Капорин И.Е., Коньшин И.Н. Параллельное решение симметричных положительно-определенных систем на основе перекрывающегося разбиения на блоки. ЖВМ и МФ, V.41, N.4, 2000., с.515-528

Garanzha V.A. Barrier variational generation of quasi-isometric grids.- to appear in Numer. Linear Algebra Appls., 2001.

Чебуркин А.Н., Харченко С.А., Топографическое восстановление трехмерной функции распределения электронов по скоростям. Журнал Технической Физики, 2001, т.71, N.1, стр.3-8.

Гаранжа В.А. Барьерный метод построения квазиизометричных сеток. ЖВМ и МФ, V.40, N.11, 2000. с.1685-1705.

Garanzha V.A., Konshin V.N., Lyons S.L., Papavassiliou D.V. and Qin G. Validation of non-Darcy well models using direct numerical simulation, in: Numerical Treatment of Multiphase Flows in Porous Media, (Chen, Ewing & Shi, editors), pp. 156-169, Lecture Notes in Physics, Vol 552, Springer-Verlag, 2000.

Чебуркин А.Н., Харченко С.А., Топографическое восстановление распределения электронов по начальным скоростям для источника в магнитном и электрическом полях. Радиотехника и Электроника (2000), т.45, N.11, стр.1351-1358.

Kaporin. I.E. High quality preconditioning of a general symmetric positive matrix based on its UTU + UTR + RTU-decomposition.- Numer. Linear Algebra Appls., N 1, 1999.

I.E.Kaporin, A practical algorithm for faster matrix multiplication, Numerical Linear Algebra Appl., 1999, v.6, 687-700.

Гаранжа В.А., Капорин И.Е. Регуляризация барьерного вариационного метода построения расчетных сеток. ЖВМ и МФ, V.39, N.9, 1999, С.1489-1503.

Kaporin I.E. and Konshin I.N. Parallel solution of large sparse SPD linear systems based on overlapping domain decomposition. In: Parallel Computing Technologies (Ed. V.Malyshkin), Proc. of the 5th International Parallel Computing Technologies Conference (PaCT-99), St.-Petersburg, Russia, September 6-10, 1999. Lecture Notes in Computer Science, Vol.1662, Springer-Verlag, Berlin - Heidelberg - New-York, (1999) pp.436-445.

Garanzha V. A., and Konshin V. N. Approximation schemes and discrete well models for the numerical simulation of the 2-D non-Darcy fluid flows in porous media, Comm. on Appl. Math., Computer Centre, Russian Academy of Sciences, Moscow, 1999.

Axelsson, O., Kaporin I.E. Minimum residual adaptive multilevel procedure for the finite element solution of nonlinear stationary problems.- SIAM J. Numer. Anal., v.35, N 3, 1998, pp.1213-1229.

Garanzha V.A., Kaporin I.E., Konshin V.N. Reliable flow solver based on the high order control volume Pade-type differences. In: Lecture notes in physics, Vol.515, Springer, 1998, pp.278-283.

Gruzinov F.A., Nikishin A.A., Yeremin A.Yu. Iterative Solution Strategies for Large Hybrid Sparse/Dense Linear Systems Coming from 3D Industrial CEM Applications. 1996 IEEE Symposium, Maryland, Baltimor, 1996.

Garanzha V.A. Control volume technique based on the non-centered Pade-type differences. In: Finite volumes for complex applications, Paris, Hermes, 1996, pp.201-208.

Garanzha V.A., Konshin V.N. Non-centered Pade-type differences for the systems of the conservation laws. Application to the incompressible fluid flows. CCAS, Moscow, 1996, p.80.

Kharchenko S.A., Yeremin A.Yu. Eigenvalue translation based preconditions for GMRES(k) method. Numerical linear algebra with applications. V.2(1), 1995, pp. 51-77.

Garanzha V.A., Kolesnikov P.A., Konshin I.N., Konshin V.N., Nikishin A.A., Tyrtyshnikov E.E., Yeremin A.Yu. Iterative solvers for coupled 3D incompressible flow problems on vector-parallel computers and MPPs. In: Solution techniques for large-scale CFD problems. NY, John Wiley & Sons, pp. 83-89, 1995.

A.A. Nikishin, A.Yu. Yeremin. Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers. I: General iterative scheme. SIAM Journal on Matrix Analysis. V.16, N 4, 1995.

V.A.Garanzha, I.Ibragimov, I.N.Konshin, V.N.Konshin, A.Yu.Yeremin. High order Pade-type approximation methods for incompressible 3D CFD problems on massively parallel computers. In: Parallel Computational Fluid Dynamics: Implementations and Results Using Parallel Computers. Elsevier Science B.V., 1995, pp. 199-205.

Garanzha V.A. and Tolstykh A.I. Efficient parallel 3-D algorithm to obtain incompressible velocity field for known vorticity. CFD Journal, V.3, N.11, April 1994.

Kaporin,I.E. New convergence results and preconditioning strategies for the conjugate gradient method, Numer. Linear Algebra with Appls., v.1, N 2, 1994, pp.179-210.