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Abstract

 

—This paper is a survey of the research into discrete analysis of feature descriptions of objects in rec-
ognition and classifications problems of large dimensions. New models of discrete recognition procedures and
new approaches to searching for informative fragments of feature descriptions of objects are described. New
results concerning the metric (quantitative) properties of informative fragments are stated.
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INTRODUCTION

We consider the recognition problem in its standard
setting for the case where the objects are described by
a set of 

 

n

 

 integer-valued features {

 

x

 

1

 

, …, 

 

x

 

n

 

} each of
which can take finitely many admissible values [1].
Suppose that the set 

 

M

 

 of objects under examination
can be represented as a union of subsets (classes) 

 

K

 

1

 

,
…, 

 

K

 

l

 

. There is a finite set {

 

S

 

1

 

, …, 

 

S

 

m

 

} of objects from

 

M

 

 such that it is known to which classes they belong
(this set is a training sample). The training objects are
represented by their descriptions. Given a set of feature
values which describe some object 

 

S

 

 from 

 

M

 

 (generally,
it is not known to which class it belongs), it is required
to determine the class containing this object.

The discrete approach to recognition and classifica-
tion problems is based on a combinatorial analysis of
feature descriptions of objects. Its foundation has been
laid by Yu.I. Zhuravlev, S.V. Yablonskii, and
M.N. Vaintsvaig. The main advantage of the discrete
(logic) recognition procedures is the possibility of
obtaining a result when there is no information about
the distribution functions and the training samples are
small. However, it is often hard to apply the apparatus
and methods of discrete mathematics because of the
purely computational difficulties related to search,
which arise at the stage of determining informative
fragments of object descriptions. As a rule, a fragment
is considered informative if it distinguishes between
objects from different classes. Because of the necessity
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of a large-scale exhaustive search and the initially low
performance of computing facilities, for many years
main efforts were directed towards the development of
a general complexity theory for discrete data analysis in
problems of recognition and synthesis of asymptoti-
cally optimal algorithms for searching for informative
fragments. In this connection, the works of
V.A. Slepyan, V.N. Noskov, E.V. Djukova, and
A.A. Andreev should be mentioned.

Construction of discrete procedures often uses the
apparatus of logic functions, and informative fragments
in feature descriptions of objects are determined by
constructing admissible and maximal conjunctions of
logic functions. These problems are reduced to con-
structing coverings and irredundant coverings, respec-
tively, of special integer matrices.

The notion of an irredundant covering of an integer
matrix plays a fundamental role and generalizes the
notion of an irreducible covering of a Boolean matrix,
which is well known in discrete mathematics. For the
first time, it was introduced in [2] for the purpose of
improving Kora-type algorithms and obtaining related
asymptotic estimates.

In [2, 7], an asymptotically optimal algorithm for
finding irredundant coverings in the case where the
number of rows in the matrix is small in comparison
with the number of columns was constructed. In sub-
stantiating the asymptotic optimality of this algorithm,
asymptotic formulas for the typical values of the num-
ber of irredundant coverings and the length of an irre-
dundant covering were obtained. The technical basis
for these estimates was first developed by Slepyan and
Noskov in studying the metric (quantitative) properties
of sets of irredundant tests of binary tables. The most
complete expositions of the complexity theory for
problems of discrete data analysis and synthesis of
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asymptotically optimal algorithms for searching for
informative fragments are contained in [8, 9].

At present, some new approaches to constructing
discrete recognition procedures have arizen and new
results related to studying the metric properties of sets
of coverings of integer matrices have been obtained.

1. DISCRETE RECOGNITION PROCEDURES 
BASED ON CONSTRUCTING COVERINGS

OF CLASSES

Let 

 

N

 

j

 

 be the set of admissible values of the feature

 

x

 

j

 

, where 

 

j

 

 = 1, 2, …, 

 

n

 

. Suppose that 

 

H

 

 is a set of 

 

r

 

 dif-
ferent features of the form { , …, } and 

 

σ

 

 = (

 

σ

 

1

 

,

…, 

 

σ

 

r

 

), where 

 

σ

 

i

 

 

 

∈

 

  for 

 

i

 

 = 1, 2, …, 

 

r

 

. The 

 

r

 

-tuple set

 

σ

 

 is called an elementary classifier generated by the
features from 

 

H

 

.

Let 

 

S

 

' = (

 

a

 

1

 

, …, 

 

a

 

n

 

) be an object from the training
sample. We denote the fragment ( , …, ) of the
description of the object 

 

S

 

' by (

 

S

 

', 

 

H

 

).

An elementary classifier (

 

σ

 

1

 

, …, 

 

σ

 

r

 

) generated by
the features from 

 

H

 

 can satisfy one of the following
three conditions:

(i) each fragment of the form (

 

S

 

', 

 

K

 

), where 

 

S

 

' 

 

∈

 

 

 

K

 

,
coincides with (

 

σ

 

1

 

, …, 

 

σ

 

r

 

);

(ii) several (not all) fragments of the form (

 

S

 

', 

 

H

 

),
where 

 

S

 

' 

 

∈

 

 

 

K

 

, coincide with (

 

σ

 

1

 

, …, 

 

σ

 

r

 

);

(iii) none of the fragments of the form (

 

S

 

', 

 

H

 

), where

 

S

 

' 

 

∈

 

 

 

K

 

, coincides with (

 

σ

 

1

 

, …, 

 

σ

 

r

 

).

The first case occurs very rarely, which makes it
hardly possible that the sets of feature values to be pro-
cesses have property (i). The fundamental difference in
the informativeness between the remaining two condi-
tions is that condition (ii) characterizes only some sub-
set of the set of training objects from 

 

K

 

, while condition
(iii) characterizes all objects from 

 

K

 

. Therefore, when it
is important to consider the class 

 

K

 

 separately from the
others classes, the sets of feature values satisfying (iii)
seem to be more informative. In this case, it is most nat-
ural to assign an object 

 

S

 

 to a class 

 

K

 

 if neither the
descriptions of all objects from the class 

 

K

 

 nor that of
the object 

 

S

 

 to be recognized contain the given set of
feature values.

We denote the set of all elementary classifiers gen-
erated by sets of features from {

 

x

 

1

 

, …, 

 

x

 

n

 

} by 

 

C

 

. Each
recognition algorithm is determined by some subset 

 

C

 

A

 

of the set 

 

C

 

. To be more precise, for each class 

 

K

 

 

 

∈

 

{

 

K

 

1

 

, …, 

 

K

 

l

 

}, a subset 

 

C

 

A

 

(

 

K

 

) of 

 

C

 

 is constructed, and

 

C

 

A

 

 = (

 

K

 

j

 

).

Consider two objects 

 

S

 

' = ( , , …, ) and 

 

S" =

( , , …, ). We estimate the closeness of the

3

x j1
x jr

N ji
4

a j1
a jr

CA

j 1=
l∪

a1' a2' an'

a1" a2" an"

objects S' and S" with respect to a set of features H =
{ , …, } by the value

The closeness between an object S' and an elemen-
tary classifier σ = (σ1, …, σr) generated by a set of fea-
tures H = { , …, } is estimated by the value

Suppose that K ∈  {K1, …, Kl} and  = {K1, …,
Kl}\K.

A particular model A of a recognition algorithm is
determined by a principle for constructing the set CA

and by an estimate Γ(S, K) of the membership of the
object S in the class K, which is evaluated by voting
over elementary classifiers from CA(K). For instance, it
is assumed that an elementary classifier σ from CA(K)
generated by a set of features H votes for the member-
ship of an object S in the class K if B(σ, S, H) = 0. An
object S is assigned to the class with maximum mem-
bership estimate Γ(S, K) (if there are several such
classes, then the algorithm refuses to recognize the
object).

A fragment (S', H), where S' ∈  K, is called a repre-
sentative set for K if B(S', S", H) = 1 for any training
object S" not belonging to the class K. A fragment (S'
H), where S' ∈  K, is called an irredundant representa-
tive set for K if (i) B(S', S", H) = 1 for any training object
S" from  and (ii) for any set H' ⊂  H,  contains a
training object S" for which B(S', S", H') = 0.

In the classical model of the algorithm of voting
over (irredundant) representative sets, the set CA(K)
consists of all (irredundant) representative sets for K.
Its simplest modification estimates the likelihood that
an object S belongs to a class K by the value

here and in what follows, |N| denotes the cardinality of
the set N.

It is accepted that short representative sets are more
informative; for this reason, in order to improve the
quality of recognition and reduce computational bur-
den, only short representative sets are usually consid-
ered. These may be representative sets of bounded
length or irredundant representative sets.

We use the following notation: , where k ≥ 2, is
the set of all m × n matrices with elements from {0,

1, …, k – 1} and  is the set of all k-ary r-tuples.

x j1
x jr

B S' S'' H, ,( )
0 if a jt

' a jt
" for t 1 2 … r,, , ,= =

1 otherwise.



=

x j1
x jr

B σ S' H, ,( )
0 if a jt

' σt for t 1 2 … r,, , ,= =

1 otherwise.



=

K

1

K K

1

1

Γ1 S K,( ) 1

CA K( )
------------------- 1 B S S' H, ,( )–( ),

S' H,( ) C
A

K( )∈

∑=

5

1

Mmn
k

Ek
r

6 7
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Suppose that L ∈   and σ ∈  . A set H of r dif-
ferent columns of the matrix L is called a σ-covering if
the submatrix LH of L formed by the columns from H
does not contain the row σ. We call a set H of r different
columns of the matrix L an irredundant σ-covering if (i)
the submatrix LH does not contain the row σ = (σ1, …,
σr) and (ii) if p ∈  {1, 2, …, r}, then LH contains at least
one row of the form (σ1, …, σp – 1, βp, σp + 1, …, σr),
where βp ≠ σp .

Note that, if σ = (σ1, …, σr), then a set H of columns
of the matrix L is an irredundant σ-covering if and only
if the following two conditions hold:

(i) LH does not contain the row (σ1, …, σr);

(ii) LH contains a submatrix of form

(with an accuracy up to some rows permuted), where βp

≠ σp for p = 1, 2, …, r. We call such a submatrix a σ-
submatrix.

In particular, an irredundant (0, …, 0)-covering of a
Boolean matrix is an irreducible covering [15].

Let K ∈  {K1, …, Kl}. A training table can be treated
as a pair of matrices L1 and L2, where L1 is the matrix
consisting of the descriptions of the training objects
from the class K and L2 is the matrix consisting of the
descriptions of the remaining training objects. Obvi-
ously, the elementary classifier of form (σ1, …, σr)
determined by a pair (Si , H), where Si ∈  K and H = { ,

…, }, is an (irredundant) representative set for K if
and only if the set of the columns with numbers j1, …,
jr in the matrix L2 is an (irredundant) (σ1, …, σr)-cover-
ing.

Now, consider discrete models based on voting over
σ-coverings of a class, namely, the model of voting
over the coverings of a class and the model of voting
over the antirepresentative sets of a class [10, 12]. The
application of these models somewhat reduces the com-
putational burden if |K| < | | (for example, when the
number of classes is large). Below, we describe these
models.

In the model of voting over the (irredundant) cover-
ings of a class, the set CA(K) consists of the elementary
classifiers generated by (irredundant) coverings of the
matrix L1. The likelihood that an object S belongs to a

Mmn
k Ek

r

8

1

8

1

8

β1 σ2 σ3 … σr 1– σr

σ1 β2 σ3 … σr 1– σr

… … … … … …
σ1 σ2 σ3 … σr 1– βr

8

8

1

x j1

x jr
1

1

9

K

1

1

class K is estimated (in the simplest modification) by
the value

Now, consider the model of voting over the antirep-
resentative sets. The elementary classifier σ generated
by an (irredundant) σ-covering of the class K is an (irre-
dundant) antirepresentative set if it coincides with at
least one fragment of form (S', H), where S' is a training
object from . The likelihood that an object S belongs
to the class K is estimated (in the simplest modification)
by the value

Note that a representative set for a class K is antire-
presentative for . It is easy to show that, at l = 2, both
described models assign the object S to the same class.

The suggested models were tested for real-life prob-
lems of medical prediction. Two problems were consid-
ered, the predicting of survivability of patients with
osteogenic sarcoma during one year after a course of
treatment and predicting of pathomorphosis (the degree
of destruction of cancerous cells after a course of che-
motherapy). The preceding study showed that the first
problem is more difficult. To evaluate the efficiency of
the recognition procedures, the cross-validation
method was used. The efficiency of the classical model
of voting over representative sets was 61% for the sur-
vival problem and 83% for the pathomorphosis prob-
lem, while the efficiency of the algorithm of voting over
coverings of classes for the survival problem was 75%.
To improve the quality of the classical algorithm, the
approach described in the next section was applied. As
a result, the efficiency of this algorithm increased to
75% and 94%, respectively.

2. DETERMINATION OF TYPICAL OBJECTS
IN CLASSES AND CONSTRUCTION OF MOST 

“WEIGHTY” ELEMENTARY CLASSIFIERS

In solving an applied recognition problem, it is
interesting to try to evaluate the efficiency of the con-
structed algorithm in recognizing objects not included
in the training sample. For instance, the well-known
cross-validation method can be used. Unfortunately, for
a number of applied problems, cross-validation does
not always indicate a high efficiency of the algorithms
described in Section 1. Such a situation occurs when
the classes are poorly separated from each other (i.e.,
each class contains many objects whose descriptions
are similar to the descriptions of objects not belonging
to this class). In this case, although the constructed
algorithms correctly recognize the objects which they
“know” (i.e., those used in constructing the algo-

Γ2 S K,( ) 1

CA K( )
------------------- B σ S H, ,( ).

σ C
A

K( )∈

∑=

9

1 1

9

K

Γ3 S K,( ) 1

CA K( )
------------------- B σ D H, ,( ).

σ C
A

K( )∈

∑=

9

K

10

11

11
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rithms), they poorly recognize “new” objects. This sec-
tion describes an approach making it possible to sub-
stantially improve the quality of the recognition algo-
rithms [10–13].

We suggest to partition the training sample into two
subsamples, the first (base) to be used for constructing
the set of representative sets and the second (test) for
evaluating their weights. The sample should be parti-
tioned so that the objects at the interface between
classes be included in the test subsample and all the
remaining (typical) objects, in the base subsample.
Practical experiments on applied problems show that
such a partitioning increases the number of short repre-
sentative sets and, thereby, makes it possible to improve
the quality of the recognition algorithms.

The typical objects can be determined with the use
of the cross-validation method. The training objects
correctly recognized in a cross-validation test are
included in the base subsample, and all the remaining
objects are included in the test subsample. This
approach is fairly effective, but it is rather time-con-
suming when applied to problems of large dimensions.

The computational burden can be reduced by the
method of determination of typical object suggested in
[10–13]; it is based on evaluating the informativeness
of separate feature values. The method is as follows.

Suppose that S' ∈  Ki , i ∈  {1, 2, …, l}, and j ∈  {1,
2, …, n}. We set

and

The values (S') and (S') characterize the
proximity of the object S' to its class and to the other
classes, respectively. We call

the weight of the value of the feature xj for the object S'.
Suppose that a real number µ such that –1 ≤ µ ≤ 1,

the threshold minimal informativeness of feature val-
ues, is given. We say that the value of a feature xj for S'
is typical if µij(S') > µ.

Let p be an integer such that 1 ≤ p ≤ n. We consider
an object S' typical for a class Ki with respect to the
threshold p if the inequality µij(S') > µ holds for at least
p features.

Note that the thresholds µ and p can be chosen from
heuristic considerations; e.g., we can set µ = 0 and p =

12

13

13

13

13

Ki Kq\Ki,
q 1=

l

∪=

µij
1( ) S'( ) 1

Ki

----- 1 B S' S'' x j{ }, ,( )–( ),
S'' Ki∈
∑=

µij
2( ) S'( ) 1

Ki

----- 1 B S' S'' x j{ }, ,( )–( ).
S'' Ki∈

∑=

µij
1( ) µij

2( )

µij S'( ) µij
1( ) µij

2( )–=

[n/2]. Then, the value of a feature xj for S' is typical for
a class Ki if it is encountered more frequently for
objects from Ki than for objects from , and an object
S' is typical for Ki if at least half feature values in its
description are typical for Ki .

Suppose that the training sample is partitioned into
base and test subsamples by one of the methods
described above. For the base sample, we construct a
set of representative sets. To each of the constructed
representative sets, we assign a weight computed on the
test subsample.

Let ω be the representative set of a class K ∈  {K1, …
Kl} generated by a pair (S', H), where S' is an object
from the base sample; by δ(K, ω), we denote the num-
ber of objects in the test sample for which the represen-
tative tuple ω votes “correctly” and by δ( , ω), the
number of objects in the test sample for which it votes
“incorrectly.” Let us define a function ν(S', H) by one of
the following formulas:

(i) ν(S', H) = δ(K, ω);

(ii) ν(S', H) = 

(iii) ν(S', H) = .

The membership of an object S in a class K is esti-
mated by the value

We define the informative weight of a feature xj as

3. THE METRIC PROPERTIES
OF THE SET OF COVERINGS

Traditionally, analyzing an improvement in the
speed of algorithms based on construction of coverings
of Boolean and integer matrices involves evaluating
asymptotic estimates of the typical values of the most
important quantitative characteristics of this set. Such
characteristics are the number of coverings and the
length of a covering. Technically, evaluating these esti-
mates is very difficult. Of most importance and com-

Ki

12

13

4K

δ K ω,( ) δ K ω,( )–

if δ K ω,( ) δ K ω,( ),>

0 if δ K ω,( ) δ K ω,( );<





1 δ K ω,( )+
1 δ K ω,( )+
----------------------------

Γ4 S K,( ) 1

CA K( )
-------------------=

× ν S' H,( ) 1 B S S' H, ,( )–( ),

S' H,( ) C
A

K( )∈

∑

I j

ν S' H,( )

S' H,( ) C
A

K( )∈ x j H∈,

∑

ν S' H,( )

S' H,( ) C
A∈

∑
----------------------------------------------------.=
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plexity is analyzing the metric properties of irredundant
coverings.

We use the following notation:

Ψ0 is the interval (logkmn, n),

Ψ1 is the interval

logkmn  – logklogkmn – logklogklogkn, and

logkmn – logklogkmn + logklogklogkn ;

an ≈ bn means that lim(an/bn) = 1 as n  ∞.

Suppose that L ∈  ; σ ∈  ; C(L, σ) is the set of
all pairs of form (H, σ), where H is a σ-covering of the
matrix L; B(L, σ) is the set of all pairs of form (H, σ),
where H is an irredundant σ-covering of the matrix L;
and S(L, σ) is the set of all σ-submatrices of the matrix
L. We set

and

Earlier, in [2, 7–9], the case was studied where the
number of rows in a matrix is by an order of magnitude

smaller that the numbers of columns, i.e., mα ≤ n ≤ ,
where σ > 1 and β > 1. It was shown that, in this case,
the value |B(L)| almost always (for almost all matrices

from ) asymptotically coincides with |S(L)| as
n   ∞ and is by an order of magnitude smaller than
the number of coverings. On the basis of this observa-
tion, an asymptotically optimal algorithm for searching
for coverings from B(L) was constructed.

In [11], the completely opposite case where nα ≤

m ≤  for α > 1 and β < 1 was considered and asymp-
totic expressions for the typical values of the number of
σ-submatrices and the order of a σ-submatrix were
obtained. These results are contained in Theorem 1.

Theorem 1. If nα ≤ m ≤ , where α > 1 and β < 1,
then

as n  ∞ for almost all matrices L from , and the
orders of almost all submatrices from S(L) belong to the
interval Ψ1.

1

1
2
---

 1
2
---

1
2
--- 1

2
--- 



Mmn
k Ek

r

1

C L( ) = C L σ,( ), B L( )
σ Ek

r∈
∪

r 1=

n

∪  = B L σ,( ),
σ Ek

r∈
∪

r 1=

n

∪

S L( ) = S L σ,( ).
σ Ek

r∈
∪

r 1=

n

∪

km
β

Mmn
k

kn
β

8

kn
β

S L( ) Cn
r Cm

r r! k 1–( )rkr k
2– ,

r Ψ1∈
∑≈

Mmn
k

It was shown that almost all matrices have no σ-sub-
matrices of orders larger than logkmn. Let

The following theorem is valid.

Theorem 2. For almost all matrices L ∈  ,

as n  ∞.
In addition, for a practically general case, asymp-

totic expressions for the typical values of |C(L)| and of
the length of a σ-covering were obtained; namely, the
following theorem was proved.

Theorem 3. If m ≤ , where β < 1, then

as n  ∞ for almost all matrices L from , and the
lengths of almost all coverings from C(L) belong to the
interval Ψ0.

It was also shown that, at r ≤ logkm – logk(logkm ×
lnkn), almost all matrices have no coverings of length r.
We set r0 = logkm – logk(logkm × lnkn) and

Theorem 4. For almost all matrices L ∈  ,

as n  ∞.
It was shown by comparing the found estimates that,

if nα ≤ m ≤ , where α > 1 and β < 1 / 2, then the num-
ber of σ-submatrices is almost always by an order of
magnitude larger than the number of irredundant
σ-coverings.

Theorem 5. If nα ≤ m ≤ , where α > 1 and β <
1/2, then |S(L)|/|B(L)|  ∞ as n  ∞ for almost all

matrices L from .

4. THE TAXONOMY PROBLEM
AND IRREDUNDANT COVERINGS

OF INTEGER MATRICES

In [16], application of cluster analysis methods to
processing data sets where it is difficult to define dis-
tance functions was considered and an approach to
solving taxonomy problems with integer data by con-
structing σ-coverings of classes was developed. This
approach is based on the following considerations.

S1 L( ) S L σ,( ),
σ Ek

r∈
∪

r mnklog≤

n

∪=

Mmn
k

S1 L( ) 0.=

kn
β

C L( ) Cn
r kr

r Ψ0∈

n

∑≈

Mmn
k

C1 L( ) C L σ,( )
σ Ek

r∈
∪

r r0≤
∪=

Mmn
k

C1 L( ) 0.=

kn
β

1

kn
β

Mmn
k

1
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Consider the situation where it is required to deter-
mine the degree of membership of an object S in a
group of objects M. If the description of the object S
contains a tuple of feature values which is not contained
in the descriptions of the objects from M, then we can
say that uniting S with M destroys the intrinsic structure
of the set M. Considering various combinations of fea-
ture values not contained in the descriptions of objects
from M, we can estimate the proximity of the object S
to the set M. Thus, in determining the degree of prox-
imity of an object to a set M, the informative sets of fea-
ture values are those missing in the descriptions of all
objects from the class M.

In [16], an algorithm based on these considerations
was constructed; in many cases, it significantly
improved clustering in model and real-life problems in
comparison with well-known algorithms, such as the
algorithms based on the nearest and farthest neighbor
principles and on the choice of a central element, which
use the Hamming distance as a distance function.

In the constructed clustering algorithm, estimating
the proximity of an object S to a set M is reduced to
searching for irredundant coverings of the integer
matrix formed from the feature descriptions of the
objects from M. The problem of searching for irredun-
dant coverings of an integer matrix is solved on the
basis of constructing irreducible coverings of a Bool-
ean matrix obtained in a special way from the initial
matrix.

CONCLUSION

This paper is concerned with studying discrete rec-
ognition and classification procedures. The most
important stage in construction of these procedures is
searching for informative fragments of feature descrip-
tions of objects. The paper suggests new approaches to
searching for such fragments.

(i) General principles of construction of discrete
(logic) recognition procedures are considered and new
models are described that make it possible to extend the
domain of applicability of discrete analysis methods to
recognition problems.

(ii) An approach to improving the efficiency of rec-
ognition algorithms based on determining typical train-
ing objects in every class is described.

(iii) Results related to the development of methods
for solving problems of cluster analysis with integer
data obtained by constructing coverings of integer
matrices are presented.
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