
1 Primal-dual constraint aggregation method

Consider a convex optimization problem in the form

minff(x)jx 2 Xg

(P)
subject to

Ax = b;

where f(�) : Rn ! R is convex, A : Rn ! R
m, b 2 R

m, X is convex and
compact. We will also use X to denote the feasible domain of problem (P).

The method described below relies on the following basic assumption:
A1: the set of optimal solutions to (P) is nonempty and if (x�; p�) is a

primal-dual optimal solution pair, (x�; p�) 2 KKT (P ); then

0 2 @f(x�) +AT p� +NX(x
�);

where @f(u) is the subdi�erential of f at u, and NX(u) is the normal cone to
X at u:

NX(u) = fz 2 Rnjhz; y � ui � 0; y 2 Xg;

(see, e.g., [?]).
For the assumption to hold it is su�cient that any of the following conditions

is satis�ed ([?]):
i) ri X \ fxjAx = bg 6= ;;
ii) X is polyhedral.

At each iteration of the method, the original feasible set X is replaced by a
relaxed set formed by a number of aggregate constraints (even a single constraint
is possible) that are dependent on the current solution approximation xc 2 X .
Namely, let Ic

j
, j = 1; : : : ; Jc form a partition of the index set f1; : : : ;mg:

[jI
c

j = f1; : : : ;mg; Icj \ Icl = ;:

De�ne a set of aggregate constraints as follows

h[Axc � b]Ic
j

; Ax� bi = 0; j = 1; : : : ; Jc; (1)

where the ith component of [h]S is hi if i 2 S and 0 otherwice. If for some j,
the aggregate [Axc � b]Ic

j

turns out to be identically 0 then the corresponding
constraint is absent.

In the special case where the partition consists of a single element including
all indices of the original set, the aggregate constraint obviously becomes
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hAxc � b; Ax� bi = 0: (2)

Constraint aggregation method with the aggregate as (2) was proposed in [?]
and its regularized version was studied in [?]. However, in [?, ?], quite strong
requirements had to be imposed on parameters of the method. The present
approach aims at overcoming this di�culty by considering the iterative process
in the primal-dual space. At the same time, the computational burden required
at each iteration is basically the same as in [?, ?].

Theoretical convergence analysis of the method will be conducted for the case
of the single aggregate though all arguments remain true for multiple aggregates
as well. Also note that in general neither the number of aggregates Jc nor their
composition need remain constant in the course of the iteration process.

Denote by Xc the set de�ned by the (2):

Xc = fx 2 X jhAxc � b; Ax� bi = 0g (3)

Since aggregate constraints are linear combinations of the original constraints,
one has X � Xc, i.e., the aggregate set Xc is indeed a relaxation of the original
set.

Now de�ne the subproblem to be solved at each iteration of the method. Let
xc 2 X , pc 2 Rm be given. Consider the problem

minff(x) + hpc; Ax� bi+ cjx� xcj2=2jx 2 Xcg: (4)

Here j � j denotes the Euclidean norm, and c is a parameter.
An important question concerning the subproblem is that how easily it can

be solved. If f(x) is linear and X is a nonnegative orthant or a box, the solution
procedure is easy. Another case that can be reduced to the previus one (however,
at some cost) is where

f(x) = hHx; xi+ h`; xi;

with H = DTPD, and P being diagonal. Introducing new arti�cial variables
s = Dx one obtains a quadratic objective function with a diagonal hessian so
that (4) becomes simple. An important example of the objective function f of
the form just mentioned comes from portfolio optimization using mean-variance
approach []. Here H is a variance-covariance matrix of random payo�s of assets.

However, if one wishes to consider a more general objective function and/or
more aggregate constraints, one can only guarantee a solution of (4) up to a
certain tolerance. To be more precise, we consider uc 2 X to be an approximate
solution to (4) if there exists w 2 @f(uc) such that

hw +AT pc + c(u
c � xc); x� uci � ��c; x 2 Xc; (5)

jhAxc � b; Auc � bij � �c (6)
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for some nonnegative �c and �c. We will show that if �c and �c are small enough
then the convergence results will not be much a�ected by the presence of such
inaccuracy. This in some sense characterizes stability of the method studied.

In sequel, we do not focus on particular technique for solving the subproblem
at each iteration, thus making a "black-box" assumption. Note only that if
major di�culties stem from a big number of constraints (the case we are mostly
interested in), aggregation can help handling these problems because it reduces
the dual space in the subproblem so that, for example, bundle methods (see,
e.g., []) for the dual function can be e�ciently applied.

Now let us de�ne the basic version of the primal-dual constraint aggregation
method for solving (P). Some modi�cations of the method are to be speci�ed
later.

Method 1. Let (x0; p0) be �xed, x0 2 X ;
(1) given (xk ; pk), xk 2 X , and the parameters k > 0 and �k > 0 and �k,

solve the subproblem (4) (with c = k) to obtain uk such that (5) and (6) are
satis�ed;

(2) choose the values of the step-size multipliers �k and �k and set

xk+1 = xk + �k(u
k � xk);

pk+1 = pk + �k(Au
k � b);

(3) set k = k + 1 and continue with (1).

In the form just de�ned the method would produce an in�nite sequence
f(xk; pk)g. An implementable stopping rule is to be discussed below.

The following theorem establishes convergence of the method 1 under speci�c
choice of the parameters �k, �k, k, �k, �k.

Theorem 1. Let LA be de�ned as follows

LA = maxfjAhj2j jhj = 1g;

(a) let k be positive for all k = 0; 1; : : :;
(b)

�k � (k=2)ju
k � xkj2 (see remark 3 after the theorem),

�k � (1=4)jAxk � bj2;
(c) �k satisfy any of the following rules

A. 0 < �k �
1

2(1+LA=
2

k
)
;

B. 0 < �k �
ju
k
�x

k
j
2

2(juk�xkj2+jAuk�bj2=2
k
)
;

(d) �k = �k=k.
Then

(i) the sequence fxkg generated by method 1 is bounded and its arbitrary

limit point belongs to the set of optimal solutions of problem (P) X�;
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(ii) for any (x�; p�) 2KKT(P) and arbitrary k one has the estimate

jxk+1 � x�j2 + jpk+1 � p�j2 � jxk � x�j2 + jpk � p�j2

�(�k=4)ju
k � xkj2;

i.e., the distance to the optimal primal-dual solution set is monotonically de-

creasing on the trajectories of the method.

As a special case one may consider setting k � . Then rule A would result
in a constant positive step-size. As will be shown, rule B will also guarantee a
step-size uniformly bounded from zero.

Proof. Assumption A1 implies that for some w� 2 @f(x�)

hw� +AT p�; uk � x�i � 0 (7)

where (x�; p�) is an arbitrary KKT(P) point and k is an arbitrary iteration
index. By de�nition of pk+1

hAT p�; uk � x�i = hp� � pk; Auk � bi+ hAT pk; uk � x�i

= (1=�k)hp
� � pk; pk+1 � pki+ hAT pk; uk � x�i: (8)

Substitute x = x� and c = k in (5):

hw + AT pk + k(u
k � xk); x� � uki � ��k:

Rearranging the terms and recalling condition (b) on �k write this as follows

hw +AT pk; x� � uki � (k=2)ju
k � xkj2 � khu

k � xk; xk � x�i (9)

Now substitute (8) in (7) and multiply (7) and (9) by �k. Noting that �k =
�k=k and hw � w�; x� � uki � 0 add up (8) and (9) which results in the
following estimate

�(�k=2)ju
k � xkj2 �

�khu
k � xk; xk � x�i+ hpk+1 � pk; pk � p�i: (10)

Consider the merit function d(x; p) = jx� x�j2 + jp� p�j2, where x� and p� are
the same as above.

By de�nition of the method one may write

d2(xk+1; pk+1) = d2(xk; pk) + 2hpk+1 � pk; pk � p�i

+ 2�khu
k � xk; xk � x�i+ �2kju

k � xkj2

+ �2
k
jAuk � bj2
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The right-hand side may be estimated using (10):

d2(xk+1; pk+1) � d2(xk ; pk)� (�k � �2
k
)juk � xkj2 + �2

k
jAuk � bj2 (11)

Using inequality (6) and condition (b) one can provide the following estimates
for the residual of the system of constraints at xk and uk:

jAuk � bj2 � �jAxk � bj2 + jA(uk � xk)j2 + 2"k

� �(1=2)jAxk � bj2 + jA(uk � xk)j2 (12)

From (11) one can see that if the step-size �k is choosen according to the rule
(B) then (11) transforms into

d2(xk+1; pk+1) � d2(xk ; pk)� (�k=4)ju
k � xkj2:

Note that this step-size choice rule is derived from minimizing the right-hand
side in (11) with respect to �k. Because of (12) �k is uniformly separated from
zero at least if k is uniformly positive.

Using again (12) one can further estimate (11) as follows

d2(xk+1; pk+1) � d2(xk; pk)� (�k � �2
k
� (LA�

2
k
=2

k
))juk � xk j2:

From here one derives the same formula as above using the step-size choice rule
A. Statement (ii) of the theorem is proved.

In particular, statement (ii) implies that the the sequences fxkg, fpkg gen-
erated by the method is uniformly bounded and moreover, juk�xkj ! 0. Then,
inequality (12) guarantees that the limitting set of both sequences fxkg and
fukg lies in the fesible domain X . Setting x = x� in (5) and recalling the

de�nition of �k one obtains

f(uk)� f� � O(juk � xkj)

which means that in fact, both sequences fxkg and fukg converge to X �. The
proof is complete.

Remark 1. Let �c denote the optimal dual multiplier to the aggregate con-
straint (2) at iteration c. It follows straightforwardly from (5) that if

lim �c(Ax
c � b) = 0

then the sequence of pk is convergent to a dual optimal solution of (P). In this
case, statement (ii) of the theorem would imply that the sequence of primal-dual
pairs (xk; pk) converges to a particular point in KKT(P).

Remark 2. Step-size choice rule A is derived from B by using the "conserva-
tive" estimate (12) via the constant LA. Of course, in practice B is preferable
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since allows a better use of the local information. Also note, that if one sets
�k � 0, then �k can be taken twice as big as in the rules A or B. This is directly
seen from the proof of the theorem.

Remark 3. It is straightforward to generalize the proof to the case of multiple
aggregate constraints. Note that for any iterate xc adding up (1) yields hAxc �
b; Ax � bi. If one requires condition (6) as for the case of a single aggregate,
the proof then goes without change.

Remark 4. The rule prescribing the choice of �k in condition (b) may seem
to be unimplementable since it depends on uk which is yet to be calculated.
However, due to (12) one has a bound

jAxk � bj2 � 2LAju
k � xk j2

whenever uk satis�es (6). (Note that �k in (6) depends on xk already available.)
Therefore it would be safe to require that

�k � (k=4LA)jAx
k � bj2;

which is, however, a conservative estimate.
As is easily seen the errors �k and �k allowed at each iteration of method 1

tend to zero and moreover,
P

�k <1 and
P

�k <1. However, we do not have
to specify the entire sequences of �k and �k apriori which would have posed a
problem in practice. Instead, at a current iteration the magnitude of admissible
errors can be determined using the past information from the method.

Remark 5. The method provides estimates of the quality of the current solu-
tion approximation and hence an implementable stopping rule. From statement
(ii) of the theorem it follows that the limitting set of the sequences fxkg and
fukg coincide. Hence fukg is also convergent to an optimal solution of problem
(P) and we provide the error bounds for uc at iteration number c. First note
that by (12) for each c

L
1=2

A
juc � xcj � jAuc � bj:

Consider (5) and set x to be an arbitrary optimal solution to (P). Then recalling
(b)

((c=2)ju
c � xcj+ cd+ jpcjL

1=2

A
)juc � xcj � f(uc)� f�;

with d being diameter of X . It follows from theorem 1 that pc are bounded, and
juc�xcj ! 0. Therefore juc�xcj may serve as an easily computable measure of
closeness of uc to both feasible domain X and the optimal solution set of (P).

Remark 6. Complexity bound. Based on remark 5 and statement (ii) of
theorem 1 one can provide the following bound on the number of iterations to
be performed by method 1 in order to achieve an absolute accuracy � > 0 in
the sense that
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jAuc � bj � �;

f(uc)� f� � �:

Let r denote the distance from the initial solution approximation (x0; p0) in
method 1 to the set KKT(P), and let C be the maximal of the multipliers
standing on the right-hand side in the estimates in remark 5:

C = maxfL
1=2

A
; 2cd+ sL

1=2

A
g;

(we have bounded jpcj with s and juc � xcj with d). Let N be a maximum
iteration number such that juc � xcj > �=C for all c � N . Statement (ii) of
theorem 1 together with rules A and B for choosing the step-size multiplier
imply that

N �
8(1 + LA=

2)r2C2

�2
: (13)

According to [?] such estimate can not be improved by an order of � uniformly
with respect to the variable space dimension by a method that only uses infor-
mation provided by the functions involved and its gradients. Method 1, however,
does not completely fall into this class because the subproblem requires global
information about f at each iteration. Below we consider a version of method 1
that uses only local information while still having a similar complexity bound.

1.1 Method 2

In the previous subsection we have made a "black box" assumption about the
procedure for solving the auxiliary subproblem. The question whether this
assumption is justi�ed, in particular, depends on the objective function f . Below
we describe a modi�cation of method 1 that gives an explicit procedure for
dealing with possible complications due to f . More speci�cally, we incorporate
in method 1 an inner cycle that solves the auxiliary problem (4) by successive
linearization of the objective function. It will be shown that the inner cycle
terminates after a �nite number of steps and also we provide the complexity
bound for the method with linearization similar to (13).

We make the following additional assumption:
A2: function f is di�erentiable and its gradient is Lipschtitz continuous

with constant Lrf :

jrf(x)�rf(y)j � Lrf jx� yj:

We also assume for simplicity that auxiliary subproblems of the inner cycle
are solved precisely.

Method 2.
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Let (x0; p0) be �xed, x0 2 X ;
(1) given (xk ; pk), and k > 0 set xk;0 = xk;
(1.1) (inner cycle): given xk;i, compute

vk;i = argminfhrf(xk;i) +AT pk + k(x
k;i � xk); x� xk;ii

+jx� xk;ij2=2g (14)

subject to

x 2 X

hAxk � b; Ax� bi = 0;

(1.2) choose the step-size �i and set

xk;i+1 = xk;i + �i(v
k;i � xk;i);

(1.3) for the �rst i such that STOP, set uk = xk;i;
end of inner cycle;
(2) choose �k and �k and set

xk+1 = xk + �k(u
k � xk);

pk+1 = pk + �(Auk � b);

(3) set k = k + 1, continue with (1).

STOP:

(k=2)jx
k;i � xkj2) � djvk;i � xk;ij;

d is the diameter of the set X .

Remark 2.1. Finiteness of the inner cycle. Under appropriate choice of the
step-size multiplier �i the inner cycle becomes a gradient projection method for
the problem

minf�k(x)jx 2 Xkg

with

�k(x) = f(x) + hpk; Ax� bi+ (k=2)jx� xkj2:

Standard convergence results with regard to this method (see, e.g., []) yield
that the sequence fxk;ig converges to the unique optimal solution of the above
problem, and moreover, vk;i�xk;i ! 0. This implies that STOP will hold after
only a �nite number of steps.

Now we establish convergence of method 2.
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Theorem 2. Choose k, �k, and �k as in theorem 1. Then for the sequence

of xk generated by method 2, statements analogous to (i) and (ii) of theorem 1

are true.

Proof. Optimality conditions in (14) yield

hr�k(x
k;i) + vk;i � xk;i; x� vk;ii � 0

for x 2 Xk. After some simple tranformations this becomes

hr�k(x
k;i); x� xk;ii+ (k=2)jx

k;i � xkj2 �

(k=2)jx
k;i � xkj2 � djvk;i � xk;ij

For the index i such that STOP is reached, the right-hand side of the latter
inequality is greater or equal zero. Setting uk = xk;i as in method 2 and denoting
�k = (k=2)ju

k � xkj2 leads us to relation (5) with the error �k satisfying
condition (b) of theorem 1. Then application of theorem 1 yields the desired
result. The proof is complete.

Note that method 2 di�ers from method 1 just in a more detailed description
of step (1). Therefore, all remarks made after theorem 1 remain valid also for
method 2. We would like to further develop the one concerning complexity
analysis.

Remark 2.2. Complexity bound. Method 2 belongs to the class of methods
speci�ed in [?] for which the bound similar to (13) is tight. We show that if �i
is chosen to be 1=Lr� and k �  > 0 then for method 2 one has a complexity
bound that di�ers from (13) only by a factor of c1 log(c2=�).

Recall (see, e.g., [?]) that under assumption of strong convexity, for the
gradient projection method (inner cycle) with the step-size �i = 1=Lr� one has

jxk;i � �ukj � dqi=2;

where �uk is the optimal solution to (14) and q = (1 � =Lr�). Local analysis
of the objective function decrease at each iteration yields

�(xk;i+1) � �(xk;i)� (1=2Lr�)jv
k;i � xk;ij2:

Hence

(1=2Lr�)jv
k;i � xk;ij2 � �(xk;i)� �(�uk)

� L�jx
k;i � �ukj

� L�dq
i=2 (15)

As in remark 6, let N be a maximum number of the outer iteration of method
2 such that juk � xkj > �=C for all k � N . This means that for k � N , the
following bound
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djvk;i � xk;ij �
�2

2C2

guarantees that the STOP in the inner cycle has already been reached. In turn,
(15) guarantees that the latter inequality will be satis�ed for the �rst i such
that

(2Lr�L�d)
1=2qi=4 �

�2

2C2
:

This implies that for each k � N the number the inner cycle iterations is
bounded by c1 log(c2=�). The estimate for the number N is given by (13),
therefore, the overall number of iterations is bounded by

O

�
log(1=�)

�2

�
:

1.2 Method 3

In this section we describe another version of primal-dual constraint aggrega-
tion method. It di�ers from method 1 in that it uses an additional aggregate
constraint hpc; Axc � bi = 0 rather than the term hpc; Axc � bi at the objec-
tive function. A main motivation for considering such a version here is that
in practice it outperforms notably method 1. Therefore, the results of numer-
ical tests are presented for method 3. From theoretical point of view, method
3 provides somewhat better aposteriory bounds for the quality of the current
solution approximation.

Method 3

Let (x0; p0) be �xed, x0 2 X ;
(1) given (xk ; pk), k > 0, �nd

uk = argminff(x) + (k=2)jx� xkj2g

subject to

x 2 X

hAxk � b; Ax � bi = 0;

hpk; Ax � bi = 0; (16)

(2) choose �k and �k and set

xk+1 = xk + �k(u
k � xk);

pk+1 = pk + �k(Au
k � b);

Badly placed ()'s
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(3) set k = k + 1, continue with (1).

Note that the feasible set of the subproblem in method 3 (throughout this
subsection we shall denote it Xk) is a relaxation of the original feasible domain
X .

Convergence results for method 3 are analogous to those of method 1. We
assume that the auxiliary subproblem is solved precisely.

Theorem 3. Choose k, �k, and �k as in theorem 1. Assume that the

auxiliary subproblem is solved precisely. Then, statements (i) and (ii) of theorem

1 carry over for the sequence of xk generated by method 3.

Proof. The argument basically follows the same line as for theorem 1. In
view of (16), instead of equation (8) one has

hAT p�; uk � x�i = (1=�k)hp
� � pk; pk+1 � pki (17)

and instead of (9)

hw; x� � uki � (k=2)ju
k � xkj2 � khu

k � xk; xk � x�i: (18)

Substitute (17) in (7). Then multiply (7) and (18) by �k and add them up. As
a result, one arrives at (10). The rest is the same as in the proof of theorem 1.
Proof is complete.

Note that the remarks made after the proof of theorem 1 are completely
relevant for method 3 as well. In particular, we would like to make the following
observation regarding the stopping rule. First we obtain a lower bound for the
directional derivative of the objective function in terms of juc � xcj.

Optimality conditions in the subproblem in method 3 yield

hw; x� uci � chu
c � xc; uc � xi � �cju

c � xcjjuc � xj (19)

where w is some element from @f(uk): Divide both sides by juc�xj and maximize
(19) with respect to w 2 @f(uc). Taking x to be an arbitary point from X one
has

max
w2@f(uc)

hw; hi � �cju
c � xcj;

with jhj = 1. This means that a unit step in an arbitrary direction pointing
towards the feasible domain could improve the objective function by no more
than cju

c � xcj. Obviously, in order to bound the optimality gap, set x = x�

in (19):

cdju
c � xcj � f(uc)� f�;
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where d is diameter of X . The latter estimate appears to be more tight than
analogous one in remark 4 since it does not include the constant LA and an
upper bound for the dual variables. Finally note that for residual of the system
of constraints, the bound remains the same as in remark 4.

2 Numerical results

This section reviews the results of numerical tests of the primal-dual constraint
aggregation method. As mentioned above, method 3 turns out to be superior
to method 1 and therefore, we further focus on method 3 and the results to be
found below pertain to this method.

Two important issues were given special care while conducting the tests: (1)
choice of the aggregate constraints, their number and composition, (2) choice of
the prox-parameter k and the step-size multiplier �k (subproblems were solved
by QP-subroutine from the NAG library (see []) and it is quite safe to assume
that �k and �k are zero). Empirical observations with regard to (1) and (2)
can be briey summarized as follows. It seems better to choose parameter �k
as big as possible, in particular, in all tests it was set on its theoretical upper
bound, i.e., twice as big as in the rule B in theorem 1 (see remark 2) except
for one case reported below. Smaller values of the step-size did not improve
behaviour of the method. Parameter k should be kept as small as possible
but big enough to provide that �k is close to 1. In general, bigger values of k
tend to facilitate convergence in the residual and slow down convergence in the
optimality gap. Various strategies can be devised in order to implement this
general rule. In the tests reported, constant value in the range from 1 to 5 for
k was used throughout the iteration process.

The most cruicial question is the choice of aggregate constraints. To a great
extent this depends on the structure of the problem in question. The multistage
stochastic programming problems provide natural clustering schemes since one
may consider various scenario bundles for aggregation. Below we give the results
of tests with one such scheme. However, presently, a more satisfactory answer
to this problem is largely a subject for future research.

In the following subsection we describe the problem used for the tests. Then
we present the results of tests of two modi�cations of method 3 on two instances
of the given problem of smaller and bigger dimension. The algorithms di�er from
each other by the constraint aggregation scheme. The �rst one uses the simplest
scheme speci�ed in the method 3, i.e. only two aggregates, while the second one
uses a scenario bundling scheme to be speci�ed below in more details.

2.1 Test problem description

We consider a dynamic portfolio selection problem. Over a given time horizon
0; 1; : : : ; T , a decision maker maintaines a portfolio of assets so that to maxi-
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maize his terminal risk-return utility function. Risk is associated with future
uncertainty of return on assets. We represent uncertainty as a random process

wT = (!1; : : : ; !T ) 2 
 = 
� : : :� 
;

where the outcomes wT constitute the set of possible random events in the
model. Also for each 0 < t � T denote

wt = (!1; : : : ; !t):

At time t the history of the process wt is already known to the decision-maker,
thus he may rebalance the portfolio in order to reect this information. There-
fore, with each time t, possible realization of wt, and asset type i = 1; : : : ; a we
associate a corresponding decision variable xi

t
(wt) � 0 standing for the part of

his current wealth allocated for the asset i. Thus, for each time t = 0; : : : ; T � 2
and event wt, the budgetary constraint is expressed as follows

aX
i=1

xit+1(wt+1)�

aX
i=1

(1 + rit+1(wt+1))x
i

t(wt) = 0;

for all !t+1 2 
; where rit(wt) is the i-th asset return in time t in event wt. The
initial portfolio allocation is given by the constraint

aX
i=1

xi0 = 1:

Let �wT
denote probability of each event wT . The objective of the decision

maker in this example is to maximize

f(x) = E � �
X
wT2


�wT

 
aX
i=1

(1 + ri
T
(wT ))x

i

T�1(wT�1)�E

!2

;

where E is the expected return

E =
X
wT2


�wT

aX
i=1

(1 + ri
T
(wT ))x

i

T�1(wT�1)

and � > 0 is the risk-aversion parameter.
In the tests 
 consisted of three random outcomes f1; 0;�1g, thus, the pro-

cess as a whole can be represented as a trinomial brunching structure. The
number of assets a = 4. Asset returns were generated according to the follow-
ing relation

1 + rit(wt) = ei + �i(t)!t; !t 2 
;
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with ei being average return on asset i and �i(t) being volatility of return.
We have chosen �i(t) to be slightly decresing over time. We considered two
problem instances (P4) and (P5) with T = 4 and T = 5 having the number of
scenario paths 81 and 243 respectively. In the method which we further refer
to as method 3.1, all budgetary constraints were treated as Ax = b in terms
of defenition of problem (P), and nonnegativity constraints were treated as X .
In method 3.1 we have used only two aggregate constraints as in de�nition of
method 3. In the method 3.2 only those budgetory constraints were considered
as Ax = b that correspond to time T � 2 and the rest were considered as X .
The aggregates were constructed by merging the "subtrees" emanating from the
"nodes" wT�2. As a result, total number of linear equality constraints in the
relaxed subproblem was nearly half as much as in the original problem.

2.2 Results of tests

Here we give the problem parameters and the numerical data obtained. Prob-
lem (P4) has in total 161 variables and 41 constraints (nonnegativity constraints
on variables are not counted). The optimal value f� = 1:248. The aggregate
subproblem in method 3.1 has 2 constraints and in method 3.2 it has 24 con-
straints. The initial approximations for (x; p) were chosen either all zero or all
ones and this does not seem to a�ect strongly behaviour of the methods. The
following tables summurize the data. For convinience we take negative of the
objective function and consider an equivalent minimization problem. Thus, the
values in column f(uk)�f� are positive if the corresponding value of the utility
function lies below the maximum and negative otherwice.

Table 1. Problem (P4), method 3.1, k � 5.

k jAxk � bj juk � xkj f(uk)� f�
0 4.462 2.811 -0.857
100 0.160 0.041 0.064
200 0.024 0.009 0.056
300 0.005 0.004 0.051
400 0.001 0.003 0.045
500 0.002 0.003 0.040

Table 2. Problem (P4), method 3.2, k � 1.

k jAxk � bj juk � xkj f(uk)� f�
0 4.462 9.154 0.041
100 0.013 0.022 0.050
200 0.009 0.016 0.037
300 0.007 0.012 0.030
400 0.006 0.011 0.025
500 0.006 0.010 0.021
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Note that the step juk�xkj turns out to be reasonably good approximation
for the optimality gap f(uk)� f�. For bigger values of k, assymptotically the
step tends to underestimate f(uk) � f�, and as one can see from the data, the
gap is in most cases about 2-10 times the step. Also, the greater k, the less
accurate is the approximation of the gap via juk � xkj. However, bigger values
of k result in a better convergence in the residual.

Table 3. Problem (P4), method 3.2, k � 5.

k jAxk � bj juk � xkj f(uk)� f�
0 4.462 9.109 0.853
100 9.6e-5 0.005 0.061
200 6.8e-5 0.003 0.052
300 6.1e-5 0.003 0.046
400 5.2e-5 0.003 0.040
500 3.1e-5 0.002 0.036

Similar observation can be made for the bigger problem as well. Problem
(P5) has in total 485 variables and 122 constraints. The optimal value f� =
1:318. The aggregate subproblem in method 3.2 has 69 constraints. Since
method 3.2 outperforms method 3.1 we give the results for method 3.2 only.

Table 4. Problem (P5), method 3.2, k � 1.

k jAxk � bj juk � xkj f(uk)� f�
0 4.720 15.594 0.060
100 0.007 0.015 0.066
200 0.005 0.011 0.055
300 0.004 0.010 0.048
400 0.004 0.009 0.042
500 0.003 0.008 0.037

Table 5. Problem (P5), method 3.2, k � 5.

k jAxk � bj juk � xkj f(uk)� f�
0 4.720 15.567 0.911
100 0.005 0.004 0.075
200 4.7e-5 0.003 0.070
300 3.1e-5 0.002 0.065
400 4.1e-5 0.002 0.062
500 1.7e-5 0.002 0.059

Additionally in Table 6 we provide the results of a heuristic experiment
with method 3.2. As mentioned in the beginning of this section, primal-dual
constraint aggregation method tends to perform better when the step-size �k
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is close to 1. The results in table 4 are produced by method 3.2 with �k � 1.
At the same time, the prevoius results show that convergence in the optimality
gap su�ers from big k. In this test we have set k � 0:1. Despite the unit
step is not substantiated by the theory, after several iterations method tends to
stabilize and provide a good convergence. Similar e�ect was also observed with
problem (P4).

Table 6. Problem (P5), method 3.2, k � 0:1.

k jAxk � bj juk � xkj f(uk)� f�
0 4.720 15.667 -0.406
100 0.428 0.256 0.016
200 0.030 0.025 0.008
300 0.002 0.015 0.005
400 5.1e-4 0.012 0.003
500 0.001 0.009 0.002

The results given in table 6 suggest that a closer investigation of the strate-
gies for choosing the step-size and the prox-parameter should be taken.

Graphical illustration of convergence of the methods is given in �gures 1 and
2. Figure 1 compares behaviour of methods 3.1 and 3.2 with k � 5 on problem
(P4). The graph shows the trajectory of the step juk � xkj for both methods:
black thiner line is for the method 3.1 and gray thicker one is for method 3.2.

Figure 2 displays two trajectories of the steps juk�xkj generated by method
3.2 with k � 5 for problem (P4) (black thiner line) and for problem (P5) (gray
thicker line). The �gure shows that the behaviour is much the same despite the
problems are of di�erent dimensions.

3 Conclusions

In the paper a basic convergence analysis of the primal-dual constraint aggrega-
tion method was developed and an application to a multistage stochastic pro-
gramming was considered. The method suggests an approach for incorporating
a constraint reduction scheme within an iterative process that converges to an
optimal solution of the original problem. The error bounds showing the quality
of the solution approximation are provided. Complexity analysis demonstrates
that the method achieves an unimproveable by order of � theoretical complex-
ity bound O(��2) which is independent on the space dimension. Preliminary
computational experiments show that the behaviour of the method strongly de-
pends on the choice of the aggregates and the parameters of the method such
as step-size and prox multipliers.
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Computational e�ort required by the method is dependent on whether a
smaller number of aggregated constraints correctly represent major structural
properties of the original set and whether it is at all possible. This seems to be
particularly relevant for multistage stochastic problems where big dimension re-
sults from a big number of scenarios, while certain di�erent scenarios may carry
only slightly di�erent information. Therefore, existence of e�cient aggregation
schemes seems possible. In view of that, an important problem for future re-
search is development of adaptive dynamic strategy for updating iteratively the
list and the composition of the aggregate consraints as well as the parameters
of the method.
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