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Having expressed the ratio of the length of the Lemniscate of Bernoulli to the length of its cocentred
superscribing circle as the reciprocal of the arithmetic-geometric mean of 1 and

√
2, Gauss wrote in

his diary, on May 30, 1799, that thereby “an entirely new field of analysis” emerges. Yet, up to
these days, the study of elliptic functions (and curves) has been based on two traditional approaches
(namely, that of Jacobi and that of Weiestrass), rather than a single unifying approach. Replacing
artificial dichotomy by a, methodologically justified, single unifying approach does not only enable
re-deriving classical results eloquently but it allows for undertaking new calculations, which did seem
either unfeasible or too cumbersome to be explicitly performed. Here, we shall derive readily verifiable
explicit formulas for carrying out highly efficient arithmetic on complex projective elliptic curves. We
shall explicitly relate calculating the roots of the modular equation of level p to calculating the p-torsin
points on a corresponding elliptic curve, and we shall re-bring to light Galois exceptional, never nearly
surpassable and far from fully appreciated, impact.

An introduction: an integral, tightly cohesive subject of

elliptic functions and elliptic curves

Given a parameter β ∈ C \ {−1, 0, 1}, introduce an essential elliptic function, as in [1, 2, 3], that is
a (meromorphic) function R = Rβ = Rβ(·) = R(·, β), possessing a (double) pole at the origin and
satisfying the differential equation

R′ 2 = 4R (R+ β) (R+ 1/β) . (1)

Denote the lattice of the function Rβ by Λβ, and call the parameter β the elliptic modulus. The map

z 7→
(
1,Rβ(z),R′β(z)

)
,

extends, with 0 7→ (0, 0, 1), to a map from the period-parallelogram C/Λβ into the complex projective
space PC2. The (extended) map induces, onto its image Eβ, which we shall call the associated elliptic
curve,1 an isomorphism of Riemann surfaces, as well as, an isomorphism of groups.2 This map, further,
enables an identification (exploiting the j-invariant) of isomorphism classes of projective complex elliptic
curves with homothety classes of lattices L/C×, which might, in turn, be identified with the fundamental
domain Γ\H, for the action of the modular group Γ := PSL(2,Z), upon the upper half plane H, as

1Without, necessarily, further specifying whether the association pertains to the elliptic function Rβ , its lattice Λβ
or the elliptic modulus β.

2The curve Eβ is, thereby, said to be a one-dimensional complex Lie group.
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is well explained in [10]. From now on, we exploit the identification of the points on the torus C/Λβ,
which might be viewed as the domain of Rβ, with the points on the elliptic curve Eβ, which might be
viewed as the image of the functional pair (Rβ,R′β). Keeping in mind that the value of the function
Rβ determines, up to a sign, via equation (1), the value of its derivative R′β, we might further identify
a pair of (not necessarily distinct) points on Eβ, sharing a first coordinate, with their corresponding
pair of points in the domain of Rβ, which image (under Rβ) coincide with that very first coordinate.

Multiplication

Fix the elliptic modulus β, and express the defining equation for the (already introduced) elliptic curve
Eβ as

Eβ : y2 = 4xq(x), q(x) := x2 + 3αx+ 1, α = α(β) :=
β + 1/β

3
.

The justification for such canonical representation of elliptic curves (not to be confused with the
Weierstrass normal form) is provided in [1]. Two distinct points (x1, y1) and (x2, y2) might be summed
(on Eβ) to a point (x3, y3), which first coordinate satisfy the addition formula

x3 =
1

4x1x2

(
x1y2 − x2y1
x1 − x2

)2
. (2)

Now, denoting by n · (x, y) the multiplication of the point (x, y) by n, and denoting by (n · x, n · y) the
n-multiple of the point (x, y) on Eβ, so that (n · x, n · y) = n · (x, y), the doubling formula expresses the
first coordinate 2 · x of the point 2 · (x, y), as calculated in [2],

2 · x =
p2(x)

q2(x)
, p2(x) :=

(
x2 − 1

2

)2
, q2(x) := xq(x).

When n is an arbitrary integer, the multiplication by n amounts to successively multiplying by its prime
factors (counted with their respective multiplicities), so we want to deduce a multiplication by an odd
prime formula. Assuming n to be odd (not necessarily prime!), exceeding 2, we might (recursively)
deduce such a formula, expressing the first coordinate of the n-odd-multiple point as a degree n2

fractional transformation of the first coordinate of the point to be multiplied, that is,

n · x =
pn(x)

qn(x)
, pn(x) := xn

2

rn

(
1

x

)2
, qn(x) := rn(x) 2,

rn(x) :=
(n− 1)2 (xqn−1(x)− pn−1(x))

n(n− 2)rn−2(x)
, r1(x) :≡ 1. (3)

An explicit formula for n · x relies on an explicit formula for (n− 1) · x as a fractional transformation
with (coprime) polynomials pn−1 and qn−1 appearing in its numerator and denominator, respectively.
Since n is odd, by assumption, the formula for (n − 1) · x might always be attained via the doubling
formula applied to

(
n−1
2

)
· x. Note that the sequence {rn : n is odd} need not be extended to include

elements rn with even indices, unlike pn and qn which are (successively) defined for all integer indices
n (employing the doubling formula whenever the indices are even), and that, furthermore, if we choose
the polynomials qn to be monic for all even n then so do become all (subsequent) polynomials rn (and
qn). The roots of each rn are precisely the first coordinates of the points, aside from the identity point,
on Eβ, of order dividing n, so, in particular, the degree of rn is (n2− 1)/2, and if m divides n then the
polynomial rm(x) divides the polynomial rn(x).
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Division

The (monic) polynomial rn, which we have introduced in the preceding section, has its coefficients in
the field F := Q(α), that is, the field of rational functions in the transcendental (or algebraic) element
α, introduced in the preceding section, over the field of rational numbers Q.3 When n is an odd prime,
as we now opt as being the default assumption, the roots of rn are the first coordinates of the points of
order n on Eβ. The assumption which will not be lifted (throughout this article) that β2 ∈ C \ {0, 1},
or, equivalently, that α2 ∈ C \ {4/9}, guarantees that the roots (of rn) are pairwise distinct. We shall
call the polynomial rn the division polynomial of level n, and, whenever an emphasis on its dependence
upon the elliptic modulus β is desired, we shall denote it as rn(·, β), still being at large viewing it either
as a function of two variables or as a β-parametric polynomial function in a single variable.

The field F[γm], obtained by adjoining a root γm of rn to the base field F, is the splitting field for the
elliptic polynomial of level n

rmn(x) :=

(n−1)/2∏
l=1

(x− l · γm) .

The polynomial rmn divides rn, and the first index (m) of rmn might be employed to designate n + 1
pairwise coprime elliptic polynomial factors of rn:

rn(x) =
n∏

m=0

rmn(x).

The group of automorphisms Aut(F[γm]/F) of each field extension F[γm]/F, 0 ≤ m ≤ n, is cyclic of
order (n− 1)/2. One might, in fact, establish the isomorphism

Aut (F[γm]/F) ∼= Z×n /{±1},

where the group, on the right hand side of the isomorphism, denoted by Z×n is the multiplicative
subgroup of Zn: the (prime) field of integers modulo n. The group Z×n is generated by a primitive
root modulo n, and the same root, after taking the quotient by the subgroup {±1}, generates all (n−
1)/2 elements of the quotient Z×n /{±1}, which we might identify with the elements of Aut (F[γm]/F).
The choice of a generator (of the latter group) does not, of course, restrict our unlimited freedom of
designating any root, of a given elliptic polynomial rmn, as γm, and then expressing all such (n− 1)/2
roots as l · γm, with 1 ≤ l ≤ (n − 1)/2. In other words, the field extension F[γm], while dependent
upon the particular choice of the polynomial rmn among the n+ 1 polynomial factors of rn, it does not
further depend upon the choice of γm as a root of rmn.

Each of the (n2 − 1)/2 (distinct) values l · γm : 1 ≤ l ≤ (n− 1)/2, 0 ≤ m ≤ n, viewed as values of Rβ,
satisfy:

Rβ

(
nR−1β (l · γm)

)
=∞.

Note that each pre-image R−1β (l · γm) is a two-point subset (in the domain of Rβ). Thus, there are n2

points (including 0, being a pole of Rβ), on the torus, C/Λβ which if multiplied by n map, under Rβ,
to one and the same point ∞, corresponding to the (additive) identity point on Eβ. To each rmn we
shall associate a line, through the origin (in C), which image under Rβ contains (all) the values l · γm.

3No further restriction is imposed upon assuming that the coefficients of polynomials (in α) appearing in the numerator
and the denominator of a rational expression, in F, are integers.
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Generally, for an arbitrary value η ∈ C,4 there are n2 distinct values xj, 1 ≤ j ≤ n2 for which

Rβ

(
nR−1β (xj)

)
= η.

As before, the pre-image R−1β (xj) is a two-point subset of the torus C/Λβ, as long as xj is not a root
of the cubic polynomial q2, that is, as long as xj ∈ C\{0,−β,−1/β}. The value η along with the n2

values x, which we have labelled as x1, x2, . . . , xn2 , satisfy the polynomial

fn(x, η) := n2 (pn(x)− ηqn(x)) =:
n2∏
j=1

(x− xj) , (4)

which whenever η is fixed (along with the already fixed elliptic modulus β) might be viewed as a
polynomial in the (single) variable x over the field Fη := F(η). We shall then write fn(x) instead of
fn(x, η), and the product on the rightmost side of (4), thereby, exhibits its n2 roots, as being the roots
of its n2 monomial factors. The task of this section is calculating these roots for a given η.

The n2-point set {xj : 1 ≤ j ≤ n2} might be divided into n collinear n-point subsets, each aligned along
the same direction vector, corresponding to one of the n+ 1 possible lines associated, as above, to one
of the elliptic polynomials rmn. Here we must emphasize that the use of the term collinear would not
have been justified without the afore-indicated identification of the image of Rβ with its pre-image,
since, strictly speaking, the collinearity pertains to the pre-image points. Now, assuming that the n2

values {xj : 1 ≤ j ≤ n2} have been ordered, so as to reflect a particular alignment along n (parallel)
lines, corresponding to a particular elliptic polynomial rmn, say the first n values {xj : 1 ≤ j ≤ n}
are the values of Rβ along the line (in its domain) determined by any pre-image point, of the n values
{xj : 1 ≤ j ≤ n}, together with any pre-image point of the (n− 1)/2 roots of that designated rmn, and
introducing the n-th degree (monic) coelliptic polynomial

tm(x) := nx rmn(x)2 − 2q′2(x) r′mn(x) rmn(x) + 4q2(x)
(
r′mn(x)2 − r′′mn(x) rmn(x)

)
,

along with the n-th degree fractional transformation

sm(x) :=
tm(x)

rmn(x)2
, (5)

one might verify that sm is an n-to-one function on the set {xj : 1 ≤ j ≤ n2}, with the subset
{xj : 1 ≤ j ≤ n}, in particular, being mapped (under sm) to a single value, which we might denote by
sm1. Actually

n∑
j=1

xj = sm1,

that is, the n-value-sum (on the left hand side) coincides with the value of the n-th degree fractional
transformation (on the right hand side) at any xj, as long as 1 ≤ j ≤ n. In fact, such an invariance,
of the function sm, might be employed in order to further divide the values {xj : 1 ≤ j ≤ n2} into
n collinear n-point subsets, each subset sharing a single image value (under sm), successively, further
denoted by sm2, . . . , smn. Letting m acquire all permissible values 0 ≤ m ≤ n, we attain n+ 1 distinct

4The subsequent assertion (concerning the number n2 of distinct values) holds for all η ∈ C\{0,−β,−1/β}. Here, we
might already point out that, for each of the three indicated exceptions the number of distinct values is (n2 + 1)/2.
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divisions of the set {xj : 1 ≤ j ≤ n2} into n collinear n-point subsets. Let wkm denote the elementary
symmetric polynomial of degree k in the n variables sm1, sm2, . . . , smn, that is

wkm :=
n∑
l=1

skml,

and put

gm(x) := xn +
n−1∑
k=1

(−1)k wkm x
n−k.

The coefficients wkm of gm are, in fact, linear functions in η,5 thus (in particular)

wkm = wkm(η) = wkm(0) + β

(
wkm(0)− wkm

(
− 1

β

))
η. (6)

The polynomial fn might now be factored (in n + 1 distinct ways) into a product of n n-th degree
polynomials:

fn(x) =
n∏
l=1

hml(x), hml(x) := tm(x)− sml rmn(x)2, 0 ≤ m ≤ n, (7)

with the values sml, 1 ≤ l ≤ n, being, now, viewed as roots of the polynomials gm (for a fixed index
m).

Once a root of fn is calculated, the other n2−1 roots might be obtained by adding to (and subtracting
from) it the (n2 − 1) /2 roots of rn (all treated as first coordinated of points on Eβ) via the addition
formula (2). Any pair of polynomials hml, which first indices (m) do not coincide with each other, has a
first degree monomial as its greatest common divisor. A root of the latter monomial is, of course, a root
of fn. Thus, a root is expressible as a rational function, involving the coefficients of the afore-indicated
polynomial pair hml. Yet, we shall present another path yielding greater conceptual insight into the
algebraic structure of a root of fn.

Let H denote a set of n+ 1 polynomials of degree n:

H =

{
hm(x) =

n∑
k=0

amn−k x
k : 0 ≤ m ≤ n

}
, (8)

and call the matrix

A =


a00 a01 . . . a0n
a10 a11 . . . a1n
...

...
. . .

...
an0 an1 . . . ann

 (9)

the matrix associated with H. Denote by Hj the n-subset H\{hj}, obtained by deleting the element hj
from the set H, and denote by Ajk the submatrix formed by deleting the j+1-st raw and the k+1-st
column of the matrix A. Associate with the subset Hj the linear system

n∑
k=1

amn−k xk = −amn, 0 ≤ m ≤ n, m 6= j.

5We point out (superfluously, perhaps) that sm(x) was regarded as a function in the variable x, where x was taken
to satisfy n · x = η. We have not (yet) viewed sm as a function of η.
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Cramer rule might be invoked, to evaluate the variable x1, of the latter linear system, as a ratio of two
determinants:

x1 = −∆jn−1

∆jn

, (10)

where ∆jk is the determinant of the matrix Ajk (assuming here that the determinant ∆jn in the
denominator is non vanishing). Now, having already denoted by x1 a root of fn, we might further
observe that such a root is simultaneously a root of n+ 1 polynomials hml, whose first indices run over
all admissible values, 0 ≤ m ≤ n, corresponding to n+1 distinct factorizations of fn.6 Since the second
index (l), of each such polynomial hml, is determined by the first (assuming the root x1 is fixed), we
might regard this set as the set H, being given in (8). A necessary and sufficient condition for such an
n + 1 set of polynomials H to be that particular set, possessing the monomial x − x1 as its greatest
common divisor, which we shall call the pinned set associated with the root x1, is the vanishing of the
determinant ∆ of its associated matrix A, given in (9), that is the condition

∆ = 0.7

Among the (n + 1)n possible H-sets, obtained by picking a polynomial hml from each of the n + 1
factorizations of fn, given by (7), n2 H-sets do satisfy the latter condition. Any of the n+ 1 n-subsets
Hj (obtained by excluding any of the n + 1 members), of a given pinned set H, might be associated
with a linear system, as we have just described. No confusion, due to using the same symbol x1 to
denote a root of fn, as well as, a variable, shared by n+1 linear systems, corresponding to n+1 distinct
n-subsets of the pinned set, emerges since all n + 1 evaluations turn out to coincide with one and the
same value for x1, being again regarded as a root of fn.

The linear dependence of a pinned set H might be explicitly expressed as the identity

n∑
m=0

(−1)m∆mk hm(x) ≡ 0, (11)

which, we emphasize, is valid for each k, 0 ≤ k ≤ n. In other words, the space of row vectors, spanned
by the set

{(−∆m0, ∆m1, . . . , −∆mn−1, ∆mn) : 0 ≤ m ≤ n}

is one dimensional, reflecting the fact that all n + 1 vectors, of the latter set, are collinear with the
vector

u :=
(
xn1 , x

n−1
1 , . . . , x1, 1

)
.

The vector u is, of course, orthogonal to the row space of the matrix A, associated with the pinned set
H, whereas the vector

v := (−∆0n, ∆1n, . . . , −∆n−1n, ∆nn)

is orthogonal to its column space. So, uT is an eigenvector of A, and vT is an eigenvector of AT ; both
eigenvectors correspond to eigenvalue zero.

For each polynomials hm, of a given pinned set H, each coefficient am1 of xn−1 coincides with a value
−sml, where the second index (l) is determined by the first (m). Thus, we might write (assuming the
pinned set H is fixed) am1 = −sm, meaning that the value indicated by sm is a particular predetermined
value among the n candidate values sml, as the index l runs through n (permissible) options. Once

6That is, for each first index m, 0 ≤ m ≤ n, a second index l, 1 ≤ l ≤ n, for which x1 is a root of hml, exists.
7Admittedly, such a condition, in and of itself, would be more satisfactory for elliptic curves over finite fields.
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more, the notation chosen, here, is consistent with the notation that we adopted upon introducing
the function sm, via formula (5). Having fixed x1, we merely agree to restrict the designation of the
notation sm from denoting a function to denoting its value at x1, that is, we assign sm = sm(x1).

Two particular instances of identity (11) are

n∑
m=0

(−1)m∆mk = 0,
n∑

m=0

(−1)m∆mk sm = 0,

the first of which reflects that the polynomials hm are monic, and means that the coordinates of the
vector v sum to zero. We conclude this section by pointing out that a vector proportional to u might
be obtained by (successively) applying Gram-Schmidt orthogonalization to the rows of A, with the last
row replaced by the vector (0, . . . , 0, 1).8 However, for a given pinned set, the value of a root x1 is
most efficiently calculated via employing the formula

n∑
m=0

sm = nx1 + n2 η. (12)

Explicit halving and thirding formulas

Formulas for halving points on elliptic curves were derived in [2]. Extending the notation n·x to indicate
the first coordinate of a point (on Eβ) multiplied by a number n, which we shall, temporarily, permit
to acquire integer, as well as, rational values, the halving (multivalued) formula might be expressed as

1

2
· x = w ±

√
w2 − 1, w := x±

√
q(x).

The leftmost side might assume 4 possible (generally, pairwise distinct) values corresponding to two
branches of the square root function being twice applied, upon calculating the values on right-hand
side. The three exceptions are, as expected, the roots of q2. Each yielding two halves. Namely, the
three pairs ±1, −β±

√
β2 − 1, and −1/β±

√
1/β2 − 1 are the halves of 0, −β and −1/β, respectively,

giving, in total, six distinct first coordinates of points of order four on Eβ. One might proceed to
calculate the coordinates of the points of order eight, as was done in [3].

We proceed to employ the results of the preceding section in order to derive explicit thirding formulas.
The points of order 3 (on Eβ) satisfy the polynomial

r3(x) = x4 + 4αx3 + 2x2 − 1

3
=

3∏
m=0

(x− γm) . (13)

Each of the four (distinct) values γ ∈ {γm : m = 0, 1, 2, 3}, viewed as values of Rβ, satisfy:

Rβ

(
3R−1β (γ)

)
=∞.

Note that each pre-image R−1β (γ) is a two-point subset (in the domain of Rβ). Thus, there are 9 points
(including 0, being a pole of Rβ), on the torus, C/Λβ which if tripled map under Rβ to one and the

8Recall that the monomial x − x1 is the greatest common divisor of the polynomials in the pinned set H, so that
the vector (0, . . . , 0, 1) is not spanned by the row space of A, and, if “orthogonalized” to this space, yields a vector
proportional to u.
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same point ∞. Generally, for an arbitrary value η, there are nine distinct values x = xj, 1 ≤ j ≤ 9,
satisfying

Rβ

(
3R−1β (x)

)
= η.

As before, the pre-imageR−1β (x) is a two-point subset of the torus C/Λβ, as long as x ∈ C\{0,−β,−1/β}.
When the value η is fixed its 9 thirds x1, x2, . . . , x9 satisfy the polynomial

f3(x) =
9∏
j=1

(x− xj) = 9 (p3(x)− ηq3(x)) =

= x9 − 9 η x8 − 12 (6α η + 1)x7 − 12
(
3(4α2 + 1) η + 2α

)
x6 − 6 (24α η − 5)x5

−6 (5 η − 24α)x4 + 12
(
2α η + 3 (4α2 + 1)

)
x3 + 12 (η + 6α)x2 + 9x− η,

with coefficients in the (base) field Fη, as defined in the preceding section. Here, we might state that the
multiplication (on Eβ) by a fixed rational non-integer number is not a single-valued function,9 thereby,
in particular, justifying the notation

1

3
· η = {xj : 1 ≤ j ≤ 9}.

The fractional transformations, introduced in (5), are cubic when n = 3:

sm(x) =
tm(x)

(x− γm)2
, tm(x) = x3 +

(
1

γ2m
− 4

)
x+ 2 γm, 0 ≤ m ≤ 3. (14)

Picking an index value m, the nine-point set {xj : 1 ≤ j ≤ 9} might be divided into three collinear
triplets, each aligned along the same direction vector (corresponding here, as described in the preceding
section, to the monomial x − γm), each triple sharing the same image value (under sm), successively
denoted by sm1, sm2 and sm3. Letting the index m assume 4 possible values, we attain 4 distinct
divisions of the set {xj : 1 ≤ j ≤ 9}.

The coefficients of the polynomial

gm(x) = x3 − w1
m x

2 + w2
m x− w3

m,

lie in Fη[γm], and, exploiting formulas (6), are readily calculated:

w1
m = sm1 + sm2 + sm3 = 9 η, w2

m = sm1 sm2 + sm2 sm3 + sm3 sm1 = 6 cm η −
3

γ2m
,

w3
m = sm1 sm2 sm3 = c2m η +

2

γ3m
,

where

cm := −3 (γm + 4α) =
6γ2m − 1

γ3m
.

The discriminant wm of the polynomial gm might be regarded as a function w in the variables γm and
η: wm := w(γm, η), where

w(γ, η) = −108(9γ2 − 1)2q2(η)

γ9
= −11664

(
7 γ3 + 21αγ2 +

(
15− 24α2

)
γ + 16α3 − 12α

)
q2(η).

9Division of points on Eβ by an integer n might, of course, be viewed as multiplication by the rational 1/n.

8



The roots of the cubic polynomial gm might, thus, be expressed via radical functions of its coefficients:

sml = 3 η +
9 η2 − 2 cm η + 1/γ2m

eml
+ eml,

eml =
3

√
27 η3 − 9 cm η2 + (27− 6 cm(α + γm)) η + 1/γ3m +

√
−wm/108 ζ l, 1 ≤ l ≤ 3,

where ζ is a primitive cube root of unity: ζ3 = 1 6= ζ. Since α2 6= 4/9, γ2m 6= 1/9 and the discriminant
wm vanishes iff q2(η) = 0 iff η ∈ {0,−β,−1/β}. Note that two of the three roots sml are swapped by
switching from a branch, of the square root function (applied to −wm/108) in the expression for eml,
to the other, while the third root (of gm) remains unaltered.

The polynomial f3 might now be factored (in four distinct ways) into a product of three cubic polyno-
mials:

f3(x) =
3∏
l=1

hml(x), hml(x) := tm(x)− sml (γm − x)2, 1 ≤ l ≤ 3.

Once a root of f is calculated the other eight roots might be obtained by adding to (and subtracting
from) it the four roots of r3 (all treated as first coordinates of points on Eβ) via the addition formula
(2). We shall suggest four ways to calculating a root x1 of f3. Firstly, a root might be obtained as a
root of any cubic polynomial hml(x) = x3 + a1x

2 + a2x+ a3, and thereby expressed as an element in a
radical extension of the field, generated by its coefficients:

x1 = b− a1
3

+
a21 − 3 a2

9 b
,

where

b :=
3

√√
−a/108− a31/27 + a1a2/6− a3/2, a := a21a

2
2 + 18 a1a2a3 − 4 a31a3 − 4 a32 − 27 a23.

Secondly, a root might be obtained as root of a first degree polynomial, namely a greatest common
divisor of any pair of cubic polynomials hml, whose first indices (m) do not match with each other, and
thereby is expressible as a rational function of the coefficients of the chosen pair of cubic polynomials.
So, if a cubic polynomial pair h1 and h2 is chosen, where

hm(x) = x3 + am1 x
2 + am2 x+ am3, (15)

then a root x1 might be calculated as

x1 =
(a12 − a22)(a23 − a13) + a11a21(a13 + a23)− a13a221 − a211a23

(a11 − a21)(a23 − a13)− a11a21(a12 + a22) + (a12 − a22)2 + a12a221 + a211a22
=

=
(1+4γ1γ2)(s1+s2)−

(
1
γ22

+4

)
γ21s1−

(
1
γ21

+4

)
γ22s2+2

(((
1−γ1γ2+

(γ1−γ2)(s2−s1)
2

)
s1s2+( 1

γ1
− 1
γ2 )

2
)
(γ1+γ2)+(γ31−γ2)s21+(γ32−γ1)s22

)
(

1
γ21

− 1
γ22

+2(γ1s1−γ2s2)
)2

+

(
2(γ1−γ2)(1−s1s2)+

(
γ22−

1
γ21

+4

)
s2−

(
γ21−

1
γ22

+4

)
s1

)
(s1−s2)

,

where the last expression is attained by recalling that am1 = −sm, am2 = 1/γ2m − 4 + 2 smγm and
am3 = 2 γm − smγ2m.

Thirdly, a root might be calculated as a common root of three-polynomial subset of a pinned set H.
So, denoting the polynomials of this pinned set by hm, 0 ≤ m ≤ 3, and denoting their coefficients via

9



that same expression (15), which we have already applied to the first pair h1 and h2, we shall then
extract the value of the root x1 as the third component of the vector solution of the linear system1 a11 a12

1 a21 a22
1 a31 a32

x3x2
x1

 = −

a13a23
a33

 .

The system might be solved either via Gauss elimination, or, explicitly, by applying Cramer rule (10):

x1 = −∆02

∆03

, ∆02 =

∣∣∣∣∣∣
1 −s1 γ1(2− s1γ1)
1 −s2 γ2(2− s2γ2)
1 −s3 γ3(2− s3γ3)

∣∣∣∣∣∣ , ∆03 =

∣∣∣∣∣∣
1 −s1 γ1(2s1 − c1)
1 −s2 γ2(2s2 − c2)
1 −s3 γ3(2s3 − c3)

∣∣∣∣∣∣ .
As discussed in the preceding section, the components labeled x2 and x3 do, respectively, coincide with
the square and the cube of the root x1. Furthermore, a vector collinear with the vector (x31, x

2
1, x1, 1)

might be obtained by “orthogonalizing” the vector (0, 0, 0, 1) with respect to the space spanned by the
three-vectors set {(1, am1, am2, am3) : 1 ≤ m ≤ 3}.

Fourthly and finally, a root might be obtained as a linear function of the four coefficients (of x2)
am1 = −sm, corresponding to the four polynomials hm, 0 ≤ m ≤ 3, of the pinned set H, using formula
(12):

x1 =
1

3

3∑
m=0

sm − 3 η = η +
3∑

m=0

9 η2 − 2 cm η + 1/γ2m
3 em

+
em
3
,

where em is understood to match that particular value, among the three values eml, 1 ≤ l ≤ 3, via
which sm is obtained as a radical function of the coefficients of the cubic polynomial gm.

The modular equation and a tribute to Galois

Put d(x) := x−1/x, and d2(x) := x+1/x−2. Let d2 denote the discriminant of the quadratic polynomial
q(x), which coincides with the discriminant of the cubic polynomial q2(x), so d2 = d(β)2 = d2(β2). The
homothety class of the lattice Λβ is represented by a (unique) point τ in the fundamental domain Γ\H,
as we alluded to in the introduction. The (Klein) modular invariant j, which maps the upper half
plane H onto C, is a modular form of weight zero. Its domain might be extended to include all rational
real points, as well as, the point at (complex) infinity. All these points map (under j) to (complex)
infinity. We shall emphasize that the modular invariant j is a (holomorphic) bijection between the
(or any) extended fundamental domain and the Riemann sphere C ∪∞.10 The domain of j might be
further extended to include the lower half plane via setting j(−τ) = j(τ). The value of j at a point τ ,
corresponding to the homothety class of the lattice Λβ is

j(τ) =
4 (d2 + 1)

3

27 d2
, (16)

and since the said discriminant d is invariant under the substitutions β 7→ −β and β 7→ 1/β, so must
be j(τ). Moreover, j(τ) is invariant under the substitutions β 7→

√
1− β2. Thus, the homothety class

of the lattice Λβ as β2 undergoes the inversions (meaning linear fractional transformations of order 2)

S : x 7→ 1

x
, T : x 7→ 1− x, (17)

10The latter statement merely defines a modular form of weight zero.
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is preserved. The latter two inversions generate a (6 element) group isomorphic with the symmetry
group S3 of a triangle. The three functional (trigonometric) pairs

{− tan2,− cot2}, {sin2, cos2}, {csc2, sec2}

might be viewed as the three vertices, which are rotated via either the composition S ◦ T or its inverse
T ◦ S. The first vertex is invariant under the action of S which transposes the second vertex with the
third, while the second vertex is invariant under the action of T which transposes the third vertex with
the first, and the third is invariant under the action of the third inversion

S ◦ T ◦ S = T ◦ S ◦ T : x 7→ x

x− 1

which transposes the first vertex with the second. Generally, twelve distinct values of β correspond to a
single point τ in the fundamental domain. The exceptions are the values, corresponding to the corners
of the fundamental domain. These are the six values β ∈ {±i,±1/

√
2,±
√

2}, corresponding to τ = i :=√
−1, and the four values β ∈ {±iζ, ±iζ2}, corresponding to τ = ζ.11 An isomorphism between elliptic

curves as their elliptic modulus β undergoes permissible transformations (generated by S and T ) might
explicitly be given as a linear map between first coordinates. Evidently, the isomorphism corresponding
to the transformation β → 1/β is given by the identity map x 7→ x, and the isomorphism corresponding
to the transformation β → −β is given by the map x 7→ −x. The isomorphism corresponding to the
transformation β →

√
1− β2 is given by the map x 7→ −(βx + 1)/

√
1− β2. Alternatively denoting

the elliptic modulus β by sin θ,12 the latter map between first coordinates

l(x) = −x tan θ − sec θ (18)

is said to induce an isomorphism of elliptic curves, as the elliptic modulus β undergoes the transfor-
mation sin θ → cos θ.13

Since two elliptic moduli β and 1/β correspond to a single elliptic function Rβ (and to a single elliptic
curve Eβ), only six elliptic functions R correspond to twelve values of the elliptic modulus, correspond-
ing to a single point τ in the fundamental domain. Only three distinct functions R correspond to
the exceptional value τ = i, and only two distinct functions R correspond to the exceptional value
τ = ζ. The term elliptic modulus, endowed upon the parameter β, is now seen to coincide with the
same term appearing in connection with the Jacobi elliptic functions. The Jacobi elliptic sine function,
corresponding to elliptic modulus β and denoted by snβ = snβ(·), satisfies the differential equation

sn′ 2β =
(
1− sn2

β

) (
1− β2sn2

β

)
,

and coincides, up to homothety and translation (of its argument), with a square root of the function
R (analytically continued). Explicitly,

β snβ

(
z√
β

)2
=

1

R−β(z)
= R (z + z0,−β) , 14 z0 :=

πi

2M(β)
,

11A reformulation involving α (instead of β) would be less cumbersome, perhaps, and so we give it here. Generally,
six distinct values of α correspond to a single point τ in the fundamental domain. The exceptions are the three values
α ∈ {0,±1/

√
2}, corresponding to τ = i, and the two values α ∈ {±1/

√
3}, corresponding to τ = ζ.

12The angle θ is then called the modular angle.
13One readily verifies that the inverse of the linear map l is l−1(x) = −x cot θ − csc θ correspond to the (reverse)

transformation of the elliptic modulus cos θ → sin θ.
14Note that the leftmost side of the equality is unaltered by switching from a branch of the square root function,

applied to β, in the expression for the argument of the (known to be odd) function snβ , to the other.
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where M(x) is the arithmetic-geometric mean of 1 and x; enlightening details about the function M
are presented in [7]. As the elliptic modulus β = sin θ undergoes the transformations, which we earlier
discussed, corresponding elliptic functions R(·,− sin θ), R(·, i tan θ) and R(·,− sec θ) coincide, up to
homothety, translation and multiplicative constants, with the squares of the Jacobi elliptic functions
snβ, cnβ and dnβ. Putting κ := 2i csc(2θ), the squares of the latter two Jacobi elliptic functions might
be, explicitly, expressed as

cnβ(z)2 = 1− κ

R (z/
√
κ, i tan θ) + i tan θ

= i cot θR
(
z + z0√

κ
, i tan θ

)
,

dnβ(z)2 = 1 +
sin θ tan θ

R
(√
− cos θ z, − sec θ

)
− sec θ

= cos θR
(√
− cos θ (z + z0) , − sec θ

)
.15

Respectively, they satisfy the differential equations

cn′ 2β =
(
1− cn2

β

) (
1− β2 + β2cn2

β

)
, dn′ 2β =

(
1− dn2

β

) (
β2 − 1 + dn2

β

)
,

as well as, the functional equations

sn2
β + cn2

β ≡ 1 ≡ β2sn2
β + dn2

β.

Here, one must also bear in mind a simple and basic functional equation

R(iz, β) = −R(z, −β).

An explicit analytic inverse k of the modular invariant j was given in [4] as a composition

k := k0 ◦ k1 ◦ k2,

where

k0(x) :=
iM

(√
1− x2

)
M(x)

, k1(x) :=

√
x+ 4−

√
x

2
, k2(x) :=

3

2

(
x

k3(x)
+ k3(x)

)
− 1,

k3(x) :=
3

√√
x2 − x3 − x.16

Strictly speaking, the function M is (doubly) infinitely-valued as its calculation entails choosing one of
two branches of the square root function at infinitely many steps. Consequently, the function k is, as
well, an infinitely-valued function. However, its values, up to a sign, differ by the action of the modular
group Γ. We mean that by flipping the sign, if necessary, we might assume that the function k never
assumes values in the lower half plane, and, furthermore, its values might be brought via the action of

15Alternatively, using the inversion L, which appears later in this article, we have

cnβ(z)2 = i cot θ L

(
R

(√
sin(2θ)

2i
z, i tan θ

)
, −i tan θ

)
, dnβ(z)2 = cos θ L

(
R
(√
− cos θ z, − sec θ

)
, sec θ

)
.

16A verification, of this explicit inverse, was carried out by Helmut Ruhland and is made accessible at the web site
provided at the end of footnote (39).
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the modular group Γ to a single value in the (or any) fundamental domain. In other words, while k is
not strictly a left inverse of j, it is a right inverse, that is,

∀x ∈ C, j ◦ k (x) = x, 17

for the modular invariant j does not separate points, in its domain, as long as they differ by the action
of the modular group Γ, and no troubles arise in extending the latter equality to the whole Riemann
sphere, including the point at (complex) infinity.

Before we move on to the modular equation, we must clarify the calculation of the inverse function k
for the two special values of j at the corners: j(ζ) = 0 and j(i) = 1. So, we point out that the (set)
values of the composition, k1 ◦ k2 at 0 and 1, coincide with exceptional (set) values of β at τ = ζ and
τ = i, respectively. Certainly, k2 has a removable singularity at zero and must be evaluated to −1
there, whereas k2(1) = 1/2. Thus, ζ ∈ k(0) = k0 ◦ k1(−1), and i ∈ k(1) = k0 ◦ k1(1/2).18

Recalling our default assumption that n is an odd prime, the functional pair (j(τ), j(nτ)) is known to
be algebraically dependent (over Q), and is said to satisfy the modular polynomial of level n, that is

Φn(j(τ), j(nτ)) ≡ 0,

where the modular polynomial Φn possesses integer (rational) coefficients. Moreover, as explained in
[11], Φn is symmetric in its two variables, that is Φn(x, z) = Φn(z, x). When τ is fixed, and so is j(τ),
the polynomial Φn(j(τ), x) might be viewed as a polynomial in a single variable x over the (base) field
Q(j(τ)),19 and we shall call its roots, the roots of the modular equation of level n. Now, let the value
of j(τ) be given by equation (16) then the values

jm :=
4 (d2m + 1)

3

27 d2m
, d2m := d2(β2

m), β2
m :=

sm(−β)− sm(0)

sm(−1/β)− sm(0)
, 0 ≤ m ≤ n, (19)

where sm(·) is the fractional transformation given by equation (5), are the roots of the modular equation
of level n. Evidently, each such root jm is invariant as β2

m is subjected to the action of the triangle group
S3, which is generated by the two inversions S and T given in (17). This action on β2

m corresponds
to the action of S3 as the permutation group of the three symbols {0, β, 1/β}, appearing on the right
hand side of the defining expression for β2

m. One might be satisfied to verify that a value of one of the
roots jm would coincide with j(nτ). The elliptic curves Eβ and Eβm are said to be related by cyclic
isogeny of degree n.

The projective special linear group Gn := PSL(2,Zn), where Zn is the (prime) field of integers modulo
n (which we had earlier introduced), is the Galois group of the modular equation of level n. Not
merely a Galois group in the conventional sense, but is the Galois group in a most spectacular sense.
Galois, who was apparently the discoverer of finite fields, indicated, in his last letter [8],20 sufficient and

17An analogy is afforded by a branch of the logarithmic function which is (regradless of the choice of the branch) a
right (but not left) inverse of the exponential function. While the values of the logarithm, at a given point, constitute a
discrete subset of a line, the values of the functions k and M do not. We have already indicated that the function M is
(doubly) infinitely-valued, suggesting that its values (at a given point) constitute a discrete subset of C (not contained
in any one-dimensinal subset over R), and so is the function k.

18Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity) function j ◦ k.
19In fact, it might be viewed as a polynomial over the ring Z[j(τ)].
20This letter, addressed to Chevalier, on the eve of Galois’ (so-called) duel (which, perhaps, simpler and more accurately

described by Alfred, who did not let anyone disturb the final moments with his older brother Évariste, as murder) May
30, 1832, was eloquently described by Hermann Weyl as “the most substantial piece of writing in the whole literature of
mankind”.
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necessary condition for depressing21 the degree of the modular equation of prime level. For this very
purpose he did introduce the, being discussed, projective special linear groups over prime fields Gn,
and observed that they were simple for all primes strictly exceeding the prime 3.22 For primes n ≥ 5,
he pointed out the three exceptions for which the groups Gn possessed subgroups of indices coinciding
with the cardinality of the field n. These were the primes 5, 7 and 11. For any prime n strictly
exceeding 11, proper subgroups of index n+1, and no lower (as Galois had also shown), are guaranteed
to exist in Gn. Equivalently said,23 a modular equation, of prime level n ≥ 5, is depressible, from
degree n + 1 to degree n (and no lower), iff n ∈ {5, 7, 11}. Via explicitly constructing a permutation
representation for the three exceptional groups, embedding them, respectively, in the three alternating
groups A5, A7 and A11,

24 Galois must, in particular, be solely credited for solving the general quintic via
exhibiting it as a modular equation of level 5. While Galois’ contribution for formulating sufficient and
necessary criterion for solubility of an algebraic equation via radicals was brought to light by Liouville,
his decisive contribution to actually solving the quintic (before Hermite and Klein did) is, surprisingly,
too poorly recognized (if not at all unrecognised!).25 Betti, in 1851 [5], futily asked Liouville not to
deprive the public any longer of Galois’ (unpublished) results, and, in 1854 [6], went on to show that
Galois’ construction yields a solution to the quintic via elliptic functions.26 One might associate with
each quintic, given in Bring-Jerrard form, a corresponding value for the (Jacobi) elliptic modulus β, as
Hermite did, in 1958 [9], implementing this very Galois’ construction, which time has come to clarify.
The group G5 acts (naturally) on the projective line PZ5, which six elements we shall, following
Galois, label as 0, 1, 2, 3, 4 and ∞. Then collecting them in a triple-pair {(0,∞), (1, 4), (2, 3)},
the group G5 is seen to generate four more triple-pairs {(1,∞), (2, 0), (3, 4)}, {(2,∞), (3, 1), (4, 0)},
{(3,∞), (4, 2), (0, 1)}, {(4,∞), (0, 3), (1, 2)}. Together, the five triple-pairs constitute the five-element
set upon whichG5 acts.27 Galois did not (in his last letter) write down the four triple-pairs, which we did

21This well-established term means lowering. Its conception is a simple (yet ingenious) idea with which Galois alone
must be fully credited, and, as we shall soon see, is the single most crucial (yet rarely brought to awareness) step towards
actually solving the quintic.

22The very concept of simplicity, being again introduced by Galois, provides the basic principle in classifying (finite)
groups. We note here that the projective special linear group is simple for all finite, not necessarily prime, fields except
the fields Z2 and Z3.

23The equivalence, of statement that follows to the few statements preceding it, was established by Galois.
24For n = 5, 7, 11, the subgroup of index n in Gn turns out to be isomorphic to A4, S4 and A5, respectively. These are

precisely the symmetry groups of the platonic solids. The tetrahedron, being self-dual, has A4 as its symmetry group. S4

is the symmetry group for the hexahedron and the octahedron, whereas A5 is the symmetry group for the dodecahedron
and the icosahedron.

25Galois’ brother Alfred and schoolmate Auguste Chevalier managed to involve Liouville (who was 135 weeks elder
to Galois) in disentangling the manuscripts, which they faithfully copied and forwarded to several mathematicians
(including Gauss and Jacobi). Liouville acknowledged in September 1843 that he “recognized the entire correctness of
the method”, which was, subsequently (in 1846), published in the Journal de Mathématiques Pures et Appliquées XI,
giving birth to Galois theory. Liouville declared an intention to proceed with publishing the rest of Galois’ papers.
Yet, most unfortunately, subsequent publication never ensued, and neither Gauss nor Jacobi has ever fulfilled Galois
modest request to merely announce the significance (tacitly alleviating the burden of judging the correctness) of his
(not necessarily published) contributions. In 1847, Liouville published (instead) his own paper “Leçons sur les fonctions
doublement périodiques”.

26In 1830, Galois competed with Abel and Jacobi for the grand prize of the French Academy of Sciences. Abel
(posthumously) and Jacobi were awarded (jointly) the prize, whereas all references to Galois’ work (along with the
work itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works contained contributions to Abelian
integrals is either unknown (to many) or deemed (by some) no longer relevant to our contemporary knowledge. For
the sake of being fair to a few exceptional mathematicians, we must cite (without translating to English) Grothendick
(as a representative), who (in his autobiographical book Récoltes et Semailles) graciously admits that “Je suis persuadé
d’ailleurs qu’un Galois serait allé bien plus loin encore que je n’ai été. D’une part à cause de ses dons tout à fait
exceptionnels (que je n’ai pas reçus en partage, quant à moi).”

27Indeed, it is the five-element set (not merely a five-element set) which Hermite had no choice but to employ. Galois’
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write after the first, and we now, guided by his conciseness and brevity, confine ourselves to writing down
only the first pair-set that he presented for each of the two remaining cases, where n = 7 and n = 11,
respectively: {(0,∞), (1, 3), (2, 6), (4, 5)} and {(0,∞), (1, 2), (3, 6), (4, 8), (5, 10), (9, 7)}. Unlike the
case n = 5, an alternative might be presented for n = 7, which is {(0,∞), (1, 5), (2, 3), (4, 6)}, and
for n = 11, which is {(0,∞), (1, 6), (3, 7), (4, 2), (5, 8), (9, 10)}. The absolute invariant for the action
of the subgroup Γ2, of the modular group Γ, consisting of linear fractional transformations congruent
to the identity modulo 2, is β2. A fundamental domain Γ2\H for the action of Γ2, might be obtained
by subjecting a fundamental domain Γ\H (of Γ) to the action of the quotient group Γ/Γ2

∼= S3.
28

In particular, β2 viewed as function on H, is periodic, with period 2. The definition of the modular
equation, initially introduced for the invariant j, might be extended to other invariants such as β2 or
β1/4. Sohnke, in a remarkable work [12], had determined the modular equations for β1/4, for all odd
primes up to, and including, the prime 19. That work, along with Betti’s work, inspired Hermite to
(successfully) relate a (general) quintic, in Bring-Jerrard form, to a modular equation of level 5, yet
he had little choice but to admit the importance of a sole Galois idea (in depressing the degree of the
modular equation).29 The modular polynomial for β1/4, of level 5, is

φ5(x, y) := x6 − y6 + 5x2y2 (x2 − y2) + 4 x y (1− x4y4), (20)

and the period of β1/4 (as an analytically continued function) is 16. Denoting the roots of φ5(x, y =
β1/4(τ)), for a fixed τ ∈ H, by

y5 = β1/4(5 τ), ym = −β1/4

(
τ + 16m

5

)
, 0 ≤ m ≤ 4,

one calculates the minimal polynomial for x1 := (y5 − y0)(y4 − y1)(y3 − y2) y. It turns out to be

x5 − 2000 β2 (1− β2)2 x+ 1600
√

5 β2 (1− β2)2 (1 + β2).

Thereby, a root of the quintic

x5 − x+ c, c :=
2 (1 + β2)

55/4
√
β(1− β2)

=
2 (1 + y8)

55/4 y2
√

1− y8
, 30

is √
5 c x1

4 (1 + β2)
=

x1

2
√

5
√

5 β(1− β2)
=

(y5 − y0)(y4 − y1)(y3 − y2)

2 y
√

5
√

5 (1− y8)
,

construction for each of the two remaining cases, where n = 7 or n = 11, allows an alternative, as will, next, be exhibited.
28The latter quotient group coincides with G2 which is isomorphic with S3.
29Hermite had apparently adopted Cauchy’s catholic and monarchist ideology, much in contrast to Galois’ passionate

rejection of social prejudice. In 1849, Hermite submitted a memoir to the French Academy of Sciences on doubly periodic
functions, crediting Cauchy, but a priority dispute with Liouville prevented its publication. Hermite was then elected to
the French Academy of Sciences on July 14, 1856, and (likely) acquainted, by Cauchy, with ideas stemming from (but not
attributed to) Galois “lost” papers. T. Rothman made a pitiful attempt in “Genius and Biographers: The Fictionalization
of Evariste Galois”, which appeared in the American Mathematical Monthly, vol. 89, 1982, pp. 84-106 (and, sorrowly,
received the Lester R. Ford Writing Award in 1983) to salvage Cauchy’s reputation (unknowingly) suggesting further
evidence of Cauchy’s cowardice, and surprising us, along the way, with many (unusual but ill substantiated and biased)
judgements telling us much about T. Rothman himself, but hardly anything trustworthy about anyone else!

30One must note that the constant coefficient c is invariant under the inversions β 7→ −1/β and β 7→ (1 − β)/(1 +
β). Here, the composition of the latter two inversions is another inversion. The corresponding four-point orbit in a
fundamental domain Γ2\H is generated via the mapping τ 7→ 2/(2− τ).
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and so is expressible via the coefficients λm and µm of the elliptic polynomials rm5(x) =: x2−λmx+µm,
0 ≤ m ≤ 5. In fact, the polynomials rm5 might be so ordered so that, for each m, the value β2

m coincides
with y8m. The (general) expression for y8m = β2

m, as given in (19), might be rewritten for the special
case n = 5 as

y8m =
s(λm, µm, β)

β4s(λm, µm, 1/β)
,

where

s(λ, µ, x) =

(
1 + λx

µ
+ x2

)(
4λ+

(
2λ2

µ
+ 4 + 5µ

)
x+ λ

(
2

µ
+ 3

)
x2 + x3

)
,

and the coefficients λm = γm + (2 · γm) and µm = γm(2 · γm) satisfy

5∏
m=0

(
x2 − λm x+ µm

)
= x12 +

62x10

5
− 21x8 − 60x6 − 25x4 − 10x2 +

1

5
+

+12αx3
(
x8 + 4x6 − 18x4 − 92x2

5
− 7

)
+ 144α2 x4

(
x6

5
− 3x2 − 2

)
− 1728α3 x5

5
= r5(x).

The roots γm and 2 ·γm, 0 ≤ m ≤ 5, of the division polynomial r5 might be highly efficiently calculated
via the algorithm provided in [2]. Calculating a pair, say γ0 and γ5, suffices, of course, for calculating
all twelve roots via applying the addition formula (2), along with the doubling formula.

Nowadays, oblivion has entirely replaced marvelling at Galois key step, towards solving the quintic, in
depressing the degree of the modular equation, of level 5, from 6 to 5,31 and Galois is merely mentioned,
along with Abel, for determining that the quintic is not solvable via radicals. With this paper, we hope
that this (crippled) view of Galois (deeply constructive) theory would finally come to an end.

Let, for example, τ = 2 i, α = 2, β =
(√

2− 1
)2

. The corresponding quintic is

x5 − x+
3
√

2
√

2

5
√√

5
.

The corresponding division polynomial r5(x) factors over Q[
√

5] into three quartic polynomial-factors:

r5(x) =
(
x4 + 4

(
3 +
√

5
)
x3 + 6

(
5 + 2

√
5
)
x2 − 4

(
29 + 13

√
5
)
x+ 9 + 4

√
5
)

(
x4 +

18x2

5
+

8x

5
+

1

5

)(
x4 + 4

(
3−
√

5
)
x3 + 6

(
5− 2

√
5
)
x2 − 4

(
29− 13

√
5
)
x+ 9− 4

√
5
)
.

Each (quartic) factor is an elliptic polynomial pair product. They are (with their argument omitted)

r55r50, r54r51 and r53r52, respectively. The (corresponding) modular polynomial φ5

(
x, y = β1/4 =

√√
2− 1

)
factors, over Q[y], into a quadratic and a quartic polynomial-factor:

φ5 (x, y ) =
(
x2 + y−2

) (
x4 + 4 y3

(
1− y2 x2

)
x− 2 y4 x2 − y8

)
,

and the six roots (of the modular polynomial) might be accordingly expressed and ordered:

y0 = −

√√
2
(
2 +
√

5
)
− χ(−1)

χ(1)
, y1 = −i

√√
2 + 1, y2 =

√√
2
(
2−
√

5
)
− χ(i)

χ(−i)
.

31For example, S. Vlăduţ (wrongfully) attributes, in his book “Kronecker’s Jugendtraum and Modular Functions”
(published by Gordon and Breach in 1991), to Hermite showing the equivalence of the general quintic to the modular
equation of level 5.
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y3 =

√√
2
(
2−
√

5
)
− χ(−i)

χ(i)
, y4 = i

√√
2 + 1, y5 =

√√
2
(
2 +
√

5
)
− χ(1)

χ(−1)
, 32

where

χ(ε) := 3 + 2

√√
5 ε.

Exploiting the identities

β =
(√

2− 1
)2

=
(√

10− 3
)(√

5− 2
)(

3
√

2 +
√

5− 2
)
,

χ(1)χ(−1) =
(√

5− 2
)2

=
(

3
√

2 +
√

5 + 2
)(

3
√

2−
√

5− 2
)
.

χ(i)χ(−i) =
(√

5 + 2
)2

=
(

3
√

2 +
√

5− 2
)(

3
√

2−
√

5 + 2
)
,

along with the alternative expressions

y0 = −
√
−(i+ 1)χ(i) +

√
(i− 1)χ(−i)√

2χ(1)
, y5 =

√
(i− 1)χ(i) +

√
−(i+ 1)χ(−i)√

2χ(−1)
,

y2 =

√
2χ(−i)√

(1 + i)χ(1)−
√

(1− i)χ(−1)
, y3 =

√
2χ(i)√

(1− i)χ(1)−
√

(1 + i)χ(−1)
,

one finds out that
x1 = −8

√
5 β,

and, so, a root of our quintic is
−8
√

5 β

2
√

5
√

5 β(1− β2)
=
−2√√

10
.

Along the way, we might calculate the (five) discriminants

d2(β2) = d2(β2
1) = d2(β2

4) = 32, d2(β2
0) =

32χ(−1)

χ(1)5
, d2(β2

2) =
32χ(i)

χ(−i)5
, d2(β2

3) =
32χ(−i)
χ(i)5

, d2(β2
5) =

32χ(1)

χ(−1)5
,

observing that they are sixth powers of the respective values

25/6,

√
5− 1

21/6χ(1)
,

√
5 + 1

21/6χ(−i)
,

√
5 + 1

21/6χ(i)
,

√
5− 1

21/6χ(−1)
,

and, so using equation (16), we might calculate five special values of the modular invariant:

j

(
5 i

2

)
= j0 =

(√
5 + 2

)20
χ(−1)6

(
238
√

5− 60

√√
5− 861

2

)3
, j(2 i) = j1 = j4 =

(
11

2

)3
,

j

(
5 i− 1

4

)
= j2 = −

(√
5− 2

)20
χ(i)6

(
238
√

5− 60

√√
5 i+

861

2

)3
,

j

(
5 i+ 1

4

)
= j3 = −

(√
5− 2

)20
χ(−i)6

(
238
√

5 + 60

√√
5 i+

861

2

)3
,

32The image of the square root is assumed, here (but not necessarily earlier!), to be unambigiously taken in the right
half-plane, including the boundary of the upper quadrant but excluding it for the lower quadrant.
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j (10 i) = j5 =
(√

5 + 2
)20

χ(1)6
(

238
√

5 + 60

√√
5− 861

2

)3
.33

We might now let τ = i, β =
√

2, and observe that the modular polynomial φ5

(
x, y = β1/4 =

√√√
2

)
factors, over Q[y], into a quadratic and a quartic polynomial-factor:

φ5

(
x, y =

√√√
2

)
=
(
x2 − y5x+ y2

) (
x4 − 3 y5x3 − 2 y2x2 + y7x− y4

)
,

before confirming that the roots of the latter quartic polynomial-factor

ε2
√

5 + 1

y3
(
ε
√√

5− 1
) , ε = {1, −i, i, −1},

are, respectively, obtainable as fourth roots of the values
√

2
(
ε2
√

5 + 2
)

χ(−ε)
,

which, in turn, are (as they ought to be) the images of the four afore-calculated values β0, β2, β3 and
β5 (where β was 3− 2

√
2 ) if subjected to the (fourth order) linear fractional transformation

1 + βm
1− βm

, m ∈ {0, 2, 3, 5}.

The four corresponding values of the discriminants are

d2

(
2
(
ε2
√

5 + 2
)2

χ(−ε)2

)
=

χ(ε)5

2χ(−ε)
= 32

(
χ(ε)√
5− ε2

)6
.

Two more special values of the modular invariant are calculated by (reapplying) formula (16) to a
discriminant from, firstly, the complex-conjugate (ε = ±i ) pair, and, secondly, the real-valued (ε = ±1 )
pair:

j

(
5 i+ 1

2

)
=

(
2927− 1323

√
5

2

)3
, j (5 i) =

(
2927 + 1323

√
5

2

)3
.

One might infer, from equation (19), that the modular polynomial, of level 2, Φ2(x, z) vanishes at

(x, zl) =
4

27

(
(d2 + 1)

3

d2
,

(d2l + 1)
3

d2l

)
, l ∈ {0, 1, 2},

where (
d20, d

2
1, d

2
2

)
= 16

(
1

d2
, − d

β3
, β3 d

)
, d = d(β) = β − 1

β
.

For x ∈ {j0, j2, j3, j5} we have already calculated the (two) corresponding values z0. Concluding this
section, we calculate the corresponding values z1 and z2, so put

ψ(δ, ε) :=

√
5 + 1

8χ(ε)6

(
57272− 34011 δ

√
2 + 4

(
101− 5463 δ

√
2
)
ε2
√

5 +

33These special values might be expressed as cubes if one notes that
√

5± 2 =
(√

5± 1
)3
/ 8.
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−18
(

800 + 111 δ
√

2 + 4
(

100 + 27 δ
√

2
)
ε2
√

5
)
ε

√√
5

)
=

(
ε2
√
5 + 1

)37
239

(
1190448488− 858585699 δ

√
2 + 540309076 ε

2√
5− 374537880 δ ε

2√
10− ε

√√
5
(
693172512− 595746414 δ

√
2 + 407357424 ε

2√
5− 240819696 δ ε

2√
10
))

=

=
1

8

(
129569705555681708 + 57945333889427292 ε

2√
5− ε

√√
5
(
86648484409011792 + 38750380257176208 ε

2√
5
)
+

−9 δ
√

2

(
10179957492752331 + 4552615392370507 ε

2√
5− ε

√√
5
(
6807747878350206 + 3044517405934206 ε

2√
5
)))

,

and observe that

z1(jm) =
4

27

(
28/3d(βm)2/3

β2
m

− βm
24/3d(βm)1/3

)3
= ψ(−1, ε)3,

z2(jm) =
4

27

(
28/3β2

m d(βm)2/3 +
1

24/3βm d(βm)1/3

)3
= ψ(1, ε)3,

where ε ∈ {1, −i, i, −1} correspond, respectively, to m ∈ {0, 2, 3, 5}, as before, and verify that

j

(
5 i

4

)
= z1(j0), j

(
20 i+ 5

17

)
= z1(j2), j

(
20 i− 5

17

)
= z1(j3), j (20 i) = z1(j5),

j

(
5 i+ 2

4

)
= z2(j0), j

(
20 i+ 4

13

)
= z2(j2), j

(
20 i− 4

13

)
= z2(j3), j

(
10 i+ 1

2

)
= z2(j5).

Instead of a conclusion: few motivating calculations towards

many more

Given a parameter γ ∈ C \ {±1} and a variable x introduce an inversion L as

L(x, γ) :=
γx− 1

x− γ
.

By calling L an inversion, we tacitly assume the parameter γ being fixed. The inversion L(·, γ) swaps
the point 1 with −1, whereas the dual inversion L(x, ·) fixes, for a fixed argument x ∈ C, the points −1
and 1. The inversion L ought to be viewed as a conformal bijection, from the Riemann sphere C ∪∞
onto itself, which coincides with its own inverse, that is,

∀x ∈ C ∪∞, L(L(x, γ), γ) = x. (21)

The inversion L satisfy two properties we’ll call skew commutativity and skew associativity,34 meaning
that, ∀x ∈ C ∪∞, the two respective identities

L(x, γ) = −L(γ, x), L (L(x, γ), δ) = L(−x, L(γ, δ)),

hold. Together, these two properties are equivalent to another property-pair

L(x, γ) = −L(−x,−γ), L (L(x, γ), δ) = −L(L(γ, δ),−x).

34The non-associative division algebra of octonions O, sometimes referred to as Cayley algebra, inevitably springs to
mind. The terms “skew commutative” and “skew associative” are rarely used nowadays, upon describing the octonions
O, often replaced, respectively, by the terms “anti-commutative” and “anti-associative”. The latter term is even more
frequently replaced by “alternative”.
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Identity (21) might, in fact, be regarded as the (special) case of skew associativity, corresponding to
δ = γ. Observing that L(1/γ, γ) = 0 and L(0, γ) = 1/γ, the cases δ = 1/γ and δ = 0 might be
emphasized as the identities

L

(
L(x, γ),

1

γ

)
=

1

x
,

1

L (x, γ)
= L

(
1

x
, γ

)
= L

(
x,

1

γ

)
.

The Klein four-group, which fixes the differential equation (1) as described in [1], is generated by any
two of its three non-trivial elements, which are

x 7→ 1

x
, x 7→ L(x,−δ), δ ∈

{
β,

1

β

}
. (22)

These three inversions are permuted if conjugated by the map l, given in (18). Explicitly,

l

(
1

l(x, δ)
,
√

1− δ2
)

= L

(
x,−1

δ

)
.

l
(
L
(
l(x, δ),−

√
1− δ2

)
,
√

1− δ2
)

= L(x,−δ).

l

(
L

(
l(x, δ),− 1√

1− δ2

)
,
√

1− δ2
)

=
1

x
.

Put
Ln (x, δ) := x

∏
γ: rn(γ, δ)=0

L(x, γ)2,

and observe that the multiplication by an odd integer n of a first coordinate x of a point on Eβ, given
by (3), must commute with the three inversions given by (22), that is,

n · x = Ln (x, δ) = 1/Ln

(
1

x
, δ

)
= L (Ln (L(x,−δ), δ) ,−δ) , δ ∈

{
β,

1

β

}
,

and we must also have

Ln (x, δ) = −Ln (−x,−δ) = l
(
Ln

(
l(x, δ),

√
1− δ2

)
,
√

1− δ2
)

= l

(
Ln

(
l(x, δ),

1√
1− δ2

)
,
√

1− δ2
)
.

The latter formula merely reflects the fact that multiplication is respected by isomorphisms (of elliptic
curves), thereby obviating the second and the third equality along with the first.35

Calculating directly the sum

n∑
m=0

sm(x) = n(n+ 1)x− 2 q′2(x) r′n(x) rn(x)− 4 q2(x) (r′n(x)2 − r′′n(x) rn(x))

rn(x)2
,

and applying the multiplication (by an odd prime n) formula to the last summand in formula (12), we
might deduce the functional equation

n2xn
2

rn

(
1

x

)2
= n2x rn(x)2 − 2 q′2(x) r′n(x) rn(x) + 4q2(x)

(
r′n(x)2 − r′′n(x) rn(x)

)
,

35One might opt a more technical route of deducing the latter formula, aided with the formulas for conjugating the
inversion L with the linear map l, given above.
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from which we, in turn, deduce the following system of equations

n2γn
2

rn

(
1

γ

)2
= 4q2(γ) r′n(γ)2,

as γ runs through the roots of rn.

We shall refrain from delving into explicit calculations of (all) the coefficients wkm, 1 ≤ k ≤ n, yet we
carry a calculation for the (last) coefficient wnm, thereby demonstrating that such calculations might be
worthwhile to pursue in the near future. The coefficient wnm might be expressed as

wnm(η) = c2mn (η − ηmn ) , (23)

and calculating it, being a linear function of η, amounts to calculating the two constants cmn and ηmn.
These are

cmn = n

(n−1)/2∏
l=1

sm(l · γ), ηmn = −sm(0)

n2

(n−1)/2∏
l=1

(
sm

(
1

l · γ

)
/sm (l · γ)

)2
, 36

where γ is a (fixed) root of rn/rmn, that is,

rn(γ) = 0 6= rmn(γ).

And, as γ runs through n(n− 1)/2 permissible values, while restricted to satisfy the latter condition,
both constants cmn and ηmn remain unaltered. So, as we already know, both coefficients are elements
of the field F[γm], where γm is a root of rmn.37 Alternative expressions are

c2mn = β (wnm(0)− wnm(−1/β)) ,
1

ηmn
= β

(
wnm(−1/β)

wnm(0)
− 1

)
.

Denote the roots of the coelliptic polynomial tm by ξk, 1 ≤ k ≤ n, and pick an index j so that 0 ≤ j ≤ n
and j 6= m. One then finds that, for any given root γ of rjn, the equality38

ξn
2

k

(
rn

(
1

ξk

)
/rn(ξk)

)2
= −rjn(0)2n tm(0)

(n−1)/2∏
l=1

(
tm

(
1

l · γ

)
/tm(l · γ)

)2
merely reflects two (out of many) distinct ways of calculating one and the same the value ηmn = n · ξk.
In other words, as k runs through n values on the left-hand side of the equality, whereas γ runs through
(n−1)/2 values for each of the n possibles values for j, all n(n+1)/2 permissible values (jointly obtained
on both sides) turn out to coincide with one and the same. The latter identity supplies an example of
identities, while conceptually simple, quite cumbersome to verify, even when aided with an up-to-date

36For a less cumbersome notation, we have avoided using two indices for (either) the function sm (or tm), leaving its
dependence upon n being tacitly assumed. Once the right hand side of each equality is calculated, the double indices
endow the dependence, of the two values cmn and ηmn, with explicity.

37The coefficients cmn and ηmn are, in fact, elements of the (smaller) field which (merely) contains the coefficients of
rmn.

38Here, as was the case with the deduced functional equation for the division polynomial rn and the system of equations
that followed it, the primality of n is not necessary but its oddness is (as we have not even bothered with defining division
polynomials with even indices). My immediate family, that is my wife, son and daughter must be credited for prompting
this footnote. Most of the pertinent calculations were carried out by my wife Anja, and must be brought to light in
another article.
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symbolic computation software, implemented on contemporary machines. Perhaps, one ought to start
with verifying the case, where n = 3, that is the case

ξ9k

(
r3

(
1

ξk

)
/r3(ξk)

)2
= −2 γm

(
γ3 tm

(
1

γ

)
/tm(γ)

)2
, (24)

where r3 and tm are given in (13) and (14), respectively.39 The three values on the left-hand side, as
k acquires the values 1, 2, 3, and the three values on the right-hand side, as γ runs through the three
other than γm roots of r3, coincide with the value

ηm3 = − 2 γ3m
(6 γ2m − 1)2

=
2 (16α(13− 48α2)− 4(7 + 528α2)γm + 48α(1− 96α2)γ2m − (13 + 1152α2)γ3m)

(1− 96α2)2
.

Four distinct invariants ηm3, 0 ≤ m ≤ 3, correspond to each α 6= ±2/3. With γ being a root of rjn,
j 6= m, as before, we might also derive the identities

n rjn(0)n rmn(0)

(n−1)/2∏
l=1

(
rmn

(
1

l · γ

)
/rmn(l · γ)

)2
= (−1)(n−1)/2,

n∏
k=1

rn(ξk) = 2n−1
(n−1)/2∏
l=1

q2(l · γm) r′n(l · γm)2 sm(l · γ)n.

The left-hand side of the latter equality is recognised as the resultant of the polynomials tm and rn.
Rewriting it for the case, where n = 3, yields an expression for the resultant as a cube

3∏
k=1

r3(ξk) = (4 q2(γm) sm(γ))3 =

= 64
(
−28/27 + 7α2/3− 12α4 + α

(
4/3− 27α2

)
γm +

(
20/3− 31α2

)
γ2m − 8α3 γ3m

)
.

We conclude by remarking that cmn = 0 iff ηmn =∞. In this case wnm is constant (no longer dependent
upon η), and the polynomial tm(x) divides the polynomial rn(x). But tm would possess a common root
with rn iff it possess a (precisely one) common root with each factor rjn, 0 ≤ j ≤ n, j 6= m.40 The
expression for the coefficient wnm, given in (23), would then have to be replaced by

wnm(η) = wnm(0) = sm(0)

(n−1)/2∏
l=1

sm

(
1

l · γ

)2
,

(n−1)/2∏
l=1

tm (l · γ) = 0,

39The latter (simplest) equality was subjected to several numerical verifications by Ivan Kozhevnikov (CC RAS,
Moscow, Russia), and by Mikhail Malykh (FNM MSU, Moscow, Russia), who subsequently applied Sage and Maple
standard simplification procedures to the difference (of the right and the left hand side) with negative result (that is,
the difference was not recognized by the machine as being zero)! After presenting the equality on April 16, 2014 at the
7th International Polynomial Computer Algebra Conference in St. Petersburg, Russia, Sergei Meshveliani (PSI RAS,
Pereslavl-Zalessky, Russia) suggested explicit procedures, based on Gröbner basis techniques, in order to yield the desired
simplification, which he outlined on May 21, 2014 at the 17th Workshop on Computer Algebra in Dubna, Russia. Later,
in private correspondence, Helmut Ruhland presented a straightforward (no machine requiring) constructive proof, which
I (with his permission) presented on the joint MSU-CCRAS Computer Algebra Seminar on September 24, 2014. The
presentation, containing his proof, was titled “Torsion points on elliptic curves and modular polynomial symmetries”
and is freely accessible via the world wide web at http://www.ccas.ru/sabramov/seminar/doku.php.

40Note that tm(γm) = 4 q2(γm) r′mn(γm)2 never vanishes.
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where γ is (again) a root of rn/rmn. The latter condition must be satisfied by any such root, so (in
other words) it is the condition of vanishing of the resultant of the polynomials tm and rjn for each
j 6= m, 0 ≤ j ≤ n. For n = 3, the three conditions t0(γj) = 0, j ∈ {1, 2, 3}, are equivalent to the
(single) condition that γ20 = 1/6.41 The coefficients w2

0 and w3
0, then, acquire the (independent of η)

constant values −3/γ20 = −18 and 2/γ30 , respectively.
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First hand calculations, performed and courteously provided by I. Kozhevnikov (CC RAS, Moscow,
Russia), verifying equality (24) for a special case, where the division polynomial and a coelliptic
polynomial (denoted here by p4 and p3, respectively) possess a common root (denoted by γ4 =
1/
√

6 ). In the last line, he verifies that this equality, which (in this special case) yields (complex)
infinity, still holds even after multiplying both sides by the (vanishing) value of the denominator
of the right hand side (yielding a finite value, given by the numerator of the right hand side).
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