
ISSN 1054-6618, Pattern Recognition and Image Analysis, 2006, Vol. 16, No. 4, pp. 707–711. © Pleiades Publishing, Inc., 2006.

 

Increasing the Efficiency of Combinatorial 
Logical Data Analysis in Recognition 

and Classification Problems

 

E. V. Djukova

 

a

 

, A. S. Inyakin

 

a

 

, N. V. Peskov

 

a

 

, and A. A. Sakharov

 

b

 

a

 

 Dorodnitsyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991 Russia
e-mail: djukova@ccas.ru, andre_w@mail.ru, nick@motor.ru

 

b

 

 Moscow State Pedagogical University, ul. Malaya Pirogovskaya 1, Moscow, 119992 Russia
e-mail: caxap@mail.ru

 

Abstract

 

—Problems of increasing the efficiency of combinatorial logical data analysis in recognition problems
are examined. A technique for correct conversion of initial information for reduction of its dimensionality is
proposed. Results of testing this technique for problems of real medical prognoses are given.

 

DOI: 

 

10.1134/S1054661806040201

 

Received March 31, 2005

 

1. INTRODUCTION

In contrast to the statistical approach, procedures for
combinatorial logical recognition and classification
have a number of significant advantages including the
possibility of obtaining an acceptable result in the case
where a few objects are described with numerous fea-
tures [1]. Moreover, a decision rule derived with the use
of these procedures is usually easily interpreted. This
circumstance is particularly important in medical diag-
nostics, ecological monitoring, sociological interview
processing, etc.

Combinatorial logical data analysis in recognition
problems is based on construction of the fragments of
descriptions of objects having properties that are
extreme in some sense [1, 2, 6–8, 10, 12–15]. The con-
structed fragments must reflect certain regularities in
descriptions of teaching objects. Such fragments serve
as elementary classifiers and allow one to classify new
objects. The technique is particularly efficient for the
case where the data is integer and the number of the
allowed values of every feature is not large. To process
high-dimensionality data, it is required either to adapt
logical recognition procedures (e.g., to use algorithms
of voting by representative sets with partial conversion
[9]) or to convert the initial data during their prepro-
cessing.

Preliminary conversion is usually based on partition
of the range of each feature into intervals. As examples,
we can cite the following partition methods: partition of
each range of features into equilength intervals, parti-
tion of each feature range into equipotential intervals,
partition with the use of the class-attribute indepen-
dence maximization (CAIM) algorithm [16], and divi-
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sion with the use of Senko’s algorithm [11]. In general,
the cited methods do not necessarily preserve a given
partition of objects into classes, which makes impossi-
ble the use of a number of combinatorial logical recog-
nition procedures (e.g., test algorithms [3, 10]). There-
fore, the concept of correct conversion appears to be
important. Correct conversion means learning data con-
version such that the descriptions of objects from dif-
ferent classes remain distinguishable. The problem can
be reduced to finding the covering of a Boolean matrix
that is constructed in a special way using the learning
sample. The idea of this reduction was put forward by
Yu. I. Zhuravlev. The number of correct conversions
increases exponentially with the problem dimensions.
Therefore, an intricate problem of choosing the “best”
conversion appears.

In this paper, a technique is proposed for rapidly
constructing correct conversions that are best in a cer-
tain sense and guarantee a high quality of solution of
the recognition problem. This technique is tested on a
real medical prognosis problem.

2. CODING COVERINGS
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and objects  and  belong to different classes. We

designate the set of all thresholds for the feature 
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Let us construct a Boolean matrix 
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. Each row of this matrix is obtained as a result of
the pairwise summation of objects that belong to differ-
ent classes over the set of thresholds 
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According to the construction, the set of thresholds 

 

D

 

(

 

j

 

)

 

corresponds to the group of the 

 

|

 

D

 

(

 

j

 

)

 

|

 

 columns of the
matrix 

 

L

 

, which is denoted as 

 

G

 

j

 

.

The value 

 

a

 

ij

 

 of the feature 

 

x

 

j

 

 for 

 

S

 

i

 

 generally defines

two adjacent thresholds  and  from 

 

D

 

(

 

j

 

)

 

 such

that  < 

 

a

 

ij

 

 < . If the value 

 

a

 

ij

 

 is the least or the
largest value of the feature 

 

x

 

j

 

, then it defines only one
threshold (the minimum or the maximum element in
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is generally possible. According to the construction, the

set of the thresholds , 
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∈  {1, 2, …, n}, corresponds
to a group of columns of the matrix L, which is denoted
as Gj .
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ml . We assign object Si to a submatrix Li of the matrix
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The set H of columns of the matrix L is called a
complete coding covering if the following two condi-
tions are fulfilled: (i) H is a covering of L—i.e., for
every row of the matrix L, at least one column in H has
1 at the intersection with this row; and (ii) H ∩ Gj ≠ ∅
for j = 1, 2, …, n.

Let i ∈  {1, 2, …, m}. A set H of the columns of the
matrix L is called an i-partial coding covering if the fol-
lowing three conditions are fulfilled: (i) every column

entering into H belongs to ; (ii) for every row of

the matrix Li, there is a column in H having 1 at the
intersection with this row; and (iii) H ∩ Gij ≠ ∅ for Gij ≠
∅ , j = 1, 2, …, n.

Let H be a complete coding covering for L. The
number  + 1 is called the dimen-

sionality of H. When H is an i-partial coding covering
for L, the number  + 1 is called the

dimensionality of H. Thus, the dimensionality of the
i-partial coding covering is at most three.

For every S ∈  M, coding covering H apparently
defines a mapping conv(H, S): S  SH based on the
replacement of feature values for object S by numbers
from {0, 1, …, k – 1}, where k is the dimensionality of
H. Indeed, let apj , p ∈  {1, 2, …, m} be some value of

the feature xj for object Sp, and  = {d1, …, dν}, d1 <

… < dν, be the set of thresholds from D(j) corresponding
to the columns from H. Three variants are possible:
(i) apj < d1; (ii) dt < apj < dt + 1, t ∈  {1, 2, …, ν – 1}; and
(iii) dν < apj . In cases (i), (ii), and (iii) the element apj is

coded by 0, t, and ν, respectively. If  = ∅ , then the
value of the element apj is replaced by 0. Similarly, we
define conv(H, apj) as the mapping of the element apj

with respect to the coding covering H.

3. MODEL OF RECOGNIZING ALGORITHMS 
WITH PARTIAL CONVERSIONS

Let features x1, …, xn have integer values and
(w1, …, wn) be a description of an object W from M (wj

is the value of the feature xj , j = 1, 2, …, n). Let Q be a
set of r different features, Q = { , …, }. The set Q

separates a fragment (W, Q) = ( , …, ) in the

description of the object W . Let two objects W ' and W ''
from M be given, W ' = ( , …, ) and W '' = ( , …,

). The similarity of the objects W ' and W '' with

Gij
j 1=

n

∪

H G j∩
j 1 2 … n, , ,{ }∈

max

H Gij∩
j 1 2 … n, , ,{ }∈

max

DH
j( )

DH
j( )

x j1
x jr

w j1
w jr

w1' wn' w1''

wn''



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 16      No. 4      2006

INCREASING THE EFFICIENCY OF COMBINATORIAL LOGICAL DATA ANALYSIS 709

respect to the set of features Q = { , …, } is esti-
mated as

Thus, the objects W ' and W '' are similar with respect
to Q if and only if the fragments (W ', Q) and (W '', Q)
coincide with each other.

Let K ∈  {K1, K2}, W be a teaching object from the
class K. The fragment (W, Q) is called a representative
set for class K if the equality B(W, W ', Q) = 0 is valid
for every teaching object W ' ∉  K.

Let Q(t) = Q\{ }, t ∈  {1, 2, …, r}. The representa-
tive set (W, Q) for class K is called a blind set if the frag-
ment (W, Q(t)) is not a representative set for K for any
t ∈  {1, 2, …, r}.

Consider a model of recognition algorithms that use
partial conversion. Let H be an i-partial conversion
Si ∈  K. The aggregate of all blind representative sets for
K that is generated by the object conv(H, Si) is denoted
as Pi(H). The set of all irreducible coverings of the
matrix Li is denoted as �(Li). It is easy to see that the
set of feature values Li of the object (conv(H, ), …,

conv(H, )) belongs to conv(H, Si) if and only if the
set of columns of the matrix Pi(H) corresponding to the

set of thresholds π( , …, ) belongs to �(Li).

Let { , …, } be the set of all i-partial conversions
for L. Let us designate

The proposed model of recognizing algorithms is
based on constructing the sets P1, …, Pm. In view of the
above consideration, the problem of constructing a set
Pi , i ∈  {1, 2, …, m} is reduced to constructing the set
�(Li).

We set P(Kj) = , j = 1, 2. The classifi-

cation of the object S among one of the classes is deter-
mined by calculating the estimates Γ(S, K1) and Γ(S,
K2), where
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Object S belongs to the class for which this estimate
is maximal. If the estimates Γ(S, K1) and Γ(S, K2) are
equal to each other, then the algorithm fails to recog-
nize the object S.

4. ALGORITHM FOR CHOOSING
THE BEST CORRECT CONVERSION

Below, an initial data conversion algorithm is pro-
posed on the basis of analysis of the Boolean matrix L,
which allows one to rapidly obtain a good correct con-
version. To construct this algorithm, the well-known
idea of steepest descent is used.

We designate a submatrix of the matrix L that is
composed of the columns from Gj , j ∈  {1, 2, …, n} as

.

A column of the matrix covers a row of this matrix
if 1 stands on their intersection. Here, we give the
description of the conversion algorithm.

Let us specify an integer q, 1 ≤ q ≤ .

Step 1. We set p = 1. In every submatrix , j = 1,
2, …, n, we choose a column with the maximum num-
ber of ones (this column corresponds to the threshold
that recognizes the objects from different classes in the
best way). We mark the chosen column of the subma-
trix  and the rows covered by it in this matrix. If q =
1, then set p = 0 and go to Step 3.

Step 2. In every matrix , j = 1, 2, …, n, we
choose (if possible) a column with the maximum num-
ber of ones in unmarked rows. The chosen column of
the submatrix  and the rows covered by it in this
matrix are marked. If p = 0, then Step 2 is repeated q
times. Otherwise, Step 2 is repeated q – 1 times.

Step 3. We check if the aggregate of the marked col-
umns is a covering of the matrix L. If it is, then the algo-
rithm terminates. Otherwise, we erase all marks in the
rows of the matrices , j = 1, 2, …, n. In every matrix

, j = 1, 2, …, n, we mark the rows with the ordinal
numbers that equal the ordinal numbers of the rows in
the matrix L that are covered by the mentioned aggre-
gate of the marked columns. We set p = 0 and go to
Step 2.

It is obvious that the derived aggregate of the
marked columns is a complete coding covering of the
matrix L. According to this coding covering, a correct
conversion of the learning sample is constructed. The
described procedure is iterated for every admissible
value of q. Among all the obtained correct conversions,
we choose the one that gives the best results in sliding
control.

LG j

D j( )

j 1 … n, ,{ }∈
min

LG j

LG j

LG j

LG j

LG j

LG j
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The described conversion method was compared
with other conversion methods in sliding control. Here,
the algorithm of voting by representative sets was cho-
sen as the recognizing algorithm. This algorithm was
tested for a real medical prediction problem. In the
experiment, the survival rate of patients with osteo-
genic sarcoma during one year after therapy was inves-
tigated. The problem of prediction of the survival rate
of patients using the set of the cytological parameters of
a tumorous tissue sample, which were obtained using
biopsy during the course of treatment, was studied. The
previous investigations revealed that the problem is
very complicated, because not only the state of tumor
cells, but also many other objective factors such as the
immunity and psychophysical state of the patient, the
environment, etc., affect the treatment outcome.

The available sample included information on
78 patients; 25 and 53 of them lived less and more than
a year after a course of treatment, respectively. The
dimension of the feature space is 7. In the initial data,
from six to 38 thresholds correspond to each feature.

The testing results are presented in the table.
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