in more detail.

Statistical methods of data analysis and recognition
algorithm construction use the tools of probability the-
ory and mathematical statistics. They invoke additional
statistical hypotheses about the probabilistic character
of the learning sample and the distribution of objects by
classes. The most important results of the statistical
approach are the recognition algorithm reliability esti-
mates formed for models of limited capacity. For such
methods to be used accurately and well, large learning
samples are needed.

Multiparameter recognition models are ordinarily
optimized by classical methods, such as the least
squares, the penalty functions, linear, quadratic and
dynamic programming, etc. Difficulties mainly arise in
the optimization, owing to the complex structure of
algorithm models used as optimization domains (such
models are many-parameter families of mappings, the
parameters usually being very great in number and
diverse in properties). This requires that special
approaches should be developed to the formulation and
solution of such problems.

As general considerations clearly suggest, algo-
rithm models which are rather meager in parameters
are bound to yield a solution of low quality simply
because they would not contain appropriate algorithms.
On the other hand, models with many of parameters
and having therefore an elaborate arrangement would,
as already noted, lead to optimization problems that are
complicated from a practical point of view. They call
for approximate optimization methods to develop
locally extreme algorithms. In many cases, however,
approximate optimization methods will not offer a way
out, since locally extreme solutions obtained within a
“plentiful” family might be worse than an optimal solu-
tion found in a “meager” family. This circumstance
gave rise to a school of thought that seeks to use jointly
several algorithms, not so good in quality individually,
so that the resultant algorithm is of a substantially bet-
ter quality than would be an algorithm developed by
optimization using original heuristic models.

Among the methods that draw upon the idea of joint
usage of sets of recognition algorithms, especially strong
emphasis was placed on algebraic adjustment methods.
Lying at their roots are mathematical concepts, such
as closure, bases in operator spaces, completeness,
and other such concepts. The starting point for the
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algebraic approach was the idea that, rather than using
heuristic algorithm families as fixed domains where a
solution ought to be sought, we can select in a certain
manner some algorithms from the available families
and, by performing appropriate operations (adjust-
ments) on them, build optimal algorithms targeted at
particular problems. At first, the adjustments were
some operations on real matrices and the original algo-
rithm families were separation and estimation algo-
rithms. Later, many other specific families of algo-
rithms and adjustments were explored. It should be
noted that the quality of a solution seems to be largely
dependent on what algorithms were chosen as the basis,
and this issue has yet to be clarified. Nevertheless, the
algebraic approach has now become a general theoreti-
cal basis for research into recognition problems.

2. DISCRETE METHODS
OF FEATURE SPACE STRUCTURE ANALYSIS

It was in the mid-1960s that the discrete approach to
the recognition problem made especially great strides
[11, 14, 27].

Recognition (learning by precedents) is, in fact, an
extrapolation problem. In contrast to traditional mathe-
matical formulations, however, in pattern recognition
this problem is often tackled in a space of heteroge-
neous features of a very high dimension often running
into several tens or even hundreds (although the objects
in the learning sample described by these features may
be relatively small in number). It is this fact that gave
rise to what came to be known as discrete methods of
information analysis (based on methods of discrete
mathematics). These methods do not call for strong
assumptions about the properties of the test object
(such as its metrizability, compliance with probabilistic
laws, etc.).

In discrete methods, the key object is the aggregate
of all subsets of a formal set of features, from which we
must select special sets of features. These sets of fea-
tures should contain certain information about classes;
e.g., they should enable us to distinguish between
objects from different classes or a given object from the
objects of the other classes. Other and more complex
requirements as to the information content may be
imposed. Sometimes, it would be of interest, on the
contrary, to have sets of features that contain indiscrim-
inating information.

It should be noted here that since the original feature
space has a high dimension and the cardinality of the
aggregate of subsets involved increases exponentially
with the number of features, it is very difficult to
explore all of its subsets. To tackle this problem, a spe-
cific discrete technique was developed and became
quite common. It is used in optimization methods, in
adjustment methods (in developing both basis algo-
rithms and adjustment operations), etc. With informa-
tive sets of features thus brought to light, it is possible
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to analyze the source information qualitatively in order,
say, to classify the features according to the informa-
tion they carry and to reduce their number.

Discrete methods also gave rise to a number of elab-
orate heuristics called logical recognition procedures
(their construction involves logical functions). These
are, above all, test algorithm models, algorithms of vot-
ing by representative descriptors, the exhaustive search
of conjunctions, etc. In organization, these algorithms
are exact (proper) on the learning material and were ini-
tially intended solely for use in the processing of inte-
ger-valued, mainly binary, information. The discrete
analysis methods have been used in recent years to pro-
cess real-valued information, thus providing a basis on
which more universal models of logical recognition pro-
cedures are being developed (models with recording).

As already noted, when this approach is applied to
recognition problems, there arise computational diffi-
culties as it involves a large-scale exhaustive search.
As a rule, the need to generate informative sets of fea-
tures entails the need to solve the laborious problem of
constructing irreducible (irredundant) coverings for a
Boolean matrix. It may be also stated as the problem of
transforming normal forms of Boolean functions (mul-
tiplication of logical brackets). So matters related to an
analysis of the complexity of this problem and associ-
ated problems were very important from the start.

Rather interesting results were obtained in this
respect. In particular, asymptotically optimal methods
for generating informative sets of features were devel-
oped so that efficient implementations for logical rec-
ognition procedures could be constructed and substan-
tiated. These methods are asymptotically optimal in the
following sense: they involve discarding some of the
conditions that are to be met by the sought constructions
(sets of features, elementary conjunctions, etc.). This
leaves an approximate solution to the problem, which
means that the set of constructions thus built is nearly
always the same in cardinality as the sought set (and, of
course, includes it as a subset). The principal results
were obtained from a study into the statistical proper-
ties of irreducible (irredundant) coverings for a Bool-
ean matrix [15, 16, 18, 19, 21, 22]. The concept of a
irredundant covering for an integer Boolean matrix was
introduced and investigated in [25] to improve and gen-
eralize the technique for constructing informative sets
of features and for forming the necessary asymptotic
estimates.

3. RECOGNITION PROCEDURES BASED
ON LOGICAL FUNCTIONS: PRINCIPLES
OF CONSTRUCTION AND BASIC MODELS

We now describe the general principles that underlie
the construction of logical recognition algorithms.

These algorithms are mainly intended to process inte-
ger-valued information. The descriptions of objects are
given as sets of values of r-valued features x;, ..., x,, £ = 2.
No. 2
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Objects of a class K are separated from objects of other
classes by constructing so-called admissible or almost
admissible conjunctions of a partial (incompletely
defined) two-valued function fi(x;, ..., x,) suitably con-
structed from the learning sample. The function f; has
value 1 on the sets describing the learning objects in the
class K, and value O on the sets that describe other
learning objects. That is, fx is the characteristic function
of the class K on the learning sample.

The sought conjunctions are constructed on the
basis of # families of predicates.

Suppose a finite family of predicates, n, is specified
for the jth feature, j € {1, 2, ..., n}. The predicates in
% are functions of value O or 1, which are defined on
the set of admissible values of the jth feature. If, e.g.,
the set of admissible values of the jth feature is the set
{0, 1, ..., t — 1}, then as %% one may use the set
{x% ..., x~1}, where x° = 1 if and only if x = 6. By the
same token, one may consider that x° = 1 if and only
ifx>o.

Let E; be the set of all t-ary sets of length n, Ag
be the set of sets in E; on which the function f; has

value 1, and By be the set of sets in E; on which f; has
value 0.

We introduce below several definitions. Some are
modifications of the concepts known from the theory of
disjunctive normal forms of Boolean functions [13] for
the more general case at hand. Others (such as the def-
inition of the almost admissible conjunction of the
function f; and its associates) have no counterparts in
the theory of disjunctive normal forms of Boolean
functions. They were first introduced in [25] in order to
obtain the constructions described in what follows.

By an elementary conjunction (e.c.) over the vari-
ables x,, ..., x, is meant a formula of the form

P &..&P,

where P,e B”,j. e {1,2,....,n} fori=1,2, ..., rand
Ji, #Jy, foriy #i,0y, 5= 1,2, ..., . The symbol P, is

a conjunctive multiplier and r is the rank. We omit
henceforth the conjunction symbol & for brevity.

An e.c. specifies a function that is defined on sets

out of E, and takes on value O or 1. This function is
equal to 1 if and only if both conjuncts are equal to 1.

By an elementary disjunction (e.d.) over the vari-
ables x,, ..., x, is meant a formula of the form

P,v..vP,

where P, € %j',jl e {1,2,...,n}fori=1,2...,r,and
iy #Jyys foriy #iy, 0y, i=1,2, ..., r. The symbol P, is
called a disjunctive multiplier.
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The e.d. specifies a function which is defined on sets
in E; and takes on value O or 1. This function is equal
to O if and only if both disjuncts are equal to 0.

The set of sets in E; on which the e.c. B is equal

to 1 is called an interval and is denoted by Ng. The car-
dinalities of the sets Ny M Agx and Ny M By are denoted

by qf(?B) and qf (®B), respectively.
The e.c. B over the variables x;,
admissible for fy if qlK (B) # 0 and q;( (¢B)=0.

The e.c. B over the variables x;, ..., x, is called max-
imal for fy if B is an admissible conjunction and there
exists no admissible e.c. B' such that Ny < Ngy.

The e.c. B over the variables x, ..., x, is called
almost admissible for fy if qf (B) 0.

The e.c. B over the variables x;, ..., x, is called
almost maximal for fy if B is almost admissible and

there exists no e.c. B' such that Ny — Ny and g4 (B') =
7 (B).
A formula of the form

B,v..vB,,

where 8B,,i€ {1,2,...,s}isane.c., is called a disjunc-
tive normal form (cnf). The cnf realizes the function

..., X, is called

which is defined on sets in E; and takes on value O or 1.

This function is equal to O if and only if each of its con-
stituent conjunctions is equal to 0.

A formula of the form
C&...&¢E,

where €,,ie {1,2,...,s}isane.d., is called a conjunc-
tive normal form (cnf). The cnf realizes a function
which is defined on sets out of E; and takes on value 0

or 1. This function is equal to 1 if and only if each of its
constituent disjunctions is equal to 1. The cnf is called
perfect if each of its e.d.s has n disjuncts.

The cnf composed of all maximal conjunctions of
the function f is called its abridged cnf.

Let B be an almost admissible conjunction of the
function f of the form

P &..&P,

where P, e B, j e {1,2,....n}fori=1,2, ..., r,
and let S € Ny M Ag, S = (ay, ..., a,). The subset
(a,, ..., a, )out of the set S is called an elementary
classifier generated by the conjunction B for the
class K.

In the general case, an elementary classifier is a
fragment of the description of a learning object having
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specified properties. These properties are defined by the
predicates Py, ..., P,. The elementary classifier gener-
ated by an admissible conjunction and by the descrip-
tion of a learning object in the class K allows this object
to be distinguished from any learning objects that do
not belong to the class K. Thus, to the admissible con-
junctions of the function fy there correspond certain
fragments from the description of learning objects that
contain discriminating information.

Every recognition algorithm A in a given class is
defined by a subset P, of the set of elementary classifi-
ers. The most crucial step in the learning process is to
construct the set P,. Then a voting procedure is applied
for every element p in P,. In the simplest modification,
it is assumed that the elementary classifier p votes in
favor of assigning the object being recognized to the
class K if its description belongs to the truth domain of
the conjunction of the function fi that has generated p.

Once informative fragments of descriptions of
learning objects are constructed, we can assess the
parameters that tell us how informative certain features
and their combinations are and how representative each
of the learning objects is.

As a rule, we use a particular part of the set J){ of
all admissible conjunctions of the function f; in gener-
ating the set of elementary classifiers P,. For instance,
we can take all maximal conjunctions or impose a
restriction on the rank of a conjunction (it is presumed
that the rank of the conjunction should not exceed a
specified number). Other constraints may be imposed

as well. Instead of )¢5, we may consider the set I

that consists of all almost admissible conjunctions of
the function f. We are interested, of course, in almost

admissible conjunctions 2B in I¥ such that g1 (B) is
significantly greater than g (B).

Typical examples of the algorithms in the above
class are:

(1) test models (a test algorithm was first described
in [14]);

(2) algorithms of the Kora type or models using rep-
resentative descriptors (the Kora algorithm is described
in [11] and the first model using representative descrip-
tors was proposed in [6]).

The learning material is ordinarily presented in tab-
ular form (a learning table), in which every column cor-
responds to a particular feature and every row is a set of
feature values describing one of the objects. The rows
of the table are partitioned into disjoint classes such
that every class contains only the rows that describe
objects in the same class.

Let T be a learning table in which the rows are par-

titioned into s classes K, ..., K, and ¢ ¢ PF U

£ v g

is the set of conjunctions, which
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corresponds to the recognition algorithm A. The first to
be explored was the case, where T'is a binary table, fy

is a Boolean function, i =1, 2, ..., s, and the conjunc-

tions from YA take the form x . ..., x.", where the

j 2
symbol x° for x and ¢ in {0, l} specifies a predicate
equal to 1 if and only if x = G.

o, .
x, in Mg, Ke

Each conjunction B = x s vees X

{Ki, ..., K}, defines two following subtables T% and

Tg% of the table T. The subtable T , is formed by col-

umns numbered jj, ..., j, and by the rows that describe
objects in K. It is easy to see that this subtable contains
at least one row of the form (G4, ..., 6,). The subtable

T;g , 1s formed by columns numbered j;, ..., j, and by

the rows that do not describe objects in K. If qf (B)=0,
that is if *B is an admissible conjunction, then, by virtue

_K .
of the foregoing, the subtable T¢ , does not contain a

single row of the form (o, ..., 6,). This condition is

not satisfied for qf (*B) # 0. In the former case, the set

(64, ..., ©,) is called representative for the class K with
respect to the reference set (j,, ..., j,) and in the latter,
almost representative. Every representative descriptor is
assumed to be also an almost representative one.

The set (64, ..., 6,), which is representative (almost
representatlve) for K with respect to the reference set
Gis +-es J)» 18 called a irredundant one, if the e.c.

Yt

X

G" . . .
TR is maximal (almost maximal) for fx.

o X,
To a irredundant representative descriptor there cor-
responds an incompressible informative fragment from
the description of a learning object, i.e., a fragment
which, on being compressed, loses its ability to distin-
guish a given object from an objects in other classes.

We call the set of the columns numbered j, ..
table T a test if for every function fy ,i€ {1,2, ..

.,J,in the
- s}

each almost admissible conjunction of the form
xil, oo xf is admissible. In terms of its content, the
test is a feature set that selects in the description of
every learning object a representative descriptor and
contains therefore a sufficient amount of information

for the learning material to be partitioned into classes.

The test is a irredundant one if no one of its own
subsets is a test.

The concepts of the (irredundant) test and of the (irre-
dundant) representative descriptor can be readily general-
ized to the case, where T'is an integer-valued table.

In test recognition algorithms, the set P, is most
often generated by irredundant tests, and algorithms of
Vol. 7
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the Kora type use irredundant representative descrip-
tors or irredundant almost representative descriptors as
elements of the set P,. All information about the set of
elementary classifiers for these models is embedded in
a special Boolean matrix, Ly, called the comparison
matrix of the table T. In the case at hand, i.e., where T
is a binary table and the conjunctions that generate ele-
mentary classifiers are defined in a standard manner,
this matrix is formed by mod 2 pairwise addition of the
table T rows that belong to different classes.

In [7], a class of recognition algorithms is con-
structed, which contains both types of the above algo-
rithms as its elements. The set of elementary classifiers
is defined for an algorithm A in this class by selecting a
group of objects, J(A), in the learning sample. In this
case, a set of features is taken to be informative if it
allows every object G in the group Q(A) to be distin-
guished from objects that do not belong to the same
class as does the object G.

Lastly, note that the construction of various families
of elementary classifiers is used in estimation models
[29, 31].

4. THE CONSTRUCTION OF ELEMENTARY
CLASSIFIERS. IRREDUNDANT COVERINGS
FOR BOOLEAN AND INTEGER-VALUED
MATRICES

The recognition algorithm models described above
have a certain advantage over statistical methods
because they permit recognition even with a sample of
learning objects smaller than the number of features. The
high computational costs at the learning step (construc-
tion of elementary classifiers), however, make them dif-
ficult to implement. For instance, in searching for irre-
dundant tests, we must construct a set of all irredundant
coverings for the comparison matrix Ly of the learning
table 7 and in constructing irredundant representative
descriptors, a similar problem has to be solved for sev-
eral submatrices of the matrix L;.

Let L be an arbitrary Boolean matrix. We call the set
H of columns in the matrix L the covering if the inter-
section of every row of the matrix L with at least one
column in H yields 1 (that is, the submatrix of the
matrix L formed by columns in A should not contain rows
of the form (0, ..., 0)). The covering is called irreducible
(irredundant) if none of its own subsets is a covering. It is
easy to see that the irredundant property implies that a
submatrix of the matrix L formed by columns in H
should contain each of the rows (1, 0, 0, ..., 0, 0),
0,1,0,...,0,0), and (0, 0, ..., 0, 1), that is the set of
columns H should contain a submatrix in every row and
every column of which one element is exactly 1. This is
called a unit matrix.

The foundation for asymptotically optimal methods
of discrete information analysis in recognition prob-
lems was laid as early as the 1970s as part of an inquiry
into the complexity of implementing test procedures.
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The early procedures for constructing irredundant tests
actually reduced to decoding a monotone function and
were found before long to be rather ineffectual [33, 54].
Significantly better results were achieved with stochas-
tic test algorithms [34] where the construction of a set
of all irredundant tests was replaced by the construction
of a fairly representative random sample from that set.
But, similar to their deterministic predecessors, these
algorithms were tailored to problems where the number
of features used to describe learning objects was rela-
tively small compared to that of the objects themselves.
Even a slight increase in the number of features would
sharply increase the learning time. We often see in prac-
tice, however, that the dimension of feature space is sig-
nificantly greater than the number of learning objects.

In addition to procedures whereby all irredundant
tests could be found, attention was given at the same
time to estimation of the number of irredundant tests
and to the length of a irredundant test, i.e., to what are
called metric (quantitative) properties of the set of irre-
dundant tests.

Asymptotic estimates for the number of irredundant
tests and the length of a irredundant test for the case
where T is a binary table were first reported in [42, 53].
The key results were obtained for the case of practical
importance where the number of rows in T was small
compared to that of features, n. The above estimation, a
technically challenging problem in itself, was later
taken up also in [1, 2, 16, 18]. The final results were
reported in [2]. That was how technical foundations
were actually laid on which asymptotic estimates could
be obtained for the typical numbers of irreducible cov-
erings and for the typical length of an irreducible
covering.

Later [15, 16, 18] proposed a different approach to
developing asymptotically optimal recognition proce-
dures of the test type. The approach was based on an
analysis of the complexity of constructing a set of all
irreducible coverings for the comparison matrix L; of
the learning table T. Let us have a closer look at it, tak-
ing as an example the construction of irreducible cov-
erings for an arbitrary u X n Boolean matrix L. A case
of practical interest is where the matrix L has no iden-
tical columns. It is, therefore, natural to suppose that
u 2 log,n.

For the case logyn < u < n! ~¢ (€ > 0), an algorithm
was developed, which could keep the exhaustive search
to a minimum in a sense in a typical situation involving
the construction of a set of all irreducible coverings for
the matrix L.

The exhaustive search is reduced as follows. The
original problem is replaced by the logically easier
problem of constructing all sets of columns from the
matrix L that satisfy only the “irredundant” condition
as stated in the above definition of the irreducible cov-
ering for a Boolean matrix. Actually, all unit submatri-
ces of the matrix L are to be constructed. In the case at
hand, the number of unit submatrices of the matrix L
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nearly always (for almost all # X n matrices L) proved
to be the same asymptotically as the number of irreduc-
ible coverings with n — =, Hence, the set of columns
containing a unit submatrix is nearly always an irreduc-
ible covering,.

The method was tested in computer experiments.
Its software described in detail in [15] develops unit
submatrices, maximal in a certain sense, and checks
every such submatrix to see if the corresponding col-
umn set is a covering. The algorithm saved the com-
puter memory resources quite well. It solved quite effi-
ciently the probiems of the deterministic and stochastic
construction of irredundant tests and of developing the
appropriate recognition procedures. Realizations of the
procedures were incorporated in the PARK package of
application programs [17], the DISARO dialog pattern
analysis and recognition system [20], and the OBRAZ
system [18]. All of these packages were developed by
the Computer Center of the Russian Academy of Sci-
ences.

In [1], one more algorithm was proposed, asymptot-
ically best in finding irredundant tests in the cases

where log,h = o(logf n), with n tending to infinity (4 is
the number of rows in the matrix L;). The algorithm
was developed and substantiated using the same princi-
ples as in [15, 16, 18].

Later on, basic studies in the field were spearheaded
at matters related to the development of efficient real-
izations for procedures of the Kora type (models with
representative descriptors). The language used was that
of disjunctive normal forms. The researchers were con-
cerned at first with the case of binary learning informa-
tion. The construction of the set of all irredundant rep-
resentative descriptors for the class K was formulated
as the problem of constructing an abridged cnf for the
partial Boolean function f (a enf which consists of all
maximal conjunctions of the function f). It was a prob-
lem of constructing an abridged cnf for a completely
defined Boolean function in which the set of zeros is the
same as the set of zeros of the function f, or transform-
ing a perfect cnf into an abridged cnf [12, 29, 42).

A modification of the algorithm from [15, 16, 18]
was used in [19, 21, 22] to produce an asymptotically
optimal solution to the problem of constructing an
abridged cnf Dg for the Boolean function Fg of n vari-
ables defined by the cnf &. Consideration was given
there to the cases where the cnf & was perfect, did not
contain negations of variables, or, lastly, was not neces-
sarily perfect and could contain negations of variables.
In each of the above cases, it was assumed that the num-
ber of elementary disjunctions in the original cnf was
not greater than n! ~¢ (€ > 0). The complexity of a solu-
tion was estimated by the number of & operations that
had to be performed in transforming normal forms.
It was shown that nearly always (for almost all cnfs of
the type in question) and with n — oo, this count was
not asymptotically greater than the length of the sought
abridged cnf. As a matter of record, the problem was
solved by constructing an auxiliary cnf that consisted of
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all almost maximal conjunctions of the function Fg.
Subject to the same constraints, asymptotic estimates
were developed for the typical length of the cnf Dg and
for the typical rank of its conjunctions.

Asymptotic estimates for the typical length of the
abridged cnf for a completely defined Boolean function
of n variables defined by enumerating zero points, with
n — oo, were reported in [3].

It was shown in [19, 21] that a set of all irredundant
representative descriptors of the learning table 7 with m
rows could be built efficiently (with an asymptotically
minimal complexity) by constructing irreducible cov-
erings for the series of Boolean matrices LY, ..., L™
(the submatrices of the comparison matrix L; of the
table 7). The matrix L®, i € {1, 2, ..., m}, is formed as
a result of mod 2 summation of the ith row from the
table T with all rows not included in the same class as the
row in question. The irreducible coverings were con-
structed by the algorithm from [15, 16, 18]. In [19, 21], a
similar approach (involving the construction of what
are known as weighted irreducible coverings for the
matrices LU, ..., L™ was applied to constructing
almost representative descriptors. With this approach,
both binary and integer-valued information can be pro-
cessed. The efficiency of the method was verified on a
computer. The experiments were conducted for the case
where the number of learning objects was not greater
than that of features. Appropriate recognition algo-
rithms were developed, and their computer realizations
were likewise incorporated in the DISARO and
OBRAZ systems mentioned above.

In [21, 24], the asymptotic estimates for the typical
numbers of irredundant representative descriptors and
for the typical length of a irredundant representative
descriptor for the class K of the (first binary and then
integer) learning table were derived subject to the con-
dition that the number of learning objects not belonging
to the class K should not be greater than n' ~¢ (g > 0).
Asymptotic estimates were also derived in [24] for the
same typical numerical characteristics of the set of rep-
resentative descriptors applicable to a fairly broad class
of binary tables. These characteristics included typical
values of, first, the length of the abridged cnf for a par-
tial two-valued function and the rank of its constituent
conjunctions and, second, the number of admissible
conjunctions and the rank of the admissible conjunc-
tion of a partial Boolean function.

Note that the first asymptotic estimates for the typi-
cal length of the minimal cnf that realizes a partial
Boolean function were derived in [27].

Asymptotically optimal methods for the construc-
tion of irreducible coverings were employed in devel-
oping new and better models of recognition procedures
which used irredundant representative descriptors and
irredundant almost representative descriptors as ele-
mentary classifiers [21, 23, 26]. Such models can be
useful in processing arbitrary numerical information.
Vol. 7
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5. IRREDUNDANT COVERINGS
FOR INTEGERVALUED MATRICES.
STATISTICAL PROPERTIES
OF IRREDUNDANT COVERINGS

The concept of a irredundant (irreducible) covering
for a Boolean matrix may be generalized to the case of
an integer-valued matrix.

Consider 6 € E; ,k>2,and 6 = (04, ..
We introduce the following notation:

., B,) in E; such that

.- G,).

R(0) is the set of all sets (B, ..
B#o,forje {1,2,...,r}.

Q,(0),pe {1,2,...,r}isthe setof all sets (By, ..., B,)
in E, such that B,#0,and B, =0, forje {1,2,...,r}\{p}.

Suppose E C E; and E = {cD, ..., 6@}. We set

q
0,(E) = (UQ,(c)) \E.
y=1
LetL=(a,),i=1,2,...,m,j=1,2,...,n,be amatrix
with elements from {0, 1, ..., k~ 1}, k> 2, H be a set
of r different columns from the matrix L, and L” be a

submatrix of the matrix L formed by the columns of the
set H.

The set of rows in the submatrix L can be treated as

asubset E of sets in E, . The column set H is called the
E covering if E¥ N E = &. The column set H which is
an E covering is called the irredundant E covering if
for any p from {1, 2, ..., r} we can indicate a pair of
sets (6, 0"') such that ¢' € E¥, ¢" € E, and the sets ¢'
and ¢" differ in the pth place but are the same in all
other places.

Thus, the set H of columns from the matrix L is a
irredundant E covering if the submatrix L¥ of the
matrix L formed by the columns of the set H has the fol-
lowing two properties:

(1) L¥ does not contain a single row from E;

Q) ifp e {1,2, ..., r}, then L¥ does contain at least
one row from the set Q,(E).

Note that if L is a Boolean matrix and 6 € E, , then

the set H of columns from the matrix L is a irredundant
{o), ..., 0,} covering if and only if the following two
conditions are satisfied:

(1) L¥ does not contain the row (o, ...
(2) L¥ contains each of the rows

»0,);

(64,0, 04, ...,0,_1, GC,),
(64, 6,,04,...,6,_1,0,),
(64,0, 04, ...,6,_1,G,).
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In particular, H is a irredundant {0, ..., 0} covering
(or, as is customary to say, an irreducible covering) of
the matrix L if the following conditions are satisfied:

(1) LH does not contain the row (0, ..., 0);
(2) LH contains each of the rows

(1,0,0, ...,0,0),
(0, 1,0, ...,0,0),
(0,0,0, ...,0,1).

Thus, the concept of a irredundant E covering for
E = {o} introduced above is a generalization of the
well-known concept of the irreducible covering for a
Boolean matrix.

If, on the other hand, L is a Boolean matrix, c € E;,
and E = R(c), then the set H of columns from the
matrix L is a irredundant E covering if and only if the
following two conditions are satisfied:

(1) LH does not contain the row (G, ..., G,);
(2) LH contains each of the rows

(04,62, 63, ..., 0, 1, 0,),

(G4, 63, 03, -, 6,1, G,),

(64,6, 05, ...,0,_1,0,).
Consequently, if 6 = (1, ..., 1), the concept of an

irreducible covering is the same as that of a irredundant
R(o) covering for a Boolean matrix.

From a practical point of view, two cases are as

important as the general case. They are E= {6},6 € E,,

and E = R(6), 6 € E,. Irredundant coverings of the
general type and, notably, irredundant {(O0, ..., 0)} cov-
erings are encountered in studies of the metric properties
of a set of irredundant tests and in constructing irredun-

dant test search algorithms. The case of E= {G},0 € E;
is needed in order to obtain similar results for a set of
irredundant representative descriptors. The latter case
is related to the transformation of normal forms of log-
ical functions.

Let B(L, E) denote the set of all pairs of the form
(H, E), where H is a irredundant E covering for the
matrix L (in the case when E = {G}, we use the symbol-

ism By(L)).
Let the set H consist of the columns numbered
Jis evesfrs J1 < .on <J,, of the matrix L.

The set of the elements {aq,,, ..., a,, } of the

matrix L is called consistent in E if the i,-th row of the
submatrix L belongs to Q,(E) forp =1, 2, ..., r. Let

S(L, E) denote the totality of all pairs of the form (Q, E),
where Q is the set of elements from the matrix L,

No. 2 1997



200

consistent in E. (Where E = {6}, 6 € E,, we also use
the symbolism S4(L).

It is easy to see that the set H of the columns num-
bered jj, ..., j, of the matrix L is a irredundant covering
if and only if we can indicate in L a set of elements of
the type {a, ; , ..., a; ; } consistent in E, and the sub-

matrix L does not contain any of the rows from E.
We introduce the following notation:

|A| is the cardinality of the set A;

a, ~ b,, n — oo implies that ,}i_l,ria”/b" =1;

Em,]:,,, is the totality of all m X n matrices with ele-
ments from {0, 1, ..., k-1},k=2;

E; is a set consisting of one set of the form (1, ..., 1)
whose length is r;

®(m) is the interval

(%logdmn - %logdlogdmn —log,log,log,n,

%logdmn - %logdlogdmn + logdlogdlogdn).

In what follows, we give asymptotic estimates for
the typical numbers of irredundant E coverings and the
typical length of a irredundant £ covering for matrices of

EUE,’;,, in the following two cases: (a) E = {6}, 0 € E;

and (b) E=R(c),0 € E, ,k—1<t<k. Compute in each
case the same numerical estimates for the correspond-
ing set of consistent sets. Typical situations are identi-
fied on the basis of propositions like “For almost all
matrices L in I, , with n — oo, the property ‘8 is
satisfied,” and this property may also be of a limiting
character. It means that the proportion of the matrices
in 27)3,’;,, for which the property 3 is satisfied up to €
tends to 1 and, at the same time, € tends to O with n
tending to infinity. For example, if two functionals,

F(L) and G(L), are defined on the matrices in Em,]:m, we

say that for almost all matrices L in EIR,'Z,, , with » tend-
ing to infinity, it is true that F ~ G (that is, F is asymptot-
ically equal to G) if there exist two positive infinitely
diminishing functions, o(n) and B(n), such that for suffi-
ciently large n we have 1 — )/ lfmin | € on), where ¢

is the set of matrices L in Em,fm , for which 1 - B(n) <
F(LYG(L) <1+ B(n).
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ForL e fm,]:,,,,k—IStSk,weset

Bi(L) = U U Bo(L),

r=lge g

By(L) = \U U B(L, R(0)),

r=lge gl

Si(L) = U U Ss(L),
r=lge E;
S:(L) = U U S(L, R(0)).
r=lse E
There is the following

Theorem 5.1. [25]. (1) Ifm® <n<k™ o> 1, k=2,

. . k .
then for almost all matrices L in IN,,,, , withn —» oo
tending to infinity, it is true that

Bi(L)| ~[S: (L)~ D, CLChri(k—1)K"
re ®.(m)

and for almost all pairs in B,(L) the lengths of irredun-
dant coverings fall in the interval ®(m).

Q) Ifm*<n<kik—1))", a>1,k>2,k—1<t<k

. . k ,
then for almost all matrices L in IN,,,, with n — oo
tending to infinity, it is true that

Bl -Isyw) - Y cenndk-0 k"

re ®,(m)

and for almost all pairs in B, (L) the lengths of irre-

dundant coverings fall in the interval ®y m), where
d=k/(k-1).

irredundant {G} coverings and R(G) coverings can be
constructed by a modified algorithm from [15, 16, 18].
It is developed on the same principles as used in the
asymptotically optimal construction of irreducible cov-
erings. The problem reduces to developing the sets

S1(L) and S; (L), respectively.

Moreover, in constructing irredundant {G} cover-
ings, the counterpart of a unit submatrix is the subma-
trix of the matrix L which, except the permutation of
rows, takes the form

By o,0;...0,.,0,
6, B,05...0,_;0,
6, 06,03 ...0,.1 B,

where 8,26, forp=1,2, ..., 7
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In constructing irredundant {R(G)} coverings, the
counterpart of a unit submatrix is the submatrix of the
matrix L which, except the permutation of rows, takes
the form

61 B Bis ... Bioy Bis
Byi 02 B --- Bary Bos i
Brl Br2 Br3 BrrAI Gr

where B, # o, fori#j,i,j=1,2,...,r.

6. IRREDUNDANT COVERINGS
FOR INTEGER-VALUED MATRICES
IN THE CONSTRUCTION OF ELEMENTARY
CLASSIFIERS. METRIC PROPERTIES
OF ELEMENTARY CLASSIFIERS
WHEN THE NUMBER OF FEATURES
IS GREATER THAN THE NUMBER
OF PRECEDENTS

We denote by W:' , r < n, the set of all sets of the
form (jy, ..., j,), wherej, e {1,2,...,n},foru=1,2,
worandj; < ... <j,.

Letoe E,,6=(0y,...,6),we W, , w=(, ....J,)
and T be a learning table with elements from {0, 1, ...,
k-1}, k 22, the rows of which are partitioned into the
classes K, ..., K.

We further use T and T to denote the subtables of
the table 7, which are formed, respectively, by rows
fromthe class K, K € {K|, ..., K,} of the table 7, and by
rows not contained in the class K.

The set (0., ..., ) of E; is called a w extension of

the set o if o, =g, fort=1,2,...,r.

It is easy to see that the ser G is a (irredundant) rep-
resentative descriptor for the class K of the table T with
respect to w if the set of the columns numbered jj, ...,

j, of the table Tk table is a (irredundant) {6} covering

for Tx and at least one row contained in T is a w exten-
sion of the set ©.

Thus, the construction of irredundant representative
descriptors for the class X reduces to constructing irre-
dundant {6} coverings for that part of the table T which
does not contain descriptions of objects in the class K.

The asymptotic estimates obtained in Theorem 5.1
for irredundant {c} coverings are used in studying the
metric properties of a set of irredundant representative
descriptors.

Simple additional constructions lead to asymptotic
estimates of typical values for the number of irredundant
representative descriptors and the length of a irredun-
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dant representative descriptor for the class K of the
learning table T.

Let m; be the number of rows in T that describe
objects in the class K, m, be the number of rows in T
that describe objects in the remaining classes, and
Pr(T) be the set of irredundant representative descrip-
tors for the class K.

The table T may be treated as a pair of matrices of
the type (L, L,), where L, € Em,’ﬁ,l,, , Ly € Em,k,,z,,. Let

%,’Zlmzn be the set of all pairs of matrices of the said

type.
It was proved as true

Theorem 6.1. [24]. If my <n<k *,o>1, k22,

. k .
then for almost all tables T in %mlmzn , Withn — oo
tending to infinity, it is true that

P~ Y, (1-(1-k")")

re @ (my)

2
xC,Cp, ri(k—=1)k""

and the lengths of almost all sets of Py (T) fall in the
interval @ (m,).

We denote by Pg (T, r) the set of all representative

descriptors for the class K of the table 7" whose lengths
are not greater than r.

Let ry = Jlog,m,n[ (where ]x[ is the least integer
which is not smaller than x).

Suppose that log,m, < n/logyn, o> 1, m; < m,.
Then there holds

Theorem 6.2. [24]. If ry < r < n, then for almost all

. 2 . , . L
tables T in %mlmzn , With n — oo tending to infinity, it
is true that

T |~ Y cr2 - -27)"

r=ry

and the lengths of almost all sets of P,g (T, r) fall in the
interval [ry, r].

We now define a test and a irredundant test using the
concepts of an E covering and of a irredundant E cov-
ering, respectively.

Let H be a set of r different columns numbered
Jis ---»j, of the table T, and Eg be a set composed of dif-

ferent rows of the subtable of the table 7 formed by the
columns numbered j;, ..., J,.

It is easy to see that the column set H is a test for T
if and only if for each class K of the table T it is true that

the set of columns from the table T is an E? covering.
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The test composed of the columns numbered j,, ..., j, is
a irredundant one if for some class K, the set of columns

from the table T is a irredundant E,I: covering.

When test algorithms are used in practice, it is usual
to apply the constructions given below. With them, the
search for irredundant tests reduces to a search for irre-
ducible coverings of a Boolean matrix.

Let us call as the sum of rows §; and S, of the

learning table T an n-ary Boolean vector in which the
Jth place 1s 0 if it is the same in both S; and S, , and

1 otherwise. Let L be a Boolean matrix, each row of
which is formed by adding together two rows of T
belonging to different classes. Obviously, the set of col-
umns numbered ji, ..., J, is a irredundant test if and only
if the set of columns numbered j,, ..., j, from the matrix
Lris an irreducible covering.

It is convenient to assess the metric properties of a
set of irredundant tests &(T') for an integer-valued table T
using the statistical properties of irreducible coverings
or irredundant (0, ..., 0) coverings for the matrix L.

Let T be the set of all K-valued tables in which the

mymyn
rows are partitioned into two classes containing m; and
m, rows, respectively. In [18], the proof is given for

(mlmz)B

Theorem 6.3. If (inym,)*<n<k , o> 1 and

B < 172, then for almost all tables T in Tf,,lmz,,
that

it is true

2
T~ Y CCrm k-1,
re @, (mymy)

n——»oo’

and the lengths of almost all irredundant tests in Z(T)
Jfall in the interval ®(m;m;).

7. IRREDUNDANT COVERINGS
IN THE SIMPLIFICATION OF NORMAL FORMS
OF SPECIAL K-VALUED LOGICAL FUNCTIONS.
THE COMPLEXITY OF CONSTRUCTING
AN ABRIDGED CNF

The same technical basis (an inquiry into the statis-
tical properties of irredundant coverings) was used to
develop asymptotically optimal construction methods
and to study the metric properties of abridged cnfs for
completely defined and partial two-valued logical
functions defined on K-ary n-dimensional sets, k = 2
[19, 21, 22, 25].

Let & be a conjunctive normal form (cnf) of the type

D &...&D,, (7.1)
where D;, i =1, 2, ..., m, is an e.d. over the variables
O Cp,
Xp s X Dy=x VooV X,
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Recall that the cnf & is perfect if p, = n for
i=1,2,..,m

We set
0,if x=o0
L= ET (7.2)
1, otherwise,
xoe {01, . k-1}k22
The cnf & specifies the function Fg(x;, ..., x,),

which is defined on the set E; of K-ary n-dimensional

sets and can take on value O or 1. The set of sets in E;,
on which the function Fg, takes on value 1 is denoted
by Ng .

The c.c. B is called maximal for Fg if Ny < Ny,

and there exists no interval Ny such that Ny € Ny <
N Fg The cnf composed of all maximum conjunctions

of the function Fg is called abridged.

The e.c. B of rank r is called almost maximal for Fg,
if either of the following two conditions is satisfied:
(1) r=1 and a number { can be indicated in {1, 2, ..., m}
such that the disjunction D; contains ‘B as a disjunct;
(2) r> 1 and r numbers i, I,, ..., i, can be indicated in

{1, 2, ..., m} such that each of the disjunctions D, , ...,
D; contains exactly one conjunct from B and, ifp#q,
p,q € {1,2, ..., r}, then the disjunctions Dip and D,-q
contain different conjuncts from B.

It is easy to show that the e.c. B is maximal for Fg
if and only if the following two conditions are satisfied:

(1) *B is almost maximal for Fg;

(2) each disjunction D;, i = 1, 2, ..., m, contains at
least one conjunct from B.

Consider the construction of an abridged cnf Dg, for
the function Fg when for every symbol of the type x°
included into &, the following condition is satisfied:
o ©,6c{0,1,...,k-1)}.

Subject to the constraints m* < n < 4", where o > 1
and d = |S)/(|S| - 1), when & is a perfect cnf and d =
(S| + 1)/|S| otherwise, the following results were
obtained.

It was shown that this problem reduced to construct-
ing a set of all irredundant R(c) coverings for an inte-
ger-valued matrix. With the resulits obtained for irre-
dundant coverings, it is possible, when transforming
to Dg, to keep the “exhaustive search” to a minimum in
a certain sense.

The exhaustive search is kept to a minimum in the
following manner. The original problem is replaced by a
logically simpler one whose objective is to construct a

1 . . .
cnf D g ,composed of all almost maximum conjunctions
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of the function Fg. The cnf Dgl% is fairly close in its

properties to Dg. This cnf contains all maximal con-
junctions of the function Fg, and its length is nearly
always (for almost all cnfs of the kind in question)

asymptotically the same as that of the cnf D%. Once

Dlﬁ is constructed, it is possible nearly always to

“almost solve” the original problem. The complexity of
the solution is assessed in terms of the count of & oper-

ations required to construct Dgl% . It is shown that, with

n — oo, this count is nearly always not greater than the
length of the cnf Dg (Assertion (2) of Theorem 5.1 is
used to prove this). So, the proposed approach to con-
structing an abridged cnf of the function Fg offers a
way to solve the problem with an asymptotically mini-
mal complexity in a certain sense.

When k=2, S = {1}, and 8 is not a perfect cnf, we
actually construct a set of all irreducible coverings for
aBoolean matrix. In the general case, if § is a perfect cnf,
one constructs a set of irredundant coverings of B; (L),

where L is a matrix with elements from {0, 1, ...,z -1},
t=|S]. If {0, 1, ..., t} is not a perfect cnf, we solve
a similar problem for a matrix with elements from
{0,1,...,T}.

The estimate derived in Theorem 5.1 for |B£ 19]]

directly leads to asymptotic estimates of typical values
for the length /() of the cnf Dg, and the rank of its con-
stituent conjunctions, and also to similar estimates for

DSIQ whose length is denoted by /;(§) below.

Let M,l,m be a set of all perfect cnfs of the above
type, and M,i,, be a set of all cnfs of the same type.
There holds

Theorem 7.1, 25). (D Ifm*<n<d", o> 1 and

d=t/(t - 1), then for almost all cnfs & in M,l,m , with
n —» oo tending to infinity, it is true that

)~ L)~ [siLg)|~ ¥ Crcnrd

re ®,(m)

and the ranks of almost all conjunctions in Dg fall in
the interval ® (m).

Q) Ifm*<n<d™, a>1,d=(t+1)/t, then for almost
all enfs & in M., with n —» oo tending to infinity, it
is true that

SsLe)| - Y cicurd”,

re ®,(m)

W)~ L (/) ~
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and the ranks of almost all conjunctions in Dg fall in
the interval @ (m).

Of special interest is the case, where k = 2.

Let N, be a set of all cnfs of the form defined in
(7.1), which implement Boolean functions. We intro-
duce the notation:

N, ,l,m is a subset in N,,,, composed of cnfs that do not
contain negations of variables;

N,2,,,, is a subset in N,,,,, composed of all perfect cnfs;

N, 3,,, is a subset in N,,,,, composed of arbitrary cnfs.

By virtue of Theorem 7.1, we have assertions for-
mulated in the three theorems below [19, 21, 22].

Theorem 7.2. [f m* < n < 2™, &> 1, then for almost
all cnfs K in N, , with n — oo tending to infinity, it is
true that

2
()~ 1) ~|S2(Lg)| ~ Y, crchr2”
re ©,(m)
and the ranks of almost all conjunctions in Dg fall in
the interval ®,(m).
Theorem 7.3. If m®* < n <2™, o.> 1, then for almost
allenfs Rin N 3,,,, with n — oo tending to infinity, it is
true that

(S~~~ Y T,
re ®,(m)
and the ranks of almost all conjunctions in Dg fall in
the interval ®,(m).
Theorem 7.4. If m* < n < (3/2)", a > 1, then for

.2 . .
almost all cnfs & in N,, , with n —» o tending to
infinity, it is true that

(S ~L -3~ Y ccuneny,
re ®g,(m)

and the ranks of almost all conjunctions in Dg, fall in
the interval ®;,(m).

When © = {0, 1, ..., k— 1} and & is a perfect cnf,
the asymptotic estimate of I[(R) yields an asymptotic
estimate for the length of an abridged cnf for a two-val-

ued function which is defined on sets in E; and takes
on value 0 exactly on m sets.

Note that the problem formulated in this section is
also applicable to the case where x° is defined differ-
ently, e.g.,

(1.3)

5 1, if x = o,
x =

0, otherwise,
x,0¢e {1,2,...,k-1}.
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Then, by similar reasoning, it is possible to obtain
a result fully analogous to the one formulated in Theo-
rem7.1.

Consideration is given in [25] to the construction of
partial two-valued functions defined on K-ary n-dimen-
sional sets. It is shown that this problem can be reduced
to constructing both irredundant R(G) coverings and
irredundant {G} coverings.

Let fix,, ..., x,) be a two-valued function which is

defined on some subset of sets in E;. Also let A =

{ay, ..., 0} be the set of sets in E,': on which the func-
tion ftakes on value 1, and B = {B,, ..., B,} be the set of

sets in E, on which the function ftakes on value O.

Let L, be a matrix whose rows are the sets &, ..., O,
and L,, be a matrix whose rows are the sets B, ..., B,.
The following criterion of maximality in respect of
the conjunction of a partial function f applies:
x.", where

sees Ay

Theorem 7.5. The e.c. of the form x, ',
x,' is defined fort = 1,2, ..., r by the rule (7.2) and
J1 < ... <J,, Is maximal for fif and only if the set of col-
umns numbered j,, ..., j, in the matrix L, is a irredun-
dant R(o) covering, 6 = {0y, ..., G,}, and the submatrix
of the matrix L, composed of columns numbered j,, ..., j,
contains at least one row of the form (y,, ..., V,), where
Y, 20, fort=1,2,...,r.

The maximality criterion for the conjunction of the
partial function f is also provided by
X", where

sees Ay

Theorem 7.6. The e.c. of the form xil ,

xz' is defined for t = 1, 2, ..., r by the rule (7.3) and

J1<...<j,, is maximal for f if and only if the set of col-
umns numbered ji, ..., J, in the matrix L, is a irredun-
dant {6} covering, 6 = (G, ..., ©,), and the subma-
trix of L,, which is composed of the columns num-
bered j,, ..., j, contains at least one row of the form
(61, ..., 0,).

The problem of constructing the abridged cnf of the
partial function f can be reduced to the problem of con-
structing all irreducible coverings for a number of
Boolean matrices. To demonstrate, we associate the set
o, ic {1,2,..., v} with the Boolean matrix L® where
the intersection of the pth row and the gth column yield
value 1 if the sets o, and [, differ in the gth coordinate,
and value O otherwise.

There holds

(o}
x, , where

Theorem 7.7. The conjunction x;’ll s X,
x;' is defined for t = 1, 2, ..., r by the rule (7.3) and
J1 < ... <J,, 1s maximal for f if and only if we can indi-
catei € {1, 2, ..., m} such that the set of the columns
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numbered j,, ..., j, in the matrix L is a irredundant
{QO, ..., 0)} covering, and fort € {1, 2, ..., r}, the j,
coordinate of the set ¢, is equal to G,.

CONCLUSION

The objective of this paper was to provide an over-
view of the results achieved in the development of
asymptotically optimal methods for the construction of
irredundant coverings for Boolean and integer matri-
ces, and in the use of these methods in the solution and
analysis of recognition problems. The results are as fol-
lows:

(1) A new class of algorithms was proposed
whereby a search can be performed for irreducible
(irredundant) coverings of a Boolean matrix. These
algorithms are based on the construction of unit subma-
trices of the original matrix, and they make a better use
of its internal structure as compared with previous
methods.

(2) The concept of an asymptotically optimal algo-
rithm is introduced to construct sets of all irreducible
coverings for Boolean matrices by discarding some
conditions that define the coverings. It was shown that
the algorithms of the class indicated in (1) above are
asymptotically optimal in a case of practical impor-
tance, namely, where the number of rows of a Boolean
matrix is smaller than that of its columns.

(3) In substantiating the asymptotic optimality of
the algorithms, asymptotic estimates of typical val-
ues were derived for the number of irreducible cov-
erings and the length of an irreducible covering for a
u X n Boolean matrix subject to the condition that
log,n<usn!=¢(e>0).

(4) The concept of a irredundant covering for an
integer-valued matrix was introduced as a generaliza-
tion of the concept of an irreducible covering for a
Boolean matrix. Results that were fully analogous to
those mentioned in (1) through (3) above for irreduc-
ible coverings of a Boolean matrix were obtained for
the principal practically important types of irredundant
coverings for an integer-valued matrix.

(5) A class of models of logical recognition algo-
rithms was described, including most of the algorithms
used in practice. In these models, the key element at the
learning stage is the construction of elementary classi-
fiers. Ordinarily, this reduces to a search for irredundant
coverings of special matrices (construction of maximal
conjunctions of two-valued functions). With an asymp-
totically optimal search for irredundant coverings serv-
ing as the basis, improvements were made in known
models of logical recognition algorithms and qualita-
tively new models were built.

(6) The technique thus developed was drawn upon
to obtain asymptotically optimal solutions to problems
involving the construction of elementary classifiers for
the principal models of logical recognition algorithms.
Vol. 7
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The same technique was used to derive typical asymp-
totic estimates for the key quantitative characteristics of
a set of elementary classifiers for this type of models,
such as the number of representative descriptors and
the length of a representative descriptor, and similar
characteristics for a set of irredundant representative
descriptors and a set of irredundant tests.

(7) Asymptotically optimal methods were proposed
whereby abridged cnfs can be constructed for two-val-
ued (partial and completely defined) functions. With
these, maximal conjunctions are synthesized on con-
structing and analyzing a set of all almost maximal con-
junctions.

(8) The metric (quantitative) properties of abridged
cnfs for two-valued functions were investigated. In par-
ticular, asymptotic estimates of typical values were
obtained for the number of (almost) maximal conjunc-
tions and for the rank of an (almost) maximal conjunc-
tion of a function of n variables on condition that its
zeros are not greater in number than n! ~¢ (g > 0).

(9) The results thus obtained were verified by exper-
iment. The verification confirmed the efficiency of the
proposed algorithms for the construction of irredundant
coverings in practical and model problems.
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