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Abstract

 

—The metric (quantitative) properties of the set of coverings of an integer matrix are exam-
ined. An asymptotic estimate for the logarithm of the typical number of irredundant 

 

σ

 

-coverings is
obtained in the case when the number of rows in the matrix is not smaller than the number of its columns.
As a consequence, a similar estimate is derived for the number of maximal conjunctions of a Boolean
function of 

 

n

 

 variables with the number of zeros no less than 

 

n

 

.
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The importance of the problem under study is motivated by the necessity of constructing efficient imple-
mentations for discrete (logical) recognition and classification procedures, which require considerable com-
putational costs. A related problem is that of estimating the number of maximal conjunctions of Boolean
functions.
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Let 
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. Recall that a 

 

σ

 

-

 

covering

 

 of 

 

L

 

 is a set

 

 H

 

 of columns in 

 

L

 

 such that the submatrix
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H

 

 of 
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 formed of the columns of 

 

H

 

 does not contain 

 

σ

 

 (see [1, 2]). An 

 

irredundant

 

 

 

σ

 

-

 

covering

 

 of 

 

L

 

 is a set

 

H

 

 of columns that is a covering such that 

 

L

 

H

 

 contains (up to row permutation) a submatrix of the form

where 

 

β

 

p

 

 

 

≠
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p

 

 

 

for 

 

p

 

 = 1, 2, …, 

 

r

 

. Such a submatrix is called a 

 

σ

 

-submatrix.
The concept of an irredundant (

 

0, …, 0

 

)-covering of a Boolean matrix coincides with the well-known
concept of an irreducible covering of a Boolean matrix. Note that a (

 

0, …, 0

 

)-submatrix of a Boolean matrix
is an identity submatrix.

Let 
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be the set of all 
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 be the set of all 

 

σ

 

-submatrices of
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, and 
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 be
the set of all irredundant 
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-coverings of 
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. Furthermore, let

and 
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 denote the cardinality of a set
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.
It was shown in [1, 2] that the asymptotic behavior of 
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coincides with that of 
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for almost all

matrices in 
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, where 

 

α 

 

> 1 and 

 

β 

 

< 1. Moreover, the number of coverings
from 

 

B

 

(

 

L

 

) 

 

is almost always less in order than the number of coverings from 

 

C

 

(

 

L

 

)

 

. Based on these results, an
algorithm was designed in [3] that finds all the irredundant (

 

0, …, 0

 

)-coverings of a Boolean matrix with a
polynomial time delay. This algorithm is a modification of that constructed in [1], which solves the same
problem approximately by a polynomial search for all identity submatrices of the original matrix. A draw-
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back of both algorithms is that they involve repeatedly constructed irreducible coverings. In the case under
consideration, the number of steps in each algorithm almost always (for almost all m × n Boolean matrices)
asymptotically coincides with the number of irredundant (0, …, 0)-coverings as n  ∞. Theoretical and
experimental estimates are obtained for the complexity of the exact and approximate algorithms for other
cases. The algorithms can easily be modified to the case of constructing irredundant coverings of an integer
matrix.

Less thoroughly studied is the opposite case, namely, nα ≤ m ≤ , where α > 1, β < 1, and n  ∞. An
asymptotics of the typical number of submatrices from S(L) was obtained in this case in [4]. Additionally,
in [4], an asymptotics of the typical number of coverings from C(L) was obtained in a virtually general case,

namely, for m ≤  with β < 1. For nα ≤ m ≤ , where α > 1 and β < 1/2, it was established that |S(L)| is
almost always greater in order than |B(L)| as n  ∞.

Let r1 = [  – ] – 1.

Theorem 1. If n ≤ m ≤ , where β < 1/2, then, for almost all matrices L in ,

as n  ∞.
The proof of this theorem is based on Lemma 1–7 given below.

Suppose that  = {L} is the space of elementary events, with every event L occurring with a proba-

bility of 1/ . The expectation of a random variable X(L) defined on  is denoted by MX(L) and its
variance by DX(L).

The proofs of Lemmas 3, 5, and 6 make use of the Chebyshev inequality formulated in Proposition 1,
easy-to-prove Proposition 2, and Proposition 3, which is a straightforward consequence of Proposition 1.

Proposition 1. Let θ > 0 and ∆θ(n) be the fraction of matrices L in  for which |X(L) – MX(L)| ≥ θ.
Then, ∆θ(n) ≤ DX(L)/θ2.

Proposition 2. Let θ > 0 and νθ(n) be the fraction of matrices L in  for which X(L) ≥ θMX(L). Then,
νθ(n) ≤ 1/θ.

Proposition 3. If MX(L)  0 as n  0, then X(L) = 0 for almost all matrices L in .

On , consider the random variables ξr(L) = |Cr(L)| and ηr(L) = |Br(L)|. It is easy to calculate that

Lemma 1 (see [6]). Let

Then,
(i) S(r, t) = 0 for t < r(k – 1);
(ii) S(r, t) ≤ (r + 1)t for t ≥ r(k – 1).
In the case k = 2, Lemma 1 was proved in [6]. Its proof in the general case is entirely similar.
Let r2 = ]  + 3[.

Lemma 2. For all r > r2,
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Proof. Applying Lemma 1, we have

Let at = k–rt[r(k – 1) + 1]t, where t ≥ r(k – 1) and r > r2. Consider

Then, we have

The lemma is proved.
In what follows, the notation an ≤n bn, n  ∞ means that lim(an/bn) ≤ 1 as n  ∞.

Lemma 3. If n ≤ m ≤ , where β < 1, then, for almost all matrices L ∈ ,

as n  ∞.
Proof. By Lemma 2, we have

Note that Mξr – 1(L) = o(Mξr(L)) as n  ∞, where r < r1, m ≤ , and β < 1.
Let

Then, for every r ≥ r1, it holds that kr ≤ Q , and for m ≥ n, we obtain

Consequently, S ≤n (r2 – r1 + 1)Q .

By Proposition 2, the fraction of matrices L for which |B(L)| ≥ S does not exceed .

Therefore, for almost all matrices L in , we have |B(L)| ≤n . Taking into account

 = o( ), we obtain the required assertion.

Lemma 4 (see [5]). If m ≤ , where β < 1/2, then, for almost all matrices L in ,

where δ(n)  0 as n  ∞.
Lemma 4 and the Chebyshev inequality (see Proposition 1) imply the following result.
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Lemma 5. If m ≤ , where β < 1/2, then, for almost all matrices L in ,

where δ(n)  0 as n  ∞.

Lemma 6. Let µr(L) be the number of rank-r coverings of a matrix L ∈  that are not irredundant.

Then, the fraction of matrices satisfying (L) ≥ M (L)  tends to zero as n increases.

Proof. Let us estimate Mµr(L) from above:

Setting r = r1, we obtain

Applying Proposition 2 with θ =  gives the required result.

Lemma 7. If n ≤ m ≤ , where β < 1/2, then, for almost all matrices L in ,

as n  ∞.
Proof. Obviously, |B(L)| ≥ (L) – (L).

Lemmas 5 and 6 imply that

for almost all matrices L ∈ . Thus, we have

Estimating

and taking onto account l  =  yields the required result.

The theorem is an immediate consequence of Lemmas 3 and 7.
Remark. In the proof of Lemma 1, we used the methods proposed in [6] for obtaining asymptotics for

the logarithm of the typical number of maximal conjunctions of a partial Boolean function. The problem
consider in [6] is somewhat more complicated than that solved here. For this reason, the technical construc-
tions used simplified considerably.

The upper bound for  given in Lemma 3 can be derived in a different manner, namely, by esti-
mating the expectation of the number of submatrices in S(L) with the rank no less than r1 and estimating the
expectation of the number of coverings in C(L) with the length shorter than r1 .

Indeed, let ζr(L) = |Sr(L)|, L ∈ . It is easy to calculate that
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On the other hand,

(2)

It follows from (1) and (2) that

By Proposition 2, |B(L)| ≤ θM|B(L)| with θ =  for almost all matrices L in .

Therefore,  ≤ n  + r1, which was to be proved.

The bound obtained in Theorem 1 can be used to estimate the typical length of the reduced disjunctive
normal form (DNF) of a special Boolean function.

Indeed, suppose that F(x1, …, xn) is defined on , take values in {0, 1}, and let  be the set of all
such functions. Define

where x, σ ∈ {0, 1, …, k – 1}.
The concept of a minterm (elementary conjunction) is introduced in the ordinary way. A minterm over

x1, …, xn is an expression of the form  … , where  ∈ {x1, …, xn} for i = 1, 2, …, r and  ≠ 
for t, q ∈ {1, 2, …, r}, t ≠ q. A minterm is equal to 1 if and only if each of its factor is equal to 1.

Let NB denote the truth interval of a minterm B. A minterm B is called admissible for F if NB ∩ AK ≠ ∅
and NB ∩ BK = ∅. A minterm B is called maximal for F if it is admissible and there is no admissible minterm
B' such that NB' ⊃ NB.

Propositions 4 and 5 below are obvious.

Proposition 4. A minterm …  is admissible for F if and only if the set of columns in L indexed by
j1, …, jr is a (σ1, …, σr)-covering.

Proposition 5. A minterm …  is maximal for F if and only if the set of columns in L indexed by
j1, …, jr is an irredundant (σ1, …, σr)-covering.

It is also easy to prove the following.

Proposition 6. If n ≤ m, where m2 = (kn), then almost all matrices in  are matrices with pairwise
different rows when n  ∞.

Denote by l(F) the length of the reduced DNF of F from .

Theorem 1 and Propositions 4–6 imply the following result.

Theorem 2. If n ≤ m ≤ , where β < 1/2, then

for almost all functions F in  as n  ∞.
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