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The construction of minimally complex correct recognition algorithms is investigated. Methods

akin to those used when synthesizing logical recognition procedures are proposed. The intention is .
to extend the range of application of algebraic-logic recognition methods to problems of image and “:{
signal processing. © 1997 Elsevier Science Ltd. All rights reserved.

The construction of correct algorithms (by which we mean those that give exact results on the teaching
material) by algebraic methods [1-3] reduces essentially to solving the following problems:

(1) the choice of a heuristic data-processing model of the algorithms (for example, a version of the
model of algorithms for the calculation of estimates);

(2) the choice of a family of correction operations, which might in a special case even be an algebra
(examples of such families are the set of polynomials, monotone Boolean functions, functions with a
bounded derivative, etc.);

(3) within the framework of the chosen heuristic data-processing model, the construction of a set of
basic algorithms for an existing (given) set of precedents;

(4) the construction of a corrector (an operation which, when applied to the basic algorithms constructed
in Step (3), yields a correct algorithm).

Algorithms obtained in this way typically have a complicated internal structure, as refiected in the large
number of computer operations required for each object to be recognized. This is not an issue in such areas
as medical diagnostics, geological prospecting etc., where the algorithms are applied a relatively small
number of times. In image or signal processing, however, the number of calculations involved in a single
application of a correct algorithm is an important factor in determining whether practical use can be made
of the results.

The present paper is an initial investigation of methods of constructing correct algorithms which are
essentially the simplest, in some sense. The basis of the solution technique is modelled on that used in the
construction of logical recognition procedures [4—8].
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- 1. BASIC DEFINITIONS AND STATEMENT OF THE PROBLEM

PN PR

The recognition problem is to be solved in the case where the objects have been described and the
initial data about classes have been assigned in the standard way [1].

Consider a certain set of admissible objects M, of each of which it is known that it belongs to one of
[ subsets (classes) K|, . . ., K. The initial data J; (given in the form of a table T') is a sample of a power of
m objects from M (the teaching sample). Each row of 7 is the description of one of the objects in a system
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of integer indices {x,, ..., x,}. Of each object of the teaching sample it is known to which of the classes
K, ..., K, it belongs.

The recognition problem involves constructing an algorithm which uses the data J; and a description
S in the system of indices {x,, ..., x,} of an arbitrary object of M (of which, generally speaking, it is not
known to which of the classes K|, ..., K| it belongs) to calculate the values of the properties S € K,
S&K,where K€ {K,...,K}.

We will fix the pair (w, @), where w C {1, 2, ..., n},and w= {j, ..., j.},j; <...<}J,, & is an ordered
set of integers {a,, ..., a,}. An elementary recognition algorithm (ERA) is a predicate P, ;,(S), defined
on descriptions S of objects of M in the system of indices {x,, .. ., x,} and taking the value 1 if, and only
if,q =b, withi+1,2,...,rforthe row S=(b, ..., b,).

The set of ERA N . wor by -

U ={PM(S),..., P98 (1.1)

is called a (monotone) correct set of ERA for the class X if there is a (monotone) algebraic logic function
F of q variables such that F,(PM(S"), ..., P9(S")=1 for any row S’ of table T which describes an
object of class K and F (PN (S'), ..., P9(S'"))=0 for any row S’ which describes an object of any
other class. The function Fy will be called a (monotone) corrector for the class K.

The following assertion is obvious. The set of ERA of the form (1.1) is a monotone correct set for the
class X if, and only if, for any two rows S’ and S'’ of table T such that §' € K, §"' EK,iin {,2,..,
g} can be found such that -

P(S)=1and P(S”)=0. (1.2)
The monotonicity requirement can be removed if condition (1.2) in the last assertion is replaced by the
condition

' PU(S)# PO(S™). ‘

Let 1 be a correct set of ERA for the class K. The set 11 will be called a dead-end set if the condition
I’ C U implies that the set of ERA I’ is not correct for K. The set 11 will be called minimal if there is no
correct set of ERA for K of shorter length.

Let L be any Boolean matrix. The set of columns H of the matrix L will be called a covering if there
is 1 at the intersection of each row of L with at least one of the columns in H (that is, a sub-matrix of L
formed by columns of H contains no row of the form (0, . . ., 0)). A dead-end covering is a covering which
has no proper subset which is also a covering. For a dead-end covering, a sub-matrix of L formed by
columns of the set H will contain each of the rows (1,0,0,...,0,0),(0,1,0,...,0,0),...,(0,0,0,.. .,
0, 1), that is, the set of columns H will contain a sub-matrix, each row and each column of which contains
exactly one element equal to 1. A sub-matrix of this kind will be called an identity sub-matrix. A covering
with the minimum number of columns will be called minimal.

We shall show that problems of constructing dead-end and minimal correctors reduce, respectively, to
the construction of dead-end and minimal coverings for a Boolean matrix constructed from the table T in

a special way.

Case 1 (the construction of monotone correct sets of ERA). Let # denote the totality of all possible
subsets of the set {1, 2, ..., n}. Foreach w of W, w={j,, .. .,J,}, we will write out all the possible ERA
for the class X generated by the columns of table T with numbers j, ..., j,, that is, all the different
sub-descriptions of objects of K that are generated by those columns. Suppose that this is the set of ERA
U,,. Consider the set U, of all ERA for X:

uK = wkEJW uw.
Suppose U= {PU(S), . .., P")(S)}. We will set the pair of rows S’ and §'' of T in correspondence
with the row B(S', $'")=(cy, . . ., ¢,), in which
o o Lif PU(S) =1 and PV(S)=0,
710 otherwise, j =1,2,...n".

We now form a Boolean matrix L, from all the rows B(S’, S’’) such that ' €K, S’ €K. By
construction, each column in L, corresponds to a certain ERA for K.

It is easy
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It is easy to see that the set of ERA is a monotone dead-end (minimal) correct set for K if, and only if, the
corresponding set of columns of the matrix Ly is a dead-end (minimal) covering.

Case 2 (the construction of non-monotone correct sets of ERA). In this case the set of all ERA U is
formed both by sub-descriptions of objects of K, and by sub-descriptions of objects of other classes. Let
U= {PD(S), ..., P"(S)}. The pair of rows S’ and §'’ of T are associated with the row D(S’,
S'"Y=(,, ..., d,), in which

i
. %

Coee {1, if PU(S%) # P (S7), o

sves L e . g J

“ 0 otherwise, j=1,2,...,n". =z

We now form a Boolean matrix from all the rows ©(S’, ') such that §' € K, §'' € K. The reasoning
is then the same as in Case 1. Only monotone correctors will be considered below.

As a rule, the numbe- of ERA is large even for small problems, and the procedure for constructing a
minimal corrector set using the matrix L, uses a considerable amount of computer resources. The problem
thus arises of developing efficient methods for the algebraic-logic correction of ERA in both the general
case and in the following cases of practical importance:

(1) the ERA is generated by the pair (j, a), where j is an element of the set {1, 2, .. ., n}, and a is one
of the admissible values of the index numbered j (note that if w={j,, ..., j,}, a=1{a,, ..., a,}, then
Py (S) =P,y (S) &.. & P, o) (S));

(2) under the conditions of problem (1), the ERA is defined as the predicate P, ,,(S), which takes the
value 1 if, and only if, the value of the index numbered j for an object S is not less than a.

In each case both accurate and approximate methods are required, as the latter might be necessary to
improve the rate of solution.

The procedures normally used for the exact construction of a minimal covering of a Boolean matrix
involve an exhaustive search of its coverings.

The search for a minimal covering can also be performed by the examination of dead-end coverings.

Various exact and approximate methods have now been devised for constructing the set of all dead-end
coverings of a Boolean matrix. These algorithms are employed in such logical recognition procedures as
testing, voting with respect to dead-end representative sets and others. The algorithm of [7, 8], by which
the set of all dead-end coverings of a Boolean matrix with limiting minimum complexity is almost always
constructed, is especially interesting. It involves finding sets of columns satisfying the dead-end property
(in fact all the identity sub-matrices of a given Boolean matrix are constructed). In {7, 8] we give the
conditions under which the number of identity sub-matrices is almost always equal in the limit to the
number of dead-end coverings and, therefore, the set of columns containing an identity sub-matrix is almost
always a covering. We have used this algorithm for the efficient solution of the problem of the determinate
(exact) and stochastic (approximate) construction of blind trials and dead-end representative sets. We have
also constructed the corresponding recognition procedures. These procedures have been implemented in a
number of software packages developed at the Computing Centre of the Russian Academy of Sciences.

£

2. THE CONSTRUCTION OF A MONOTONE CORRECTOR IN THE
CASE OF BINARY DATA

Let 7 be a binary table and an ERA be generated by the pair (j, a), where j is an element of the set {1,
2, ..., n}, and a is an admissible value of the index x,.

We shall assume that the first m, rows of T are descriptions of objects in the class K, while the next
m,=m—m, rows describe objects in other classes. Let T, and Ty denote the sub-tables of the table T
formed by the first m, and next m, rows, respectively.

Leti€ {1, 2,..., m}, and S, be row i of table 7. We will denote by Ly a sub-matrix of the matrix
L, formed by rows of the form B(S,, S), where S € K.

It is easy to see that if the jth element of row S, is equal to 0, then the column in L corresponding to
the ERA (J, 0) is the same as the jth column of table T, and the column corresponding to the ERA (/,
1) is zero. And, on the other hand, if the jth element of row S, is equal to 1, the column in L}, corresponding
to the ERA (j, 0) is zero, and the column corresponding to the ERA (j, 1) is opposite the jth row of table T%.

The ERA (j, a) will be called empty for §, if the jth element of row S, is not equal to a. :
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We now remove from L} every zero column corresponding to empty ERA, and obtain a Boolean matrix
M, of dimensions m, X a.

LetS=(a,, ..., a,). Then the matrix M} will obviously consist of all rows of the form (a,, D b, .. .,
a,®Db,), where (b, ,.. ., b,) is a row of table T, and @ denotes addition mod 2. By construction, each
unit element e in M of the form a, @ b, corresponds to an ERA for the class K of the form (j, a,), which
we will denote by R (e).

In each sub-matrix L}, ..., Ly' of the matrix L,, we now remove all zero columns corresponding to
empty ERA. This transforms the matrix Ly to the matrix M of dimensions m,m, X n.

In this case (cf. Section 1) the problem of constructing the set J%(K) of all monotone dead-end correct
sets of ERA for the class K reduces to constructing the set of all dead-end coverings for the matrix L, of
dimensions m,m, X 2n. We will show that this latter problem can be reduced to finding special sets of unit
elements of the matrix M, constructed above. This will lead to a considerable reduction in the amount of
calculation, since there are half as many columns in M as in Ly. A solution is found using a modification
of the algorithm of [7, 8] for constructing the set of all dead-end coverings. SwpL

Two unit elements of the matrix L, which are situated in row 7, and i, and column j, and j,, respectively,
are said to be compatible if 1, #1,, j, #/, and the sub-matrix of L, formed by rows i, and i, and columns
Jj1 and j, is an identity sub-matrix, that is, it consists of the two rows (1, 0) and (0, 1). The set £ of r unit
elements of the matrix L is said to be compatible if either: (1) r=1, or (2) »> 1 and any two elements in
E are compatible.

It is easy to see that the set H of 7 columns of the matrix L, is a dead-end covering if, and only if, first,
r compatible elements can be found in L, which are situated in columns of the set H and, second, H is a
covering, that is, there is a 1 at the intersection of each row of the matrix L, with at least one column of H.

Leti€ {1, 2, ..., mm,}. Then the number 1 can be represented uniquely in the form

N Pi=(t = Dmy+1y, t €{l.2....om), 1, €{1.2, ...my). @.1)

We will denote the numbers ¢, and ¢, in the representation of the number i (2.1) by x(i) and y (i),
respectively.

Two elements of the matrix M, situated in the same column and in rows i, and i, will be called
equivalent if x(i,) # x(,), y(i,) =y(i,), that is, 1, =i, (mod m,).

In sub-matrices M% and M%(p, g € {1, 2, ..., m}) of the matrix M,, let the unit elements e, and e,,
respectively, lie in rows i, and 1, and 1 columns j, and j,. We shall call the elements e, and e, similar if
one of the following conditions is satisfied:

(1) e, and e, are compatible;

(2) e, and e, are not compatible, p # g and one of the following conditions is satisfied:

(a) e, has a zero equivalent element in M, and e, has a zero equivalent element in M% (it could be
that j, =1,);

(b) j, #J, and either there is a 0 on the intersection of row i, and column j, and the equivalent element
to e, n M% is zero or, on the other hand, there is O at the intersection of row i, and column j, and the
equivalent element of e, in M is zero.

The set O of » unit elements of the matrix M, will be called similar if either: (1) =1, or (2) »>1 and
any two elements in Q are similar.

We will denote the set of all similar sets of unit elements in M, by S.

We will denote the set of all columns of the matrix M, which contain elements of the set Q by Q(Q),
QeEsS.

We will now show that the problem of constructing the set I (K) of all dead-end coverings for the
matrix L, reduces to the problem of constructing the set of all sets Q of Sy such that the set of columns
Q(Q) is a covering.

The transformation of the matrix L, to the matrix M} described above obviously defines a one-to-one
correspondence between the unit elements of these matrices, each unit element e of the matrix Ly
corresponding to a unit element I1(e) of the matrix M.

Theorem 1. Two unit elements e, and e, are compatible in Ly if, and only if the corresponding unit
elements II(e,) and I1(e,) in M, are similar.

Proof.
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Proof. In the matrix L, let the unit element e, of the sub-matrix I% lie in row i, and the column
corresponding to ERA (j,, a,), and the unit element e, of the sub-matrix L} in row i, and the column
corresponding to ERA (j,, a,).

I. Let the elements e, and e, be compatible in L. Let us consider the possible cases.

If p = g, then obviously II(e,) and II(e,) are compatible in M, and are therefore similar in M.

Let p # g and the rows S, and S, of table T be of the form (a,,, . . ., a,,) and (a,,, . . ., a,,), respectively.
Then a,, =a,, a,,= a,.

Suppose that

qls *

a

o =a,. (2.2)

=@ Ay

Then the columns corresponding to ERA (j,, ¢,) and (J,, a,) are not zero either in L% or in LY, that is,
I1(e,) and Il (e,) are compatible in M,.

But if only one of Eqs (2.2) is satisfied, the first, say, it follows from a, =a,, =a, that the column in
L% corresponding to ERA (,, @) is non-zero and is the same as the same column in L%. It follows from
a,,=a,, a,,=a, that the column in L} corresponding to ERA (j,, a,) is opposite the column in L%
corresponding to ERA (,, 4,). Thus H(e,) and Il(e,) are similar in M} in accordance with part (b) of the
definition of the similarity of two elements.

Finally, if neither equation of (2.2) is satisfied, it follows from the equations

4

- i ' Y Gy =ay, ay =4), G, =8, Ay, =G . o .
that the column in I corresponding to ERA (j,, a,) is opposite the column in L corresponding to ERA
(Jy, @;). Similarly, the column in L} corresponding to ERA (j,, a,) is opposite the column in L% corres-
ponding to ERA (j,, @,). It follows that II(e,) and Il(e,) are similar in M, in accordance with part (a) of
the definition of the similarity of two elements.

I1. Suppose that elements e, and e, are not compatible in L.

Let e; denote the element of the submatrix L} which lies in row i, and the column corresponding to
ERA (J,, a,), and e, the element of the sub-matrix L} which lies in row i/, and the column corresponding
to ERA (J,, a,). Since ¢, and e, are incompatible in Ly, at least one of the two following equations is
satisfied: e; =1, e¢,= 1. Let e; = 1, for instance. Then the columns which correspond in Z% and L to ERA
(Ji» a,) are the same and, therefore, the element in M equivalent to II(e,) is equal to 1 and the element
I1(e;) is equal to 1. It follows that I1(e,) and Il(e,) are not similar in M,. This proves the theorem.

Let Q be the set of elements of the matrix My, Q= {e,, .. ., e,}. It follows from Theorem 1 that the set
ERA {R(e)), ..., R(e)} belongs to M (K) if, and only if, first, O € Sy and, second, the set of columns
Q(Q) is a covering for M,.

We will now describe an algorithm 2 for constructing the set % (K) by finding sets from Sj.

Let Ey denote the set of all unit elements in M,.

We will give the element e in row i and column j of the matrix M, the number N[el=(j— 1)m,m, +
i. We will denote the elements with the smallest and largest numbers in any set E, E C E; by ¢,(E) and
q,(E), respectively.

We introduce a linear ordering on the set S;. For each set Q, Q € Sy and Q # {q,(Ey)}, we define the
next set OQ of Si.

Suppose that 0= {e,, ..., ¢,} and N[e, . ,]>N[e ] foru=1,2,...,r—1. ;

Letu € {1, 2, ..., r}. We will denote the set of all elements in E, whose numbers are greater than
N[e,] by E,. We pick out a subset G, in E,, the elements which are similar to each of the elements e,

L. e,
There are the following possible cases, for each of which we will indicate OQ: L,
(1) G,#, in which case 00 =0 U {q,(G,)}; . R
) G.=3, . ‘

(a) r=1, in which case 0Q = {q,(£))};

(b) r>1and G,_, N E,# @, then 0Q=(Q\ {e,}) U {q,(G._, N E))};

(c) r>1 and G,_,NE, =, then if r=2, we have OQ= {¢,(E,)} and if »>2 we have 0Q=
@\ fer—1» &) U {91(G,, N E,_)}. e e

We note that G=G,_, N E,_, # for r>2 since e, € G.

For {R(e,), . . ., R(e,)} to belong to M (K) obviously the condition G, = must be satisfied. Sufficient
conditions are: G,=J and the set of columns ((Q) of the matrix M, is a covering. . . i" .« , i,
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The set {e,, . .., e,} will be called an upper set if there is no set {e, ..., e, } belonging to S with the
following properties:

(1) the element e, lies in the same column of My as the element e, u=1,2,...,r;

(2) for at least one u of {1, 2, ..., ¥} we have N[e,]<Nle,], R(e,)=R(e,) (the condition R(e,)=
R(e,) means that either the elements e, and e, belong to the same sub-matrix M%, p, € {1, 2, ..., m,} or
these elements are equivalent in My).

Let S denote the set of all upper sets in S.

The algorithm U constructs the set M (K) in [ S| steps. On step i A selects in M a similar set of
elements A[i, M ]= e, ..., ¢}. In order to eliminate repeats, it does this by checking that 9[[i,
M) € Sk for i=2 and G, =@. If this condition is satisfied and the set of columns Q(Q) of the matrix
M, is a covering, the set of ERA {R(e)), ..., R(e,)} is included in the required set of dead-end correct sets
of ERA. If not, the set of dead-end correct sets constructed in the preceding steps is left unchanged.

The choice of similar sets is based on the following rules:

(1) ALL, M= {g,EQ};

(2) if AL, M) # {q,(E)}, then A+ 1, My =0U[, MJ;

(3) if Ui, M1 = {g,(Ey)}, algorithm 2 completes its operation.

Let Q € Si. Consider the sub-matrix M(Q) formed by rows and columns which contain elements of
the set Q. It is easy to see that each row of the submatrix M(Q) contains exactly one element equal to 1,
and that each column has at most two elements equal to 1. Note that if some column of that sub-matrix
has two unit elements and they belong to M} and M), then i#j. We will call M(Q) a quasi-identity
sub-matrix.

Quasi-identity sub-matrices of the matrix M, can be found by finding its identity sub-matrices, using
the algorithm of [7, 8] directly for that purpose.

The exhaustive search involved in the construction of dead-end coverings can be shortened by removing
“including” rows from the Boolean matrix.

Let two rows of the Boolean matrix L be of the form (b, ..., b,) and (cy, . . ., c,), where ¢,= b, for
j=1,2, ..., n The second row will be said to include the first, and this will be denoted by (&, ...,
b,)<(ci, ..., c,),if ¢,>b, for at least one j from {1, 2, .. ., n}. The removal of including rows from L will
not alter the set of its coverings.

Suppose that there is a 1 at the intersection of rows i, and i, with column j of the matrix M,. Let Axl
and A, denote the rows of matrix Ly numbered {, and i,, respectively. We then have the following theorem.

Theorem 2. The inclusion A, <A, is satisfied if, and only if, the following two conditions hold:
(1) row i, in the matrix My includes row i;;
(2) the elements at the intersection of rows x(i;) and x(i,) in the matrix 7, with column j are equal.

Proof. Let the elements at the intersection of the rows x(i,) and x(i;) in Ty with column j be a and
a' respectively.

If a=a’, the elements at the intersection of rows S’ and S'' of the matrix Ty, numbered y(i;) and
v (i,), respectively, with column j are @, and in the matrix Ly the elements at the intersection of the column
corresponding to ERA (j, a) with rows A, and A, are 1.

The conditions stated in the theorem are therefore sufficient.

The necessity of condition (1) is obvious. The necessity of condition (2) is also easy to see. For if
a’' =a, the elements at the intersection of rows S’ and S’ of matrix T, with column j are @ and a. Hence,
there are 1 and O respectively at the intersection of the column of matrix Ly corresponding to ERA (j, a)
and rows A, and A, and, on the other hand, there are 0 and 1, respectively, at the intersection of the
column corresponding to ERA (j, @) and rows A, and A,,. Hence it follows that row A, in L, does not
include row A, . This proves the theorem.

Corollary 1. In the matrix My, let row i, include row i,. Then if x(i,) =x(i,) we have A,I < A,z.

Corollary 2. In the matrix My, let row i, include row ;. Then if x(i,) # x(3,) and y(i,) =y (i,), that is,
rows i, and i, of the matrix My are equivalent, we have A, <A, .

Note that this method of constructing the set of all dead-end correct sets of ERA can also be used in
the more general case of integer-valued data. The exhaustive search will be even shorter in that case.
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