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Abstract

 

—Discrete, or logic, recognition procedures are described. For the basic models, new estimates of
computational complexity are obtained. An efficient algorithm for finding irreducible coverings of a Boolean
matrix (searching for maximal conjunctions of a monotone Boolean function specified by a conjunctive normal
form) is constructed.
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INTRODUCTION

Very generally, the recognition problem is as fol-
lows. Some set of objects 

 

M

 

 is considered. It is known
that 

 

M

 

 can be represented as the union of 

 

l

 

 subsets

 

K

 

1

 

, …, 

 

K

 

l

 

, called classes. The objects from 

 

M

 

 are
described by some system of features {

 

x

 

1

 

, …, 

 

x

 

n

 

}.
There is a finite set 

 

S

 

1

 

, …, 

 

S

 

m

 

 of objects from 

 

M

 

 such
that it is known to which classes they belong. These are
precedents, or training objects. Suppose that their
descriptions are 

 

S

 

1

 

 = (

 

a

 

11

 

, …, 

 

a

 

1

 

n

 

), 

 

S

 

2

 

 = (

 

a

 

21

 

, …, 

 

a

 

2

 

n

 

), …,

 

S

 

m

 

 = (

 

a

 

m

 

1

 

, …, 

 

a

 

mn

 

); here, 

 

a

 

ij

 

 is the value of the feature 

 

x

 

j

 

for the object 

 

S

 

i

 

. Given a set of feature values which
describes some object from 

 

M

 

 (generally, it is not
known to which class it belongs), it is required to deter-
mine the class containing this object.

Usually, in real-life recognition problems, the initial
descriptions of objects contain all characteristics or
parameters that can be observed or measured. As a
result, objects are described by dozens, or even hun-
dreds, of variables. Such a situation is typical, in partic-
ular, of problems of medical diagnosis, geological,
technical, and sociological prediction, etc. Initially, this
direction was believed to be a part of mathematical sta-
tistics. The analysis of complex descriptions by statisti-
cal methods involved taking additional probability
hypotheses for granted, i.e., imposing fairly strong
requirements on the spaces of objects under examina-
tion. In addition, the obtaining of reliable results on the
basis of the statistical approach required very large
arrays of precedents, i.e., sufficiently representative
training samples. It turned out that employing large sets
of precedents usually involved expensive and time con-
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suming processing and was sometimes entirely impos-
sible as, for example, in predicting rare metals. There
were no adequate mathematical methods for solving
similar problems, and they had to be created on the
basis of completely new ideas. One of the approaches,
which is the subject matter of this paper, consists in a
combinatorial analysis of feature descriptions of
objects. Such an analysis is aimed at determining the
most informative subdescriptions (or fragments of
descriptions) of training objects. For instance, a subde-
scription is informative if it makes it possible to distin-
guish a given object from all objects not belonging to
the same class as the object under consideration.

Searching for informative fragments is based on the
apparatus of discrete mathematics, including Boolean
algebra, the theory of DNFs, and the theory of cover-
ings of Boolean and integer matrices. Pioneering work
was done by Yu.I. Zhuravlev. In one of the first papers
on this topic [2], the problem of predicting gold-bear-
ing deposits was considered and a recognizing algo-
rithm was constructed with the use of the notion of test,
which is well known in discrete mathematics. This
notion was introduced by S.V. Yablonskii, who applied
it to the theory of control systems [14]. In control prob-
lems, a test is a set of tuples of values of variables that
makes it possible to distinguish between proper and
improper functioning of a system and find possible fail-
ures.

The mentioned paper by Dmitriev, Zhuravlev, and
Krendelev and papers by Vaintsvaig and Bongard,
where the Kora recognizing algorithm was described,
have initiated extensive application of discrete analysis
methods to problems of recognition, classification, and
forecasting. A whole class of complex heuristics called
discrete, or logic, recognition procedures emerged
(these heuristics can be constructed with the use of the
apparatus of logic functions, as we shall demonstrate
later on).

Thus, the application of the apparatus and methods
of discrete mathematics to recognition problems has a
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number of advantages, the most important of which is
the possibility of obtaining a result when there is no
information about the distribution functions and when
the training samples are small. However, the applica-
tion of the discrete approach often involves purely com-
putational difficulties related to searching, which arise
at the stage of determining informative fragments of
object descriptions. Because of the necessity of a large-
scale exhaustive search and the initially low perfor-
mance of computing facilities, the main efforts during
many years were directed towards the development of a
general complexity theory for discrete data analysis in
problems of recognition and synthesis of asymptoti-
cally optimal algorithms [3–7].

In this paper, new estimates of computational com-
plexity of discrete (logic) recognition procedures are
obtained.

For simplicity, consider the case of binary data. Sup-
pose that the objects are described by a system of fea-
tures {

 

x

 

1

 

, …, 

 

x

 

n

 

}, where 

 

x

 

j

 

 

 

∈

 

 {0, 1} for 

 

j

 

 = 1, 2, …, 

 

n

 

,
and let 

 

f

 

K

 

(

 

x

 

1

 

, …, 

 

x

 

n

 

) be a partial Boolean function taking
the value 1 at the tuples that are descriptions of training
objects from the class 

 

K

 

 and 0 at the tuples describing
the remaining training objects. By an elementary clas-
sifier, we understand an arbitrary fragment of the
description of a training object. The elementary classi-
fiers determine special conjunction functions 

 

f

 

K

 

, and
each recognizing algorithm 

 

A

 

 is determined by some
set of such conjunctions. In the most typical cases, e.g.,
in constructing algorithms of voting over representative
sets (Kora-type algorithms), there arise problems of
determining admissible and maximal conjunctions of
the function 

 

f

 

K

 

. Of most computational complexity is
the search for maximal conjunctions.

In practice, constructions based on searching for
irreducible coverings of Boolean matrices are used
more frequently. As is known, the problem of searching
for irreducible coverings can be stated as the problem
of searching for maximal conjunctions of a monotone
Boolean function specified by a conjunctive normal
form (CNF). In this paper, we construct a computation-
ally efficient algorithm for solving these problems (an
algorithm with polynomial time delay). A shortcoming
of the algorithm is that it involves repeated steps. We
specify conditions under which this shortcoming does
not substantially affect the speed of the algorithm. This
algorithm is a modification of an algorithm suggested
earlier by the author which was used to efficiently solve
the same problem under the same conditions with an
asymptotic accuracy.

1. GENERAL PRINCIPLES OF CONSTRUCTION 
OF DISCRETE RECOGNITION PROCEDURES

We assume that the initial descriptions of objects are
given in the form of tuples of values of features with
integer ranges (preferably, not too large). In addition,

we assume that objects from different classes have dif-
ferent descriptions.

Let 

 

H

 

 = { , …, } be a set of 

 

r

 

 different features,
and let 

 

S

 

 = (

 

a

 

1

 

, …, 

 

a

 

n

 

) be an object from 

 

M

 

; here, 

 

a

 

j

 

 is
the value of the feature 

 

x

 

j

 

 for 

 

j

 

 = 1, 2, …, 

 

n

 

.

The set of features 

 

H

 

 determines a fragment ( ,

…, ) in the description of the object 

 

S

 

. If 

 

S

 

 

 

∈

 

 {

 

S

 

1

 

, …,

 

S

 

m

 

}, we call the fragment ( , …, ) an 

 

elementary
classifier

 

 and denote it by (

 

S

 

, 

 

H

 

).
We use the following notation: 

 

N

 

 is the set of all ele-
mentary classifiers and 

 

N

 

(

 

K

 

), where 

 

K

 

 

 

∈

 

 {

 

K

 

1

 

, …, 

 

K

 

l

 

},
is the set of all elementary classifiers from 

 

N

 

 generated
by training objects from the class 

 

K

 

.

Suppose that two objects 

 

S

 

' = ( , …, ) and 

 

S

 

" =

( , …, ) from 

 

M

 

 are given. We estimate the close-
ness of the objects 

 

S

 

' and 

 

S

 

" with respect to a feature set

 

H

 

 = { , …, } by the value

Thus, the objects 

 

S

 

' and 

 

S

 

'' are close to each other
with respect to the feature set 

 

H

 

 (i.e., 

 

B

 

(

 

S

 

', 

 

S

 

'') = 1) if
and only if the elementary classifiers (

 

S

 

', 

 

H

 

) and (

 

S

 

'', 

 

H

 

)
coincide.

Let us describe the general scheme of the recogni-
tion algorithm 

 

A

 

.
At the first stage (training), for each class 

 

K

 

, a set of
elementary classifiers with given properties, i.e., a sub-
set 

 

NA(K) of N(K), is constructed. An elementary clas-
sifier is considered informative if and only if it belongs
to one of the sets NA(K1), …, NA(Kl).

One of the most typical examples is the models of
algorithms of voting over representative samples
(Kora-type algorithms).

Definition. An elementary classifier (S, H) from
N(K) is called a representative sample (also referred to
as a representative descriptor or representative set) for
K if B(S, S', H) = 0 for any training object S' ∉  K (i.e.,
the elementary classifiers (S, H) and (S', H) do not coin-
cide).

Thus, a representative sample for K is a fragment of
the description of some training object from K which
makes it possible to distinguish this object from any
other training object not included in K.

In models with representative samples, the set NA(K)
is formed by representative samples for K. Short repre-
sentative samples are considered more informative. For
this reason, in such models, only representative sam-
ples whose lengths do not exceed a certain preset
threshold, rather than all of them, are usually con-
structed.

x j1
x jr

a ji

a jr

a j1
a jr

a1' an'

a1" an"

x j1
x jr

B S' S'' H, ,( )
1 if a jt

' a jt
" for t 1 2 … r, , ,= =

0 otherwise.



=
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Suppose that H = { , …, } and H(t) = { , …,

, , …, } for t ∈  {1, 2, …, r}.

Definition. A representative sample (S, H) for K is
called irredundant if, for any t ∈  {1, 2, …, r}, the ele-
mentary classifier (S, H(t)) is not a representative sample
for K.

For a representative sample, the property of being
irredundant means that this sample is irreducible; i.e., it
loses the ability to distinguish the object that has gener-
ated it from some objects from other classes under con-
traction. The irredundant representative samples can be
taken as NA(K).

An algorithm with representative samples was
described for the first time in [1].

Definition. A set of features H is called a test if, for
any K ∈  {K1, …, Kl} and any S ∈  K, the elementary
classifier (S, H) is a representative sample for K.

Obviously, a set of features { , …, } is a test if,
for any two training objects Si and Sp from different
classes, we can find a t ∈  {1, 2, …, r} such that B(Si ,
Sp , {xt}) = 0. In other words, a test is a set of features
making it possible to correctly classify the training
material.

Definition. A test is called irredundant if none of its
proper subsets is a test.

As NA(K), we can take the subset of N(K) generated
by tests. As in the case of representative samples, only
tests of bounded length or only irredundant tests should
be taken.

The first model of a test algorithm is described in
[2].

Thus, at the first (training) stage, we construct frag-
ments of descriptions of training objects that are infor-
mative for the algorithm under consideration; i.e., we
define the set NA = NA(K1) ∪  … ∪  NA(Kl). After NA is
defined, a voting procedure is implemented. In the sim-
plest modification of the algorithm, it is assumed that an
elementary classifier (S', H) from NA(K) votes for the
membership of an object S in the class K if B(S', S, H) = 1,
i.e., if the corresponding fragments of the descriptions
of the objects S and S' coincide.

In the simplest modification, the number Γ(S, Kj) of
“votes” cast by pairs from NA(Kj) for the membership
of the object S in the class Kj is evaluated by the formula

where mj is the number of training objects from the
class Kj; Γ(S, Kj) serves as a criterion for the member-
ship of S in the class Kj .

The estimates Γ(S, K1), …, Γ(S, Kl) are calculated. If

x j1
x jr

x j1

x jt 1–
x jt 1+

x jr

x j1
x jr

Γ S K j,( ) 1
m j

------ B S S' H, ,( ),
S' H,( ) NA K j( )∈

∑=

Γ S Kt,( ) Γ S K j,( )
1 j l≤ ≤
max=

and Γ(S, Kt) ≠ Γ(S, Ku) for u ≠ t, then the algorithm A
assigns the object S to the class Kt . If

then the algorithm A refuses to recognize the object S.
The quality of a recognizing algorithm A is often

evaluated with the use of a cross-validation test, which
is as follows. For each i from {1, 2, …, m}, the esti-
mates Γ(Si , Kj), where j = 1, 2, …, l, are evaluated on
the training subsample {S1, …, Sm}\{Si}. Let q be the
number of correctly recognized objects among all Si

with i = 1, 2, …, m. Then, the quality of the algorithm
A is estimated by the functional ϕst(A) = q/m.

For large-scale problems, the described procedure
requires substantial computational efforts. In the case
where A is an algorithm of voting over representative
samples, there is a method for fast computation of the
estimates Γ(Si , Kj) (i = 1, 2, …, m, j = 1, 2, …, l) in the
cross-validation procedure [17]. This method makes it
possible to reduce computation time by approximately
m times.

The quality of an algorithm A can also be evaluated
by an independent test with the use of a set of t objects
such that they are not included in the training sample
but it is known to which classes they belong. Such a set
of objects is called a test sample. If q is the number of
correctly recognized objects from a test sample, then
the quality of the algorithm is estimated by the func-
tional ϕtest(A) = q/(m + t).

In [9, 11, 17], theoretical and experimental results
concerning the construction of effective (in the sense of
quality) recognition algorithms based on the notion of
a representative sample are given.

Models used in practice are more complex: they
involve additional parameters characterizing the repre-
sentativeness (typicality) of training objects and their
subdescriptions with respect to the classes containing
them and the informativeness of features.

In models with representative samples, most
“weighty” representative samples are selected; these
may be samples of values taken by given features for a
sufficiently large number of objects from the class
under consideration [6, 9, 11, 16]. Models with almost
representative samples are also used. In these models, a
classifier from N(K) is considered informative for the
class K if, for a given set of features, it is encountered
sufficiently often in descriptions of objects from this
class and sufficiently rarely in descriptions of objects
from other classes.

In test models, speed is often increased by applying
stochastic algorithms, where constructing the set of all
irredundant tests is replaced by constructing a suffi-
ciently representative random sample of this set. In this
case, the estimates Γ(S, Kj), where j ∈  {1, 2, …, l}, are
calculated approximately and the error possibly
involved in such an approximation is estimated [4, 12].

Γ S Kt,( ) Γ S Ku,( ) Γ S K j,( ),
1 j l≤ ≤
max= =
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In [8, 9, 17], a number of new discrete heuristic pro-
cedures are suggested; they assume a sample of admis-
sible feature values to be informative for a class K if it
is missing from the descriptions of all training objects
from the class K.

The models under consideration can be modified for
the case of real-valued data [13]. For each feature xj ,
where j ∈  {1, 2, …, n}, a real-valued parameter Ej char-
acterizing the precision of the measurement of the fea-
ture xj is specified. In the simplest modification, the
value B(S', BS'', H) is defined as follows. For S' =
( ,  …, ), S'' = ( , …, ), and H = { , …, },

we set

Another approach to processing real-valued data
(suggested by Zhuravlev) is to recode the initial infor-
mation into integer-valued data from the very begin-
ning (models using this approach are called models
with recoding).

Remark. The described scheme for constructing a
recognition algorithm gives a general impression of the
structure of estimation-type models (or algorithms of
voting over support sets) [10]. Historically, the first
models of this type were test models (to be more pre-
cise, algorithms of voting over sets of irredundant
tests). Test algorithms required too much computations.
A theoretical examination of the statistical properties of
irredundant tests showed that irredundant tests are
almost always of approximately equal lengths. Gener-
ally, this length depends on the relation between the
parameters m and n. For instance, if the data are binary
(l = 2) and (m1m2)α ≤ n, where α > 1, n  ∞, then
almost all irredundant tests have lengths of order
log(m1m2n) for almost all tables. This observation has
served as one of the substantiations for constructing
estimation algorithms for which the role of NA(K) is
played by the set of all possible elementary classifiers
(S, H) from N(K), where H has fixed cardinality r. The
value of r can be determined from a preliminary analy-
sis of the training sample. The model is largely aimed
at processing real-valued data. For this reason, parame-
ters Ej and Pj , where j ∈  {1, 2, …, n}, characterizing,
respectively, the precision of measurement and the
informativeness of each feature xj and parameters γ(S'),
where S' ∈  {S1, …, Sm}, characterizing the representa-
tiveness (typicality) of training objects with respect to
their classes, are specified. For this model, there is an
effective formula for evaluating the estimates Γ(S, Kj)
( j ∈  {1, 2, …, l}) [10, 13].

a1' an' a1" an" x j1
x jr

B S' S'' H, ,( )

=  
1 if a jt

' a jt
"– E jt

for t≤ 1 2 … r, , ,=

0 otherwise.



2. CONSTRUCTION OF ELEMENTARY 
CLASSIFIERS ON THE BASIS 

OF A TRANSFORMATION OF NORMAL FORMS 
OF LOGIC FUNCTIONS

Construction of discrete recognition procedures
often uses the apparatus of logic functions.

All notions that are used but not defined below can
be found in [15].

Let fK(x1, …, xn) be a partial (not everywhere
defined) two-valued function which assigns the value 1
to the n-tuples that are descriptions of objects from the
class K and 0 to the n-tuples describing the remaining
training objects; i.e., fK is the characteristic function of
the class K. Let us show that the elementary classifiers
generated by pairs from N(K) correspond to special
conjunctions of the function fK and, therefore, each rec-
ognizing algorithm corresponds to some set of such
conjunctions (each algorithm is based on constructing a
set of such conjunctions). For simplicity, we consider
the case where the objects are described by binary fea-
tures.

Let En be a family of n-tuples of the form (α1, …,
αn), where αi ∈  {0, 1] for i = 1, 2, …, n, and let AK and
BK be the families of n-tuples from En at which the func-
tion fK takes the values 1 and 0, respectively. Suppose that
B is an elementary conjunction (EC) over the variables
x1, …, xn and NB is the truth domain of the EC B.

Let us introduce some definitions.
Definition. EC B is called almost admissible for fK

if NB ∩ AK ≠ ∅ .
The following statement is obvious.

Statement 1. EC …  is almost admissible for
fK if and only if (σ1, …, σr) is an elementary classifier
for K generated by the set of features { , …, }.

Thus, each almost admissible conjunction B of the
function fK corresponds to a set of elementary classifi-
ers from N(K). Their number thereof equals |NB ∩ AK|.

Definition. EC B is called admissible for fK if NB ∩
AK ≠ ∅  and NB ∩ BK = ∅ .

The following statement is obvious.

Statement 2. EC , …,  is admissible for fK if
and only if (σ1, …, σr) is a representative sample for K
generated by the set of features { , …, }.

Definition. EC B is called irreducible for fK if there
exists no EC B' such that NB' ⊂  NB and NB' ∩ BK = NB ∩
BK.

EC B is irreducible if it is irredundant in a certain
sense. Under the contraction of such a conjunction, the
intersection of its truth domain NB with the zero set of
the function fK increases. In particular, if B is an irre-
ducible admissible conjunction, then it ceases to be
admissible.

x j1

σ1 x jr

σr

x j1
x jr

x j1

σ1 x jr

σr

x j1
x jr



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 13      No. 3      2003

DISCRETE (LOGIC) RECOGNITION PROCEDURES 421

Definition. EC B is called maximal for fK if it is
admissible and there exists no admissible conjunction
B' such that NB' ⊃  NB.

The definitions given above imply that an EC is
maximal for fK if and only if it is admissible and irre-
ducible.

The following two statements are obvious.

Statement 3. A set of features { , …, } gener-
ates an irredundant representative sample for K of form

(σ1, …, σr) if and only if the conjunction …  is
maximal for fK.

Statement 4. A set of features { , …, } is a test

if and only if, for each function  with t ∈  {1, 2, …,

l}, all almost admissible conjunctions of form , …,

 are admissible.

Remark. The definitions of almost admissible,
admissible, irreducible, and maximal conjunctions of a
partial Boolean function can be completely transferred
to the case where the Boolean function fK is everywhere
defined, i.e., AK = En\BK.

Thus, constructing recognition algorithms with the
use of the apparatus of logic functions involves con-
structing almost admissible, admissible, and maximal
conjunctions of partial Boolean functions. Most diffi-
cult is the search for maximal conjunctions. One of the
best known methods for constructing maximal con-
junctions of partial Boolean functions is as follows.

Let us consider an everywhere defined Boolean
function FK(x1, …, xn) which coincides with fK on the
set of 0 and 1 values; at the remaining n-tuples from En,
FK(x1, …, xn) equals 1. The specification of the zero set
of an everywhere defined Boolean function is equiva-
lent to the specification of the perfect CNF of this func-
tion. Let BK consist of n-tuples (β11, …, β1n), (β21, …,
β2n), …, (βu1, …, βun). Then, obviously, the CNF of the
function FK is D1 & … & Du , where

Di = , i = 1, 2, …, u.

Statements 5 and 6, stated below, are easy to prove.
Statement 5. EC B is admissible for FK if and only

if each disjunction Di , where i ∈  {1, 2, …, u}, contains
at least one factor from B.

Statement 6. EC B of rank r is irreducible for FK if
and only if the CNF D1 & … & Du contains r disjunc-
tions , …,  such that each of them has precisely
one factor from B and, if r > 1, p, q ∈  {i1, …, ir}, and
p ≠ q, then the disjunctions Dp and Dq contain different
factors from B.

Statement 5 and 6 are valid for arbitrary (not neces-
sarily perfect) CNFs.

x j1
x jr

x j1

σ1 x jr

σr

x j1
x jr

f Kt

x j1

σ1

x jr

σr

x1
βi1 … xn

βin∨ ∨

Di1
Dir

Statement 5 implies that, by multiplying the logic
parentheses and simplifying the resulting DNF with the
use of the identities x  = 0, xx = x, and x ∨  x = x, we
obtain a DNF consisting of all admissible conjunctions
of the function FK . Let us now remove the admissible
conjunctions not being irreducible by using the identity
x ∨  xx' = x. We obtain a DNF consisting of all maximal
conjunctions of the function FK (or the reduced DNF).
The set of maximal conjunctions for fK is obtained by
selecting the conjunctions admissible for fK in the set of
all maximal conjunctions for FK.

Of most interest in the discrete approach is the case
where the number of features is substantially larger
than the number of objects. In this case, the number of
parentheses is few in comparison with the number of
variables. It can be shown that, almost always (i.e., for
almost all CNFs of the form under consideration), the
number of admissible conjunctions is an order larger than
the number of maximal conjunctions when n  ∞.
Therefore, the algorithm for constructing maximal con-
junctions described above is not efficient. Theoretical
and experimental studies show that, in the case under
consideration, it is more expedient to start with con-
structing irreducible conjunctions of the function FK

and, then, verify the admissibility of each of them. In
[5, 6], it is proved that, if u ≤ n1 – ε, where ε > 0, then the
number of irreducible conjunctions almost always (for
almost all CNFs of the form under consideration)
asymptotically coincides with the number of maximal
conjunctions of the function FK as n  ∞. On the
basis of this observation, in the same papers, an algo-
rithm for searching for maximal conjunctions of the
function FK, which is asymptotically optimal in a cer-
tain sense with respect to computational complexity,
was constructed. The initial problem of constructing all
maximal conjunctions of the function FK was replaced
by the simpler problem of constructing all irreducible
conjunctions of the function FK; i.e., the problem was
solved approximately. The complexity of the approxi-
mated solution was estimated by the number of con-
junctive multiplications. For the case where u ≤ n1 – ε

with ε > 0, an algorithm for searching for all irreducible
conjunctions of the function FK was suggested; the
number of conjunctive multiplications in this algorithm
almost always asymptotically coincides as n  ∞
with the number of maximal conjunctions of the func-
tion FK. In this algorithm, one conjunctive multiplica-
tion requires searching through no more than O(un)
variables in the given CNF.

Thus, it was shown that, if the number u of zeros of
the function FK is sufficiently small in comparison with
the number n of variables, then it is almost always pos-
sible to construct a DNF that contains all maximal con-
junctions of the function FK and is of almost the same
complexity (length) as the required DNF by performing
a minimum (in a certain sense) number of “&” opera-
tions.

x
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In [5–7], it was shown that these results were also
valid for the more general case of an arbitrary (not nec-
essarily perfect) initial CNF specifying a two-valued
function FK defined on the set of k-ary n-tuples, where
k ≥ 2. In [5–7], the case where the initial CNF realized
a monotone Boolean function, i.e., contained no nega-
tions of variables, was distinguished (this case is of
most practical importance).

3. CONSTRUCTION OF ELEMENTARY 
CLASSIFIERS ON THE BASIS OF A SEARCH 
FOR COVERINGS OF BOOLEAN MATRICES
Implementations of algorithms for searching for

(irredundant) representative sets and (irredundant) tests
often use constructions based on a search for irreduc-
ible coverings of Boolean matrices.

Let L be a Boolean matrix.
Definition. A set H of columns of the matrix L is

called a covering if, for each row of the matrix L, there
is at least one column from H such that the element in
their intersection is 1.

Definition. A covering is called irreducible (irre-
dundant) if none of its proper subsets is a covering.

Irreducible coverings are usually constructed with
the use of the following criterion. A set H of columns of
the matrix L is an irreducible covering if and only if (i)
the submatrix LH of L formed by the columns from the
set H contains no rows of the form (0, 0, …, 0) and (ii)
LH contains all rows (1, 0, …, 0), (0, 1, …, 0), …, (0,
0, …, 1); i.e., LH contains the identity submatrix.

How does the problem of constructing coverings
and irreducible coverings arise in constructing (irre-
dundant) tests and (irredundant) representative sets? To
find the required set of elementary classifiers, a special
Boolean matrix is constructed. Let us denote it by L*.
Each row of this matrix is formed as a result of compar-
ing a pair of objects from different classes. The jth ele-
ment of the row is 1 if the descriptions of the objects
being compared differ in the jth feature and 0 other-
wise. Thus, if we compare objects Si and Su and have
B(Si , Su , {xj}) = 1, then we put 0 in the row of the matrix
L* corresponding to the pair (Si , Su ); otherwise, we
put 1. Let  denote the submatrix of L* formed by
comparing a training object Si with all training objects
not belonging to the same class as Si .

The following two statements are obvious.
Statement 7. The set of the features with numbers

j1, …, jr is an (irredundant) test if and only if the set of
the columns with numbers j1, …, jr in the matrix L* is
an (irreducible) covering.

Statement 8. An elementary classifier (Si , { , …,

}) from N(K) is an (irredundant) representative set
for K if and only if the set of the columns with numbers
j1, …, jr in the matrix  is an (irreducible) covering.

Li*

x j1

x jr

Li*

Thus, in constructing the basic models of discrete
recognition procedures, searching for informative ele-
mentary classifiers is reduced to constructing coverings
of Boolean matrices.

The problem of constructing the set of all irreduc-
ible coverings of a Boolean u × m matrix L can be stated
as the problem of transforming a CNF of a monotone
Boolean function into a reduced DNF [15]. Indeed, to
the ith row, we assign the disjunction Di =  ∨  … ∨

, where p1, …, pq are the positions occupied by 1 in
the ith row. Let fL be the monotone Boolean function
realized by the CNF D1 & … & Du.

Using Statement 5, it is easy to prove the following
statement.

Statement 9. EC , …,  is admissible for fL if
and only if the set H of the columns with numbers j1,
…, jr in the matrix L is a covering.

Using Statement 6, it is easy to prove the following
statement.

Statement 10. EC , …,  is irreducible for fL if
and only if the set of the columns with numbers j1, …,
jr in the matrix L contains the identity submatrix.

The following statement is implied by Statements 9
and 10.

Statement 11. EC , …,  is maximal for fL if
and only if the set H of the columns with numbers
j1, …, jr in the matrix L is an irreducible covering.

Statements 9–11 imply that algorithms for con-
structing maximal conjunctions of monotone Boolean
functions can easily be modified for constructing irre-
ducible coverings of Boolean matrices, and vice versa.

4. AN EFFICIENT ALGORITHM 
FOR CONSTRUCTING IRREDUCIBLE 

COVERINGS OF A BOOLEAN MATRIX

Let L = (aij), where i = 1, 2, …, u and j = 1, 2, …, n,
be a Boolean matrix. We assume that L contains no
rows of form (0, …, 0). Let us denote the set of all irre-
ducible coverings of the matrix L by P(L).

We say that the ith row of the matrix L encloses the
pth row if aij ≥ apj for j = 1, 2, …, n.

Let L' denote the submatrix of L obtained by remov-
ing all enclosing rows from L. The following statement
is obvious.

Statement 12. The set of the columns with numbers
j1, …, jr in the matrix L is an (irreducible) covering if
and only if the set of the columns with numbers j1, …,
jr in the matrix L' is an (irreducible) covering.

Suppose that i ∈  {1, 2, …, u} and j ∈  {1, 2, …, n}.
If aij = 1, then we say that the ith row of the matrix L
covers the jth column and, vice versa, the jth column
covers the ith row. By L(aij), we denote the submatrix

xp1

xpq

x j1
x jr

x j1
x jr

x j1
x jr
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of L which remains after removing the columns covered
by the ith row and the rows covered by the jth column
from L. We assume that L has rows not covered by the
jth column and columns not covered by the ith row; i.e.,
L(aij) is not empty. The following statement is obvious.

Statement 13. The submatrix L(aij) contains no
rows of form (0, …, 0) if and only if the ith row of the
matrix L encloses none of the other rows of this matrix.

In what follows, we assume that L contains no
enclosing rows.

Definition. Two different elements  = 1 and

 = 1 of the matrix L are called consistent if  =

 = 0. A set Q of r elements equal to 1 in the matrix
E is called consistent if (i) r = 1 or (ii) r > 1 and any two
elements in Q are consistent.

Let S(L) denote the set of all consistent sets of unit
elements of the matrix L. Each set from S(L) determines
an identity submatrix of the matrix L.

To each element aij in L, we assign the number
N[i, j] = (j – 1)u + i; hereafter, we assume that, if Q =
{ , …, } ∈  S(L), then N[it + 1, jt + 1] > N[it , jt] for
t = 1, 2, …, r – 1.

Suppose that Q = { , …, } ∈  S(L). Let L0(Q)
denote the submatrix of matrix L formed by the col-
umns with numbers no smaller than j1. By Lt(Q), where
t ∈  {1, 2, …, r}, we denote the submatrix of L formed
by the rows not covered by the columns with numbers
j1, …, jt and by the columns with numbers larger than jt
that are not covered by the rows with the numbers i1, …, it.

In each of the submatrices Lt(Q), where t ∈  {1,
2, …, r}, we retain the initial enumeration of rows and
columns.

Definition. A set Q is called regular if, for any t ∈
{0, 1, …, r – 1}, the it + 1th row of the submatrix Lt(Q)
encloses no other rows from Lt(Q).

Denote the family of all regular sets in S(L) by (L).

Let Q = { , …, } ∈  (L) and t ∈  {0, 1, …, r}.
Removing all enclosing rows from the submatrix Lt(Q),
we obtain a submatrix (Q), in which we also retain
the initial enumeration of rows and columns. Let Gt(Q)
denote the set of all unit elements of the matrix L con-
tained in (Q). By construction, if aij ∈  G0(Q), then

{aij} ∈  (L) and, if aij ∈  Gt(Q), where t ∈  {1, 2, …, r},

then { , …, , aij} ∈  (L). We set G(Q) = Gr(Q).

Let πt(Q) be the set of the numbers of rows that are
enclosing in Lt(Q), and let

.

ai1 j1

ai2 j2
ai1 j2

ai2 j1

ai1 j1
air jr

ai1 j1
air jr

S̃

ai1 j1
air jr

S̃

Lt'

Lt'

S̃

ai1 j1
ait jt

S̃

π Q( ) πt Q( )
t 0=

r

∪=

Definition. A regular set Q is called maximal if
G(Q) = ∅ .

Let us denote the family of all maximal sets in S(L)
by S*(L).

Using Statement 13, it is easy to prove the following
statement.

Statement 14. The set H of the columns of the
matrix L with numbers j1, …, jr belongs to P(L) if and
only if S*(L) contains a set of the form { , …, },
where ij ∈  {1, 2, …, u} for j = 1, 2, …, r.

Statement 14 implies that P(L) can be constructed
by constructing sets from S*(L) (it should be taken into
account that one set from P(L) may correspond to sev-
eral sets from S*(L)).

Definition. A set { , …, } belonging to

S*(L) is said to be top if { , …, } ∈  S*(L)
implies it ≤ pt for t = 1, 2, …, r.

We can determine whether a set Q is top by search-
ing through the rows of the submatrix of L formed by
the columns containing elements of Q and by the rows
with numbers not belonging to π(Q).

Let R(L) be the set of all unit elements in the matrix L.
By e(R), we denote the element with minimum number
in an arbitrary set R ⊆  R(L).

Definition. A maximal set Q of form { , …,

} is called the initial set with first element  if

 = e(Gt(Q)) for any t ∈  {1, 2, …, r – 1}.

If the first element of an initial set Q is given, then
the procedure for constructing Q is obvious. It is easy
to see that the initial set with first element e(R), where
R = R(L), is top.

Let us order S*(L) by specifying the immediate suc-
cessor �Q for each element Q from S*(L). Let Q =
{ , …, }. For t ∈  {1, 2, …, r}, we denote the set
of unit elements in L with numbers larger than N[it , jt]
by Rt . Below, we consider all possible cases and specify
�Q in each of them.

(i) If r = 1, then �Q is the initial set from S*(L) with
first element e(R1).

(ii) If r > 1 and Gr – 1(Q) ∩ Rr ≠ ∅ , then �Q =
(Q\{ }) ∪  Q', where Q' is the initial set with first ele-
ment e(Gr – 1(Q) ∩ Rr).

(iii) If r > 1 and Gr – 1(Q) ∩ Rr = ∅ , then �Q is the
initial set with first element e(G0(Q) ∩ R1) at r = 2 and
�Q = (Q\{ , }) ∪  Q', where Q' is the initial
set with first element e(Gr – 2(Q) ∩ Rr – 1), at r > 2.

Note that Gr – 2(Q) ∩ Rr = ∅  at r > 2, because  ∈
Gr – 2(Q) ∩ Rr – 1. Note also that, if Gr – 1(Q) ∩ Rr ≠ ∅
and the element e = e(Gr – 1(Q) ∩ Rr) belongs to the jrth
column, then the set �Q determines the same irreduc-

ai1 j1
air jr

ai1 j1
air jr

ai1 j1
air jr

ap1 j1

apr jr
ai1 j1

ait 1+ jt 1+

ai1 j1
air jr

air jr

air jr
air 1– jr 1–

air jr
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ible covering as Q. For this reason, to reduce the search,
it is expedient to take the element with the least number
in Gr – 1(Q), such that it belongs to a column with a
number larger than jr , instead of e.

The algorithm constructs P(L) in |S*(L)| steps. At
the ith step, the algorithm chooses a maximal set Q[i,
L} in L. To eliminate repetitions, at i ≥ 2, the condition
that Q[i, L] is a top set is verified. If this condition
holds, then the set of columns containing elements of
the set Q[i, L] is included in the sought set of irreduc-
ible coverings. Otherwise, the set of irreducible cover-
ings constructed at the preceding steps is not supple-
mented.

The maximal sets are chosen by the following rules:
(i) Q[1, L} is the initial set with first element

e(R(L));
(ii) if Q[i, L] has an immediate successor in S*(L),

then Q[i + 1, L] =� Q[i, L];
(iii) if Q[i, L] does not have an immediate successor

in S*(L), then the algorithm terminates.
It is seen from the description of the algorithm that

it is based on a branching process, which can be conve-
niently represented as a tree.

A decision tree TL whose vertices correspond to the

elements of (L) is constructed. The only exception is
the root vertex, which remains free. The suspended ver-
tices correspond to maximal sets. In constructing the
tree TL, rules are applied that make it possible to pro-
ceed from one vertex to another in the order corre-
sponding to a successive search through the branches of
the tree. The transition from a vertex to the next one is
polynomial with respect to the size of the matrix L (it
requires searching through no more that O(u2n) ele-
ments of the matrix L). The transition from one sus-
pended vertex to the next suspended vertex is also poly-
nomial (it requires that no more than O(u3n) elements
of the matrix L be searched through). The set Q[1, L] is
constructed in a time not exceeding O(u3n). Thus, in the
worst case, the computational complexity of the algo-
rithm equals O(u3n)|S*(L)| and the time delay does not
exceed O(u3n).

The total number of vertices in TL equals | (L)| + 1,
and the number of suspended vertices equals |S*(L)|. As
is shown in [3–7], if u ≤ n1 – ε (ε > 0), then the value
|S(L)| almost always (for almost all u × n matrices L)
asymptotically coincides with |P(L)| as n  ∞. This
implies that, typically, the number of suspended verti-
ces asymptotically coincides with the number of irre-
ducible coverings of the matrix L and, according to
Statement 11, with the number of maximal conjunc-
tions of the function fL.

Remark. A modification of the asymptotically effi-
cient algorithm for constructing maximal conjunctions
of a monotone Boolean function specified by its CNF,
which was mentioned in Section 3, gives an algorithm

S̃

S̃

for constructing irreducible coverings of a Boolean
matrix L based on searching for all identity submatrices
of L. This algorithm was described for the first time in
[3]; its computational complexity does not exceed
O(un)|S(L)| and, at u ≤ n1 – ε (ε > 0), almost never
exceeds O(un)|P(L)| as n  ∞.

CONCLUSIONS

This paper describes general principles of the dis-
crete approach to recognition where the central prob-
lem is searching for informative fragments of feature
descriptions of objects. To search for informative frag-
ments, the apparatus of logic functions is applied,
which includes methods of transformation of normal
forms of Boolean functions and the theory of coverings
of Boolean and integer matrices. Basic models of dis-
crete or logic recognition procedures are considered,
and new estimates of their computational complexities
are obtained. Namely, an algorithm with a polynomial
delay for finding irreducible coverings of a Boolean
matrix (for searching for maximal conjunctions of a
monotone Boolean function specified by its conjunc-
tive normal form) is constructed. A shortcoming of the
algorithm is that it involves repeated construction of
irreducible coverings (maximal conjunctions). Condi-
tions under which this shortcoming does not substan-
tially affect the speed of the algorithm in typical situa-
tions are specified.

An abridged version of this paper was published
in [16].
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