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Abstract

 

—An approach to the clustering problem with integer data is described, in which special sets
of feature values not contained in the feature descriptions of objects are constructed. The problem is
reduced to the construction of irredundant coverings of integer matrices, which can be done by con-
structing irreducible coverings of Boolean matrices. Based on a geometric interpretation of the concept
of covering, a new method is proposed for constructing irreducible and minimal coverings of a Boolean
matrix. The metric properties of close-to-minimal coverings of integer matrices are examined.

 

INTRODUCTION

A frequent task arising in a number of applied classification problems is to partition a set of objects into
“homogeneous” groups (classes) in the absence of learning data. Such problems are referred to as taxonomy
problems.

Let 

 

M

 

 be a finite sample of elements, each of which is described by a finite set of features (properties).
The task is to partition the sample into homogeneous groups, whose number may be prescribed or unknown.
The process of partitioning a set into classes is known as clustering or cluster analysis.

In the statement of the problem, we need to describe the rules observed by objects of a single class and
by objects of different classes. Such a rule can be defined as the compactness of objects in a given feature
space, i.e., a rule according to which, for example, the “distance” between objects assigned to the same class
cannot be greater than a prescribed value. One can also use “good” relative remoteness of classes; for exam-
ple, the distance between objects assigned to different classes cannot be less than a prescribed value.

In this paper, we consider some approaches to taxonomy problems with integer data. In contrast to clas-
sical methods, our methods do not require selecting a distance function, which is sometimes rather difficult
to evaluate. Our methods are based on the following arguments.

Suppose that we want to determine the degree of membership of an object 

 

S 

 

in a group 

 

M

 

 of objects. If
the description of 

 

S

 

 includes a set of feature values not contained in the description of any object in 

 

M

 

, we
can say that the union of 

 

S

 

 and 

 

M

 

 violates the internal structure of 

 

M

 

. Examining various combinations of
feature values not contained in the descriptions of objects in 

 

M

 

, we can quantify the proximity of 

 

S

 

 to 

 

M

 

.
Thus, sets of admissible feature values not contained in the descriptions of all objects in 

 

M

 

 are regarded as
informative while determining the degree of proximity of an object to 

 

M

 

.
Based on the arguments above, an algorithm has been designed that considerably improves clustering for

some model and actual problems as compared to available algorithms, such as those based on the nearest
neighbor, the farthest neighbor, and central-element choice, in which the distance function is defined to be
the Hamming distance.

In the clustering algorithm we propose, the evaluation of the proximity of 

 

S

 

 to 

 

M

 

 is reduced to a search
for the so-called irredundant 

 

σ

 

-coverings of the integer matrix made up of the feature descriptions of objects
in 

 

M

 

. This concept is a generalization of an irreducible covering of a Boolean matrix, a well-known concept
in discrete mathematics, and was first introduced in [1, 2] in connection with constructing irredundant rep-
resentative descriptors in Kora-type algorithms [3, 4] and with examining the metric properties of a set of
representative descriptors. It was shown in [5] that the construction of (irredundant) coverings of an integer
matrix can be reduced to a search for (irreducible) coverings of a Boolean matrix. The approach to recog-
nition problems that involves the construction of coverings of Boolean and integer matrices was described
in the most comprehensive form in [6, 7].

The sets of feature values defined by short 

 

σ

 

-coverings are believed to be more informative. That is why
not all 

 

σ

 

-coverings are usually constructed but rather those whose length does not exceed a prescribed
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parameter. In this connection, we examine the metric (quantitative) properties of 

 

σ

 

-coverings that are close
in length to minimal 

 

σ

 

-coverings. An asymptotic value of the number of such coverings is obtained in a typ-
ical case.

We propose a geometric interpretation of 

 

σ

 

-covering and irredundant 

 

σ

 

-covering of an 

 

m

 

-by-

 

n

 

 matrix 

 

L

 

with entries in 

 

{0, 1, …, 

 

k

 

 – 1}, 

 

k

 

 

 

≥

 

 2

 

. Let 

 

M

 

L

 

 be the set of such 

 

k

 

-ary 

 

n

 

-tuples (points of the

 

 k

 

-ary 

 

n

 

-cube)
that are the rows in 

 

L

 

. The construction of (irredundant) 

 

σ

 

-coverings of 

 

L

 

 is shown to reduce to the construc-
tion of (maximal) subcubes in the set  consisting of all 

 

k

 

-ary 

 

n

 

-tuples not contained in 

 

L

 

. In the case 

 

k 

 

=

2, we propose a search algorithm for maximal subcubes in  corresponding to irreducible coverings of a

Boolean matrix 

 

L

 

 and a modification of that algorithm in the case of searching for maximal subcubes in 
corresponding to minimal (in length) coverings of 

 

L

 

.

1. BASIC DEFINITIONS AND GEOMETRIC INTERPRETATION OF COVERING 
AND IRREDUNDANT COVERING OF AN INTEGER MATRIX

We introduce the following notation: 

 

 

 

(

 

k

 

 

 

≥

 

 2

 

) is the set of all 

 

k

 

-ary 

 

r

 

-tuples with 

 

r

 

 

 

≤

 

 

 

n

 

, 

 

E

 

r

 

 = 

 

, and 

 

σ

 

is a tuple of the form (

 

σ

 

1

 

, …, 

 

σ

 

r

 

) in .

A set 

 

H

 

 of 

 

r

 

 different columns in a matrix 

 

L

 

 is called a 

 

σ

 

-covering of 

 

L 

 

if the submatrix 

 

L

 

H

 

 

 

of 

 

L

 

 consisting
of the columns of 

 

H

 

 does not contain the row (

 

σ

 

1

 

, …, 

 

σ

 

r

 

).

A set of columns 

 

H

 

 that is a 

 

σ

 

-covering of 

 

L 

 

is called an irredundant 

 

σ

 

-covering of 

 

L

 

 if for any 

 

p

 

 

 

∈

 

 {1,

2, …, 

 

r

 

}

 

, 

 

L

 

H

 

 contains at least one row of the form (

 

β

 

1

 

, …, 

 

β

 

r

 

), where 

 

β

 

p

 

 

 

≠

 

 

 

σ

 

p

 

 and 

 

β

 

i

 

 = 

 

σ

 

i

 

 for 

 

i

 

 =  

 

and 

 

i

 

 

 

≠

 

p

 

; i.e., 

 

L

 

H

 

 contains a submatrix of the from

Such a submatrix is called a 

 

σ

 

-submatrix.

In the case 

 

k

 

 = 2 and 

 

σ

 

 = (0, …, 0)

 

, the concept of an irredundant 

 

σ-covering coincides with the well-
known concept of an irreducible covering of a Boolean matrix (see [8]), with the σ-submatrix being an iden-
tity matrix.

Let C(L, σ) be the set of σ-coverings of L, B(L, σ) be the set of irredundant σ-coverings of L, and S(L,
σ) be the set of σ-submatrices of L. Define

We show that the construction of C(L) and B(L) can be reduced to the construction of (0, …, 0)-coverings
and irredundant (0, …, 0)-coverings (irreducible coverings), respectively, of a specific Boolean matrix con-
structed from L.

Suppose that L has the form

where each entry in the column with index j can take kj values with kj ≤ k (for further analysis, it is conve-
nient to assume that the entries of the column with index j range from 1 to kj).

ML

ML

ML

Ek
r E2

r

Ek
r

1 r,

β1 σ2 σ3 … σr 1– σr

σ1 β2 σ3 … σr 1– σr

σ1 σ2 σ3 … σr 1– βr 
 
 
 
 
 
 

.
……………………

C L( ) C L σ,( ), B L( ) B L σ,( ), S L( ) S L σ,( ).
σ Ek

r∈
∪

r 1=

n

∪=
σ Ek

r∈
∪

r 1=

n

∪=
σ Ek

r∈
∪

r 1=

n

∪=

x11 … x1n

x1m … xmn

,…………
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Define

where i =  and j = .

We construct a matrix LB consisting of m rows such that the row with index i, i ∈ {1, 2, …, m} has the
form

It is easy to see that the column with index j (j ∈ {1, 2, …, n}) in the original matrix corresponds to a
group of kj columns in LB, hereafter denoted by gj. The columns in gj will be indexed by numbers ranging
from 1 to kj.

Denote by (j, i) the column of LB with index i in gj, where j ∈ {1, 2, …, n} and i ∈ {1, 2, …, kj}.

The following result is straightforward.

Proposition 1. A set of columns of the form (( j1, i1), …, ( jr, ir)) in LB (where r ∈ 1, 2, …, n, jl ∈ {1, 2, …, n},
il ∈ {1, 2, …, },  ≠  if l1 ≠ l2, l1, l2 = 1, 2, …, r) is an (irreducible) covering if and only if the set of
columns indexed by (j1, …, jr) is an (irredundant) ( j1, …, jr)-covering of L.

The set  can be regarded as a k-ary n-cube. Denote by ML the set of points in  that correspond to

the rows of L. Let  = \ML. The set H of columns indexed by (j1, …, jr), which is a σ-covering of L, is

assigned the set of points E (σ, H) = {(α1, …, αn)|α ∈ ,  = σi , i = }. Obviously, E (σ, H) is an (n – r)-

subcube of  and entirely belongs to . When r = n, E (σ, H) is a 0-subcube consisting of a single point σ.

Thus, C(L) is in one-to-one correspondence with the set of all subcubes in . Note that  is a sub-

cube of  if and only if σ2 ⊂ σ1 and H2 ⊂ H1.

Let M be a subset of . A subcube E ' ⊂ M is said to be maximal in M if there does not exist any other
subcube E '' ⊂ M such that E ' ⊂ E ''. The set of all maximal subcubes in M is denoted by Emax(M). It is easy
to see that B(L) is in one-to-one correspondence with Emax( ). Consequently, the construction of B(L) can

be reduced to the construction of the set of all maximal subcubes in .

2. SEARCH ALGORITHMS FOR IRREDUCIBLE AND MINIMAL COVERINGS 
OF A BOOLEAN MATRIX 

In [9] an asymptotically optimal algorithm for search for all irreducible coverings of a Boolean matrix
was designed in the case where the number of rows in the matrix is much less than the number of its col-
umns. The algorithms described in this section are intended primarily for search for irreducible and minimal
(in length) coverings of a Boolean matrix when the number of rows in the matrix is much greater than the
number of its columns (in which case the algorithms are sufficiently fast).

Let k = 2. Obviously, if the point  = (0, …, 0) is in ML, then there is no irreducible covering in L, so we

assume in what follows that  ∈ .

It is easy to see that the (0, …, 0)-covering of a Boolean matrix L corresponds to a subcube in , with

 being one of its vertices. An irreducible covering of L corresponds to a maximal subcube in , with 
being one of its vertices. Thus, the set of all irreducible coverings of L corresponds to the stencil of all max-

imal subcubes in  originating in .

δ xij a,( )
1, xij a,≠
0, xij a,=




=

1 m, 1 n,

δ xi1 1,( ) … δ xi1 k1,( ) δ xi2 1,( ) … δ xi2 k2,( ) … δ xin 1,( ) … δ xin kn,( ), , , , , , , , ,( ).

k jl
jl1

jl2

Ek
n Ek

n

ML Ek
n

Ek
n α ji

1 r,

Ek
n ML

ML E
σ1 H1,( )

E
σ2 H2,( )

Ek
n

ML

ML

0̃

0̃ ML

ML

0̃ ML 0̃

ML 0̃



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 43     No. 12      2003

CLASSIFICATION PROCEDURES BASED ON THE CONSTRUCTION 1815

We say that  = (α1, …, αn) (  ∈ En) encloses than  = (β1, …, βn) (  ∈ En) (and write this as  �

) if αi ≥ βi , i = . Denote by M( , ) the subcube of minimal dimension in En that contains  and .

The subcube M( , ) is said to be covering for ML if M( , ) ⊆ .
The following result is straightforward.

Proposition 2. If  ∈ , then M( , ) is not contained in  if and only if there exists  in ML such

that  � .

Algorithm for Constructing All Irreducible Coverings of L

Step 1. Delete from  all points  such that there exists  in ML such that  � .

Step 2. Let  ∈  and ρ( , ) =  (here and below, ρ( , ) is the Hamming distance

between  and ). Obviously, M( , ) is a maximal covering subcube for ML. Let the coordinates of 
indexed by j1, …, jr be zero. Then the set of columns indexed by j1, …, jr is the irreducible covering of L that

corresponds to M( , ). Set  = \ M( , ).

Step 3. If  ≠ ∅, then return to Step 2; otherwise, stop.

Algorithm for Constructing All Minimal Coverings of L

Step 1. Delete from  all points  such that there exists  in ML such that  � .

Step 2. Let  ∈  and ρ( , ) = . Set 

Step 3. Let  ∈ QL, and let the coordinates of α' indexed by j1, …, jr be zero. Then the set of columns

indexed by j1, …, jr is the minimal covering of L that corresponds to M( , ). Set QL = QL\ .
Step 4. If QL ≠ ∅, then return to Step 3; otherwise, stop.
Note that the algorithm for search for irreducible coverings could be so modified that it would search for

irredundant σ-coverings.

3. CLUSTERING ALGORITHM BASED ON THE CONSTRUCTION OF IRREDUNDANT 
σ-COVERINGS

The measure of the similarity of M '' ⊂ En and M ' ⊂ En is defined as

Here, |A | is the cardinality of A.
Let p be a given number such that p ∈ (0, 1). A set M" is said to be similar to M' in terms of a threshold

p if P(M ', M '' ) ≥ p.
Suppose that the clustering problem is to be solved for a set of objects M = {S1, …, Sm}.
The first class M1 is constructed as follows.
Step 1. Set M1 = S, where S is an arbitrary element in M. If M \ M1 = ∅, then stop; otherwise, go to Step 2.
Step 2. If there exists an element S ' in M \ M1 such that

and  

set M1 = M1 ∪ {S '} and repeat Step 2. Otherwise, begin to construct the next class.

α̃ α̃ β̃ β̃ α̃
β̃ 1 n, α̃ β̃ α̃ β̃

α̃ β̃ α̃ β̃ ML

α̃ ML α̃ 0̃ ML β̃
α̃ β̃

ML α̃ β̃ α̃ β̃

α'˜ ML α'˜ 0̃ ρ α̃ 0̃,( )
α̃ ML∈
max α̃ β̃

α̃ β̃ α'˜ 0̃ α'˜

α'˜ 0̃ ML ML α'˜ 0̃

ML

ML α̃ β̃ α̃ β̃

α'˜ ML α'˜ 0̃ ρ α̃ 0̃,( )
α̃ ML∈
max

QL α̃  α̃ ML∈ ρ α̃ 0̃,( ), ρ α'˜ 0̃,( )={ }.=

α'˜

α'˜ 0̃ α'˜

P M ' M '',( ) Emax En\M '( ) Emax En\ M ' M ''∪( )( )∩
Emax En\M '( )

-------------------------------------------------------------------------------------------.=

P M1 S '{ },( ) P M1 S{ },( )
S Ω\M1∈
max= P M1 S '{ },( ) p,≥
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Suppose that the classes M1, …, Mi – 1 (i ≥ 2) have been constructed. Let

If  = ∅, then stop; otherwise, construct Mi. The procedure for constructing Mi is entirely analogous

to that for constructing M1, with the initial set being  rather than M.
In this algorithm, the similarity of objects or groups of objects is defined by using the concept of a max-

imal subcube of a set of points, in which case the distance function between objects is not required.
Experience gained from solving practical problems has shown that p should be chosen in the range (0.5, 0.9).

The greater the value of p, the more the number of classes formed in clustering.
A description of the algorithm without using geometric language can be found in [5].

4. TESTING BASED ON MODEL AND ACTUAL PROBLEMS
Model and actual problems were used to test the clustering algorithms based on the farthest neighbor

(algorithm A1), nearest neighbor (algorithm A2), central-element choice (algorithm A3), and the construction
of irredundant σ-coverings (algorithm A4).

Algorithms A1–A3 are based on hierarchical clustering methods, which can be described as follows. Con-
sider a sequence of partitions of m objects into groups. The first step in the sequence is a partition into m
groups, each of which contains only one object. The next step is a partition into m – 1 groups; then, into m –
2 groups, and so on up to the mth step, at which all objects constitute a single group. Thus, the kth step cor-
responds to a partition into m + 1 – k groups, where k = 1, 2, …, m. A sequence of partitions is called hier-
archical grouping if any two objects, S1 and S2, assigned to the same group at the kth step stay in a single
group at all subsequent steps.

Suppose that S1, …, Sm are m objects to be partitioned into l classes. The basic steps in hierarchical group-
ing are described by the following procedure.

1. Let  = m and Ωi = {Si}, i = .

2. Stop if  ≤ l.
3. Find two groups Ωi and Ωj such that

where ρ(Ωu, Ωv) is the distance between Ωu and Ωv (see below).

4. Unite Ωi and Ωj, delete Ωi, and decrement  by 1. Return to Step 2.

The procedure halts when a prescribed number of groups is achieved, i.e., when  = l.
When the number of groups to partition a set is not specified, various stopping criteria can be applied, in

particular, the condition that the smallest distance between the groups at the ith step is more than p times
greater than the smallest distance at the preceding step (p > 1 is specified in advance; usually, p > 1.5).

Note that the results of the procedure depend strongly on the distance function between groups used. In
our tests, we used the following functions.

1. The nearest neighbor distance

2. The farthest neighbor distance

3. The distance between the central elements of classes:

where  is the central element of Ωu and  is the central element of Ωv. In particular, the central element
of a class can be defined to be the center of gravity of that class.

M̃i M\ M j.
j 1=

i 1–

∪=

M̃i

M̃i

l̃ 1 m,

l̃

ρ Ωi Ω j,( ) ρ Ωu Ωv,( ),
u v≠
min=

l̃

l̃

ρ Ωu Ωv,( ) ρ Si S j,( ), u v,( )
Si Ωu S j, Ωv∈ ∈

min 1 l, .= =

ρ Ωu Ωv,( ) ρ Si S j,( ), u v,( )
Si Ωu S j, Ωv∈ ∈

max 1 l, .= =

ρ Ωu Ωv,( ) ρ Su Sv,( ),=

Su Sv
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In the formulas above, the distance ρ(Si , Sj) between Si = (xi1, …, xin) and Sj = (xj1, …, xjn) was calculated
as

Algorithm A4 was compared with A1–A3 by using the model sets of data displayed in Fig. 1.

The results obtained with A1 are shown in Fig. 2. Note that A1 gives a right (i.e., intuitively most natural)
partition of the set displayed in Fig. 1a for an arbitrary order of objects appearing in the original sample (in
general, the results produced by the algorithms depend on this order).

Figure 3 shows the results obtained with A2. This algorithm considerably improves the partition of the
set displayed in Fig. 1b but degrades the partition of the sets displayed in Figs. 1a and 1c.

Figure 4 shows the results obtained with A3. The algorithm based on central-element choice exhibits an
average of the nearest neighbor and farthest neighbor methods.

Figure 5 shows the results obtained with A4. The algorithm based on the construction of irredundant σ-
coverings produces the best results as compared to the previous algorithms.

Clustering algorithms A3 and A4 were also tested against poll results. The questionnaire consisted of 21
questions, with 2 to 15 variants of answers to each. Some 799 persons were asked to respond to the ques-
tionnaire. The set of respondents was partitioned into classes according to their answers to the key question
of the questionnaire: “What is your attitude toward party A?” The alternative answers were favor, disinter-
ested, disfavor, and undecided. Thus, we obtained four classes. For every experiment, a small group of
respondents (4 to 20 persons) was selected at random in each class. No data on the membership in some
class were available. Algorithm A4 (based on the construction of irredundant σ-coverings) and algorithm A3
(based on the calculation of the Hamming distance with central-element choice) were used to partition the
set into clusters. We conducted 32 experiments. The partitions produced by the algorithms were compared
with the original partition into classes. The performance of an algorithm was characterized by the ratio of
the number of “correctly” classified pairs of objects to the total number of pairs. A classification was treated
as correct if one of the following conditions was fulfilled: (a) a pair of objects belonging to the same class
in the original partition remained in a single class after clustering; and (b) a pair objects belonging to dif-
ferent classes in the original partition remained in different classes after clustering.

The accuracy of clustering was found to range between 60 and 80% for A3 and between 70 and 90%
for A4.

The results of comparison based on model and actual problems suggest that the algorithms with Ham-
ming distance calculation are characterized by a high speed of computation. These methods are used prima-
rily for solving problems with binary data. They can be applied to problems with features of higher arity,
but in that case they poorly perform on specific initial datasets, for example, on those shown in Figs. 1–3.
Algorithm A4 is more laborious, but it performs well on nonbinary data and yields better results in that case.

5. METRIC PROPERTIES OF CLOSE-TO-MINIMAL COVERINGS 
OF INTEGER MATRICES

Traditionally, issues related to higher performance and speedup of recognition algorithms based on the
construction of coverings of Boolean and integer matrices are associated with asymptotic estimates obtained
for typical values of important quantitative characteristics of this set. Such characteristics are, for example,

ρ Si S j,( ) xik x jk– .
k 1=

n

∑=

(a) (b) (c) (a) (b) (c)

Fig. 1. Fig. 2.
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the number of coverings and the length of a covering. The metric properties of irredundant coverings are of
special interest but present the greatest difficulties in their study.

In [1, 2, 6, 7] asymptotic values of the number of coverings in B(L) and the length of a covering in B(L)
were obtained for almost all m-by-n matrices with entries in {0, 1, …, k – 1}, k ≥ 2, as n  ∞ with mα ≤

n ≤ , α > 1, and β < 1. For almost all such matrices, the number of coverings in B(L) was shown to be
asymptotically equal to the number of all submatrices in S(L) and smaller in order than the number of cov-
erings in C(L).

An opposite case (namely, nα ≤ m ≤  with α > 1 and β < 1) was considered in [11]. Asymptotic esti-
mates were obtained for the typical value of S(L) and the typical order of a submatrix in S(L). In the case

nα ≤ m ≤  with α > 1 and β < 1/2, the number of submatrices in S(L) was shown to be almost always
greater in order than the number of coverings in B(L). In a practically important case, asymptotic estimates
were obtained for the typical number of coverings in C(L) and for the typical length of a covering in C(L).
Moreover, for r ≤  – logk  and n  ∞, coverings of length r in C(L) were shown to be
absent in almost all m-by-n matrices L.

An open question is under which conditions the number of irredundant coverings is asymptotically equal
to the number of coverings. An answer is given in Theorem 1 below.

Suppose that r1 =  (here, [x] is the integer part of x), ϕ denotes the interval

(  – ,  – ], an ≈ bn means that  = 1, an  bn means

that an ≥ bn for all sufficiently large n,  (k ≥ 2) is the set of all m-by-n matrices with entries in {0, 1, …,
k – 1}, Cϕ(L) is the set of coverings in C(L) with lengths ranging over ϕ, and B(L) is the set of coverings in
B(L) with lengths ranging over ϕ, (L) is the set of coverings of length r1 in C(L), and (L) is the set of
coverings of length r1 in B(L).

Theorem 1. If m ≤  and β < 1/2, then

as n  ∞ for almost all matrices L in .

The proof of the theorem is based on Lemmas 1–6 below.

km
β

kn
β

kn
β

mklog mklog nln×( )

mklog mklog 1–lnklog–[ ]
mklog mklog nln×( )klog mklog mklog 1–lnklog an/bn

n ∞→
lim ≥

n

Mmn
k

Cr1
Br1

kn
β

Bϕ L( ) Cϕ L( ) Cr1
L( ) Br1

L( ) k
r1Cn

r1 1 k
r1–

–( )
m

≈ ≈ ≈ ≈

Mmn
k

(a) (b) (c) (a) (b) (c)

Fig. 3. Fig. 4. 

(a) (b) (c)

Fig. 5. 
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Denote by  (r ≤ n) the set of all ordered sets of the form ( j1, …, jr), where jl ∈ {1, 2, …, n} for l =

 and j1 < … < jr.

Let w ∈  and ω ∈ . Denote by M(w, σ) the set of matrices L in  such that the submatrix of L
made up of the columns of w does not contain σ.

Suppose that  = {L} is the space of elementary events in which every event L has the probability

. The expectation and variance of a random variable X(L) are denoted by MX(L) and DX(L), respec-
tively.

Lemma 1 (see [12]). Let random variables X1(L) and X2(L) defined on  be such that X1(L) ≥ X2(L) ≥ 0
and MX1(L) ≈ MX2(L) and DX2(L)/[MX2(L)]2  0 as n  ∞. Then, X2(L) ≈ X1(L) ≈ MX2(L) as n  ∞
for almost all matrices L in .

On  = {L} consider the random variables

and

Define

Note that ηϕ(L) = Bϕ(L) and ξϕ(L) = Cϕ(L).
Let P(ξw, σ(L) = 1) be the probability that ξw, σ(L) = 1 and P(ηw, σ(L) = 1) be the probability that

ηw, σ(L) = 1.
It is obvious that

(5.1)

According to the inclusion–exclusion formula, we have
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Therefore, for r ≤ r1,

Lemma 2. It holds that
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(5.2), we have

Consequently,

Setting r = r1 gives

which completes the proof.

Lemma 3. If m <  and β < 1, then

Proof. We have

Define Ar = (1 – k–r)m. Let r ≤ r1. Then

Consequently,

(5.3)

Applying Lemma 2 and taking into account (5.3) and  ≤  ≤ , we derive the required rela-
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Since

for

we have

Let at = exp(m/kr + t – 1) and t0 = [logklogkm + logklnlogkm].

For t ≤ t0, we have

(5.4)

For t > t0 , we have

(5.5)

Note that
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It follows from (5.4)–(5.6) that
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By using the Stirling formula, it is easy to show that
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(5.8)
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We have

which completes the proof of Lemma 4.

Lemma 5. If m <  and β < 1/2, then

Proof. We have

The lemma is proved.
Theorem 1 follows directly from Lemmas 1 and 3–5.
Remark. Lemmas 2 and 4 were proved by the respective techniques applied in the proof of Proposition

5 and Lemma 3 in [13], where the number of maximal intervals of a partial Boolean function was estimated
and asymptotics of the logarithm of the number of maximal intervals were obtained.
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