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Abstract

 

—The dependence of the quality of recognizing noisy objects by a Kora-type algorithm on the com-
position of the training sample is examined. The algorithm is considered in an example of recognition of noisy
black-and-white images and compared with the morphological recognition algorithm.
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INTRODUCTION

In this paper, we consider the influence of the “con-
tents” of the training sample on the quality of recogniz-
ing noisy objects by a learning classification algorithm
of the Kora type [1–4].

The algorithm is considered in an example of recog-
nizing black-and-white images and compared with the
morphological recognition algorithm, which is close to
the ultimately exact recognition method as applied to
this problem [5–8].

1. THE KORA-TYPE LEARNING 
RECOGNITION ALGORITHM

To describe a Kora-type algorithm, we have to
define the notion of initial data and determine rules for
evaluating the “similarity” between objects to be com-
pared and the “closeness” of an object under examina-
tion to a certain class.

Suppose that a set 

 

M

 

 of objects 

 

Q

 

 and its partition-

ing 

 

M

 

 =  into finitely many subsets (classes) are

given; the partitioning of 

 

M

 

 is defined incompletely.
Each object 

 

Q

 

 

 

∈

 

 

 

M

 

 is represented by a set of values of
the features from a system {

 

x

 

j

 

; the feature values
belong to the domain 

 

X

 

 of admissible values (Fig. 1.1).

Each class 

 

K

 

l

 

 =  includes 

 

r

 

l

 

 objects for 

 

l

 

 = 1, …, 

 

m

 

.

We assume that the set of features is fixed. A set of

values of the features {

 

x

 

j

 

 determines a description

 

A

 

(

 

Q

 

) = {

 

a

 

1

 

, …, 

 

a

 

n

 

} of an object 

 

Q

 

, where 

 

a

 

j

 

 is the value
of the feature 

 

x

 

j

 

 for each 

 

j

 

 = 1, …, 

 

n

 

. The 

 

recognition
problem

 

 consists in relating an object 

 

Q

 

 to one of the
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classes 
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l

 

, 

 

l

 

 = 1, …, 

 

m

 

, on the basis of training data

 

A

 

0

 

(

 

K

 

1

 

, …, 

 

K

 

m

 

) about the classes and of the description

 

A

 

(

 

Q

 

) of the object.
To recognize an object means to make a decision to

what class this object is to be related.

Suppose that , 

 

s

 

 

 

≤

 

 

 

n

 

, is the set of all 

 

s

 

-tuples of
indices of the form (

 

j

 

1

 

, …, 

 

j

 

s

 

), where 

 

j

 

t

 

 

 

∈

 

 {1, 2, …, 

 

n

 

},

 

t

 

 = 1, 2, …, 

 

s

 

, and 

 

j

 

1

 

 < … < 

 

j

 

s

 

. Let us specify a rule for
estimating the similarity between objects from 

 

M

 

according to the subset of features determined by an

 

s

 

-tuple 

 

ω

 

 = (

 

j

 

1

 

, …, 

 

j

 

s

 

) 

 

∈

 

 .
We say that objects 

 

Q

 

i

 

 and 

 

Q

 

r

 

 are similar if they sat-
isfy the inequality

Let us take integers 

 

q

 

1

 

 

 

≥

 

 1 and 0 

 

≤

 

 

 

q

 

2

 

 < 

 

q

 

1

 

 and say that
a subset 

 

w

 

 

 

⊂

 

  is a representative set from a class 

 

K

 

l

 

if no less than 

 

q

 

1

 

 objects in the class 

 

K

 

l

 

 and no more
than 

 

q

 

2

 

 objects in all the other classes together are sim-
ilar. The number of the representative sets depends on

 

q

 

1

 

 and 

 

q

 

2

 

.
To each 

 

j

 

th feature, where 

 

j

 

 = 1, 2, …, 

 

n

 

, we assign

a weight 

 

p

 

j

 

, and to each object , where 

 

k

 

 = 1, …, 

 

r

 

l

 

and 

 

l

 

 = 1, …, 

 

m

 

, we assign a weight . The weights
characterize the importance of features and objects. A
representative set generated by an object of some class

 

K

 

l

 

, 

 

l

 

 = 1, …, 

 

m

 

, allows us to distinguish this object from
all objects not belonging to the class 

 

K

 

l

 

.

For 

 

ω

 

 = (

 

j1, …, js) ∈  , as a measure of closeness

between objects Q and , we take the value
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Let , where r = 1, …, rl , be the family of all rep-

resentative sets generated by the object  of class Kl .
Then the closeness of an unknown object Q to a
description from the class Kl is estimated as

where

An unknown object Q belongs to the class Kl , where
l = 1, …, m, if

No decision about the class containing the object Q is
made if

Varying the parameters q1 and q2, we can vary the
family of representative sets [3, 4]. It is natural to con-
sider representative those fragments of descriptions of
training objects that are frequently encountered in one
class and rarely in others. Since the closeness of the
object to be tested to the description of the class Kl ,
where l = 1, …, m, is estimated exclusively by the rep-

Ωr
l( )

Qr
l

Dl Q( ) 1
θl

---- γr
l Bw Q Qr,( ),

w Ωr
l( )∈

∑
r 1=

rl

∑=

θl Ωr
l( ) .

r 1=

rl

∑=

Dl Q( ) Dt Q( )
1 t m≤ ≤
max=

and Dt Q( ) Dl Q( ) for t l.≠ ≠

Dl1 Dl2 Dt Q( ) for l1
1 t m≤ ≤
max l2.≠= =

resentative sets for this class, the most important part of
the algorithm is the construction of these representative
sets [1, 2]. After they are constructed, it seems possible
to solve the problem stated above.

2. THE METHOD OF MORPHOLOGICAL 
RECOGNITION

Suppose that an image f is given. We treat it as a
real-valued function defined on a subset X (field of
view) of the plane R2. The value f(x, y) of the function
determines the brightness of the image at the point (x, y) of
the view field X. All images are elements of the Hilbert

function space L2(X) = (x, y)dxdy < ∞  with

scalar product

and distance

Let us introduce the operation of comparing images
according to shape [6, 7]. We say that the shape of an
image g is no more complex than the shape of f and
write f a g if there exists a function F(• ) of one variable
transforming the brightness of the image f in such a way
that g(x, y) = F(f(x, y)) for (x, y) ∈  X. Let Ff be a class
of functions F(• ) such that f ∈  L2(X)  F(f) ∈  L2(X);
suppose that this class contains the composition
F1(F2(• )) whenever it contains functions F1(• ) and
F2(• ). We define the shape of an image f to be the set

V( f ) = {g = F( f ), F ∈  Ff} ≡ {g ∈  L2(X), g a f}.

Hereafter, we assume that the class Ff is such that V( f )
is convex and closed in L2(X) [5]. If f a g and g a f, we
say that the images f and g are isomorphic and write
f ~ g. The operation ~ of comparing images according
to their shape is transitive, symmetric, and reflexive,
which allows us to regard all images that are isomor-
phic to each other as an equivalence class [6].

Suppose that A = {A1, …, AN} is a measurable parti-
tioning of the view field X into domains A1, …, AN

(where  = ∅  for i ≠ j,  i, j = 1, …, N, and X =

) of positive areas µ(Ai) =  > 0, where i =

1, …, N [8]. Consider the image f =  of con-

stant brightness fi over each domain Ai , i = 1, …, N; we

f , f 2

X

∫
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assume that all fi , where i = 1, …, N, are pairwise dif-
ferent. Here,  is the indicator function of the ith
domain, i.e.,

On this domain, the brightness of the image f is constant
and equals fi , i = 1, …, N. The shape V( f ) of the image
f is specified in the form of the set of images

(1)

Consider the problem of best approximation of an

image g by images of the form (x, y), where

(x, y) ∈  X; the partitioning of X into measurable
domains Ai of positive areas (i = 1, …, N) is assumed
given. It is required to determine the brightness ci of
best approximation over each Ai with i = 1, …, N.

According to [6], if Ff is the class of all functions on
R1, then the shape V( f ) given by Eq. (1) can be inter-
preted as an N-dimensional plane in the space L2(X);
the indicator functions , i = 1, …, N, are vector-
images determining the arrangement of this plane in
L2(X). Every image whose shape is no more complex
than V( f ) is represented by a vector entirely lying in
this plane. For an arbitrary image g ∈  L2(X), the notion
of its projection on V( f ) can be introduced. The projec-
tion is defined as a point in V( f ) at which the minimum
distance between g ∈  L2(X) and V( f ) is attained. The
minimum always exists and is attained at a unique vec-
tor from V( f ). We denote the projection of an image g
on the set V( f ) by Pf(g). Here, Pf denotes the rule
assigning the image φ = Pfg, where φ ∈  V( f ), to each
image g ∈  L2(X). The rule Pf is called the orthogonal
projector onto the set V( f ). The projection Pf g of a
vector g on the plane V( f ) is defined by

(2)

where

χAi

χAi
x y,( )

1, x y,( ) Ai∈
0, x y,( ) Ai.∉




=

V f( ) φ x y,( ) ciχAi
x y,( ),

i 1=

N

∑=




=

x y,( ) X ∞–, ci +∞, i< <∈ 1 … N, ,=




.

ciχAi

i 1=

N

∑

χAi

P f g x y,( ) ci*χAi
x y,( ),

i 1=

N

∑=

ci* χAi
g,( )/ χAi

2, i 1 … N ., ,= =

Here, the brightness values  of the domains Ai (i =
1, …, N) of the image Pfg are defined so that the image

(x, y) would be as close to the image g in

L2(X) as possible. The image g belongs to the image
shape V( f ) (i.e., the projection of g on V( f ) coincides
with g) if the equality

Pfg = g,

which is equivalent to the relation f a g, holds.

Since the indicator function (x, y), where (x, y) ∈  X,
of the domain Ai of constant brightness vanishes out-
side Ai and equals 1 at the points of Ai, the scalar product
( , g) is the integral of the image g over the domain
Ai , i.e.,

and the squared norm || ||2 =  is the area of Ai

for i = 1, …, N. We can say that projection (2) of an
image g on the set V( f ) is obtained by averaging g over
each domain of constant brightness of the image f. The
projector Pf plays a key role in morphological image
analysis and is also called the image shape [6].

A number of morphological problems involve addi-
tional constraints on the brightness of the image f. For
example, the brightness values on the domains A1, …,
AN may be ordered as c1 ≤ … ≤ cN. Then, the shape V( f )
of an image f is defined by the relation

(3)

The set V( f ) is a convex closed cone in the space L2(X),
and Pf is the projector onto V( f ) [6].

Consider the shapes of images of digits (say, 0 and 1)
when it is known that the brightness of the symbol can-
not be less than that of the background. The shape of the
image of 1 is the image set

ci*

ci*χAi

i 1=

N

∑

χAi

χAi

χAi
g,( ) χAi

x y,( )g x y,( ) x ydd
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∫= =
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i 1=
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x y,( ) X , ∞– c1 c2 … cN ∞<≤ ≤ ≤<∈




.

V f 1( ) = ciχ i
1 x y,( )

i 1=

2

∑ x y,( ), X ∞–, c1 c2 ∞<≤<∈
 
 
 

=  F c̃1χ1
1 x y,( ) c̃2χ2

1 x y,( )+( ) x y,( ), X F F f∈,∈{ } ,
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where  < ;  and  are the indicator functions
of the background and digit image domains, respec-
tively; and Ff is the class of monotonically nondecreas-
ing functions. The set V( f1) is a two-dimensional cone
in the space L2(X). According to [5], there exists a

unique projector g onto the set V( f1), namely,

where the brightness values  and  are defined as

and

The shape of the image of any other digit is defined
similarly.

Suppose that, in a recognition problem, n reference
images f1, …, fn are given and it is required to recognize
an image g. Then, if , …,  are the projectors
determining the shapes of the images f1, …, fn and

g, …, g are the projections of the image g on the
shapes of f1, …, fn, then, according to the simplest mor-

c̃1 c̃2 χ1
1 χ2

1

P f
1

P f
1g x y,( ) c1*χ1

1 x y,( ) c2*χ2
1 x y,( ), x y,( ) X ,∈+=
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1 g,( )/ χ1

1 2
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1 2 χ2
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1 2
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1 g,( )/ χ2

1 2

if χ1
1 g,( )/ χ1

1 2 χ2
1 g,( )/ χ2

1 2
,≤

χ1
1 χ2

1+ g,( )/ χ1
1 χ2

1+
2

if χ1
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.>










=

P f 1
P f n

P f 1
P f n

phological recognition rule, the image g is related to the
ith class if

3. ANALYSIS OF THE RESULTS

Initial data for testing a Kora-type algorithm were
black-and-white 20 × 20-pixel images of digits (see,
e.g., Fig. 3.1a). The images with 0% noise are consid-
ered pure and the images with 100% noise, inverted. A
random number generator generates integers in the
interval [0, 100]. An integer in the interval [0, 100] is
called a level. Every pixel of the image is scanned, and
the number generated by the random number generator
at the current step is analyzed. If this number falls
within the interval [0, the level], then the pixel is
inverted. Thus, if the noise level is 50%, then 50% of
image pixels are inverted (Fig. 3.1b), and if the noise level
is 100%, then the image is entirely inverted (Fig. 3.1c).

Here, on the background domain A1 and on the digit

image domain A2, the indicator functions  and ,
respectively, take value 1.

In training the Kora-type algorithm, the following
question was examined: Should training involve only
pure (noise-free) images of digits, or both noisy and
noise-free images should be used? For this reason, at
the training stage, the following types of images were
used:

•  only noise-free images of digits;
•  both pure and noisy images;
•  only noisy images.

For training, ten classes of images were formed, one
class for each digit from 0 through 9. Every class com-
prised ten different (in the level of noise) images,
depending on the version of training. Recognition was
performed for images both free of noise and distorted
by noise of a level up to 50%.

The algorithm trained with the use of only pure (noise-
free) images gave a low percentage of correctly recog-
nized images (Fig. 3.2, curve a). In Fig. 3.2, curve a

i P f j
g g– 2.

1 j n≤ ≤
arg(min)=

χ1
1 χ2

1

A2

A1

A2

A1

(a) (b) (c)

Fig. 3.1. (a) A noise-free image of 1; (b) image of 1 with 50% noise; and (c) image of 1 with 100% noise.
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shows that the percentage of correct decisions was no
lower than 80 only for test images with a level of noise
up to 20%.

Including noisy images in the training class
improved the results of recognition; thus, on adding
images with a 25% level of noise, the percentage of correct
decisions was no lower than 80 for test images with up to
a 26% level of noise (Fig. 3.2, curve b). In the training
classes, the level of noise increased uniformly from image
to image (0, 3, 6, …, 21, 23, 25%) for ten images in each
training class with the noise level of 25% maximum.

Increasing the noise level in the training classes to
35% gave the best recognition results in the case of
training with the use of both pure and noisy images of
digits (Fig. 3.2, curve c). Then, the percentage of correct
decisions was no lower than 80 for a noise level in test
images of up to 42%. With further increasing the noise
level in the training sample, the recognition results
sharply deteriorate.

The question arises, what happens if all pure images
of digits are removed from the training classes, and
only noisy images are used in training. For an algorithm
trained on images of digits with 10% of noise and used
for recognizing images with a noise level under 50%,
the dependence shown in Fig. 3.3, curve b, was
observed. In this case, the percentage of correct deci-
sions was no lower than 80 for test images with 25% of
noise, which is better than the result given by an algo-
rithm trained on solely pure images of digits.

In Fig. 3.3, curve b shows that the percentage of cor-
rectly recognized images of digits with the same noise
level as that in the training class is no lower than 90.
Increasing the noise level in the training class up to
32% gave the results shown in Fig. 3.3, curve c, which
are the best in the case where training only uses images
with a certain noise level. Here, the percentage of cor-
rect decisions is no lower than 80 for test images of digits
with 32% of noise. With enhancing the noise level over
32%, the number of recognition errors increases. For
comparison, curve a in Fig. 3.3 represents the result of
training with the use of solely pure images of digits.

Let us summarize the results of all performed tests.
If a Kora-type algorithm is used for recognizing noise-
free images, then there is no need to train the algorithm
on noisy images. It is sufficient to train it only on pure
images. Otherwise, if a Kora-type algorithm is used to
recognize noisy images, training should involve both
pure and noisy images. An algorithm trained on images
under a variable noise level (from 0 through 35%) gives
significantly better recognition results than an algo-
rithm trained only on images under a certain noise level
(e.g., 32% as in Fig. 3.4).

In Fig. 3.4, curve a represents the results of recogni-
tion by an algorithm trained solely on images with 32%
of noise, and curve b, by an algorithm trained on
images with uniformly distributed noise from 0 through
35% (the best recognition results were achieved when
training involved both pure and noisy images of digits).
The recognition results for these two series are close up

to the 32% noise level in the tested images. For the
noise level of 32%, the best recognition results were
achieved when training involved images with a certain
level of noise (Fig. 3.4, curve a). Some of the tested
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Noise level, %

Percentage of recognized images

a b
c

Fig. 3.2. The results of recognition by a Kora-type algo-
rithm trained on (a) pure images of digits; (b) pure images
and images with a noise level up to 25%; and (c) pure
images and images with a noise level up to 32%.
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Fig. 3.3. The results of recognition by a Kora-type algo-
rithm trained solely on (a) images of digits with 10% of
noise; (b) images with 25% of noise; and (c) images with
32% of noise.
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Fig. 3.4. The results of recognition by a Kora-type algo-
rithm trained (a) solely on images of digits with 32% of
noise and (b) on pure images and images with a noise level
of up to 32%.
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images (e.g., of digit 1) with the noise level of 32 and
42% are shown in Figs. 3.5a and 3.5b, respectively.

To recognize images by the morphological method,
the same images of digits were used. The morphologi-
cal method can recognize images under a noise level in
the range between 0 and 49%. The percentage of cor-

rect decisions made by this method for test images with
49% of noise is no lower than 80 (Fig. 3.6, curve c).

Here, curves (a) and (b) correspond to the best
results of image recognition by the Kora-type algo-
rithm. Figure 3.5c represents one of the tested images
where the morphological method still works. It is the
image of digit 1 with 49% of noise. 

The main difference of the morphological method
from the Kora-type algorithms is that the former
method does not require training on noisy images for
recognizing both noisy and noise-free images; training
on only pure images is sufficient. This is because the
morphological method is based on shapes of images [4].

This also answers the question, what happens if the
image to be recognized is the “negative” of a training
image. If no additional constraints on brightness are
imposed, the morphological method can recognize
images with a noise level from 55 through 100%
(Fig. 3.7, curve b). The recognition results given by a
Kora-type algorithm trained on both training images
and their “negatives” are shown in Fig. 3.7, curve a.
Under additional constraints on brightness, such as the
requirement that the brightness of the background
should not exceed the brightness of the digit, the mor-
phological method cannot recognize the “negative” of a
training object image (Fig. 3.6, curve c).
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