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Abstract—We consider a method for mathematical modeling of ecologo–biological systems
based on computational studies that unites formal and informal, analytic and imitational ap-
proaches. The method is based on complex studies that include a complete set of operations,
from filtering biological information to constructing a set of interrelated models, including sim-
plified ones, that admit an analytic (parametric) study. This lets us overcome the disadvantages
of purely imitational approaches: they are restricted by numerical experiments and often have
huge models. The proposed approach has been used to analyze animal population fluctuations
with the tundra community model “vegetation–lemmings–arctic foxes.” As a result of our stud-
ies, we formulate hypotheses on leading mechanisms that determine the fluctuations of tundra
animal populations.

DOI: 10.1134/S0005117913020069

1. INTRODUCTION

Fundamentals of quantitative ecology were first outlined in the pre-computer (analytic) era
[1–5]. The first mathematical models of ecological systems, despite their internal perfection (in the
mathematical and biophysical senses of the word), have attracted the attention of ecologists only
after experimental works of G.F. Gauze [6]. The utmost importance of interdisciplinary interactions
was, of course, understood in the classical (analytic) period but researchers did not have a method
that could take them into account. The appearance of J. Forrester’s “system dynamics” [7] made
such an interdisciplinary toolbox available; it was based on the method of creating imitational
models in a dialogue with experts. This approach lets one take into account virtually all proposals
of the experts in either quantitative or qualitative form, and the relative simplicity of the resulting
models lets one perform comparative analysis for different sets of original assumptions, data, and
hypotheses.

Efficiency of purely imitational technologies is held back by limitations of numerical compu-
tations and the high detail level of the description that grows into “boundless” models. These
drawbacks can be alleviated through a symbiosis of imitational and analytic methods with complex
studies (COST) that include the entire sequence of operations:

• collection, filtering, analysis, and processing of input (biological) information; justification and
construction of imitational models and analysis of their properties;

• formulation of an imitational system, i.e., a set of interrelated models on different detalization
levels; the set includes simplified models that admit an analytic (portrait) study;

• formulation of hypotheses on leading mechanisms in the phenomenon under consideration.

One can create simplified (analytic) models by joint analysis of ecologo–biological information
and results of computational experiments based on reductions of basic imitational models.
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The COST approach was created in order to model the tundra community. Based on expert
estimates of the relationships, researchers have created the “vegetation–lemmings–arctic foxes”
(VLF) imitational model that takes into account seasonal changes in the parameters (see Appendix).
Interdisciplinary possibilities provided by computer technologies have been employed, and this has
led to the idea of an “ecological constructor” in the primary formulation of the model and its
subsequent modifications.

Final stages of the COSTmethod resulted from the deficiencies of traditional final stages of imita-
tional modeling studies, namely forecasts of dynamic model characteristics under various scenarios
of external influences [6, 8–10], and the need to get closer to understanding the mechanisms that
form the dynamics of tundra animal populations. We have created a model of lemming population
that determines the character of fluctuations in the number of tundra community animals, which
has led to justifying the use of a one-dimensional difference equation as a simplified model that
relates lemming population size (leading unit in the VLF model) in two consecutive years [6, 11].
Such difference equations have let us find in the original imitational model the regions of parameters
that ensure dynamic modes of changes in population sizes that are close to those observed in nature
and formulate hypotheses on leading mechanisms that determine these fluctuations in tundra an-
imal populations. The special role this simplified model plays in studying population fluctuations
for tundra animals has led us to search for a closer connection between the Poincaré function and
the original (imitational) VLF model. Based on the joint analysis of ecologo–biological information
and results of computational experiments, we have been able to formulate and solve the “inverse
imitational problem” (see Appendix). The problem is to introduce such additional assumptions
that would let us get formulas relating the original community model parameters with parameters
of the difference equation.

2. THE “VEGETATION–LEMMINGS–ARCTIC FOXES” MODEL

Disagreeing with Forrester on his “world dynamics” model [7], N.N. Moiseev and coauthors have
proposed to consider the “human–environment” problem first of all as the problem of biological
envelope stability. Based on this idea, studies were initiated at the Computational Center of the
USSR Academy of Sciences that strived to adapt system dynamics to model biological envelope
processes (which later gave rise to “nuclear winter” modeling [12]). These approaches were then
transformed to more local ecological objects [6]. In this work, we consider the tundra as our
modeling object.

Despite lack of study, tundra is in many ways an attractive object for modeling. It is a relatively
simple ecosystem with few species, food chains are strained, and animals live on the verge of survival.
To create a meaningful mathematical model, we need some striking phenomenon to explain which
we would recreate in the model. Accounting for the fluctuations in animal population sizes was
one of the motives for creating the most popular “predator–prey” model. The main advantage of
this object is the existence of pronounced regular fluctuations in animal populations, in particular,
arctic foxes and their primary prey, lemmings (tundra rodents widely known for their migrations),
which produces a reliable testing effect in studying the dynamics of animal populations. Regular
peaks in animal populations have been noted: approximately once per three–four years [6, 13–15],
once per three years on the Taymyr peninsula [11].

Our choice of the modeling object and the structure of its mathematical description is done as
a compromise between mathematical and ecological requirements. In constructing the model, we
have used the following principles:

—minimality principle—using the minimal possible mathematical structure necessary to imitate
the phenomenon in question;
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—system approach—taking into account the entire variety of relations, both internal and exter-
nal, for the object of study;

—compatibility (ecological compatibility)—using assumptions that do not contradict available
ecological data.

Biophysical analysis of the structure of pasture (above-ground) part of the tundra biocenoses
has indicated the possibility to consider the VLF community separately (biophysical analysis is
described in more detail in [6, 16]). The structure of our mathematical model has been chosen ac-
cording to the Volterra–Kosticyn hypothesis [2], as a system of three first order ordinary differential
equations. This has let us, in modeling the VLF community, to create an “ecological constructor”
based on system dynamics methods: the dynamics of biomasses in each of the three trophic levels
is defined by three additive components—reproduction, alienation, and natural death rates, while
each component, in turn, is constructed as a product of a constant and corresponding functions.

This approach corresponds to the level of our knowledge in the biophysics of ecological processes,
the variety of assumptions, and lets us take into account different ecological hypotheses in different
modifications of the model. We have created a large number of versions of this model: at first, we
have used the idea of strong trophic interactions (of the “predator–prey” kind) literally, but then
we have switched to using the threshold dependence hypothesis for the rate of lemming biomass
growth depending on the vegetation biomass [6] and other hypotheses.

Based on the expert data we collected, we have constructed the first version of the model, which is
a union of Forrester’s and V. Volterra’s approaches emphasizing Volterra’s “meeting hypotheses” [1],
which appear to be the main reason for the success of our modeling. Failures in the implementation
(the model “deconstructed” when one of the species died, and soon afterwards the entire system
died too) have led us to search for alternative approaches and methods of simplified description.
Studies of zero isoclinic lines in the “vegetation–lemmings” system have led to the idea of using an
analogy with a neural cell and introduce, in the second version of the model, a threshold dependence
of the lemming biomass growth on the availability of fodder: when a certain critical vegetation
biomass is reached, a “population explosion” happens with the lemmings, and soon afterwards the
food supply becomes depleted. Controlling regeneration rate for the vegetation has let us make
the model tuning process controllable and thus “prove” a kind of “existence theorem” about the
possibility of reconstruction of the necessary dynamic modes with a model from the chosen class.
Our use of the “threshold model” has made it possible to find, in a computational experiment,
relations between parameters of the corresponding expert estimates and average interval between
population peaks.

The second version of the model turned out to be unsatisfactory; hence, we attempted to re-
structure the modeling process. Restructuring was done in two directions: extending (deepening)
the biophysical knowledge about biological properties of the biocenoses and searching for efficient
mathematical ways to express them. Having analyzed the results of computational experiments
and ecological information, we have understood the great importance of intrapopulation dynam-
ics of lemmings in population size fluctuations of all animals in the tundra community. We have
introduced a new type of nonlinearity, the Allee principle [5, 6], that brings into the model the
lemming density which is optimal for reproduction. A large number of other modifying assump-
tions was related to increasing stability (trajectory “boundedness”) of the model. In testing these
assumptions, we have used two biophysical criteria (independent of expert estimates and axioms of
classical models): keeping the trajectories in the positive square and reproducing the corresponding
dynamic modes. A description of this version of the “vegetation—lemmings—arctic foxes” (VLF)
model is given in the Appendix.

In computational experiments, we have obtained three- and four-year cycles in lemming and
arctic fox population sizes fluctuations that are characteristic for tundra. Figure 1a shows the
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Fig. 1. (a) The results of one imitational experiment with the VLF model (V—vegetation, L—lemmings,
F ′′—arctic foxes), and the population dynamics of arctic lemmings registered on Wrangel island denoted by
“circles;” (b) the phase portrait of the VL subsystem (V—vegetation, L′′—lemmings).

results of one imitational experiment with the VLF model and the population dynamics of arctic
lemming registered on Wrangel island [14] denoted by circles; Fig. 1b shows the phase portrait of the
“vegetation–lemmings” subsystem constructed with numerical computations on the entire model
for each of the seasons. Here the bold line represents one of the actually realized trajectories; thin
lines, phase curves in various seasons: dashed line, in winter (when lemmings do not reproduce);
dot-and-dash line, in the nival reproduction period; solid, in summer (vegetation V along the
horizontal axis, lemmings L along the vertical axis).

As Fig. 1b clearly shows, during winter and spring seasons the trajectories are attracted to the
origin, while in summer the attractor is in a region of high lemming and vegetation density. Due
to seasonal switchings of the trajectories, fluctuations appear in the model.

3. METHODOLOGY OF THE COMPLEX STUDIES (COST)

Modeling results described above were a continuation of the “biosphere topic.” We also planned
to conduct computational experiments in order to determine the change in population dynamics
under various scenarios of environmental changes: the constructed model of the tundra community
was used to estimate the reaction of the tundra ecosystem to global planetary warming [6]. The
goal to achieve a better understanding of the mechanisms that form the dynamics of tundra animal
populations has led to a model of the population of lemmings who determine the fluctuations of
the tundra animal community populations [6, 11].

Analysis of computational experiments results with both complementary models has led to
a justification for the simplified model as a one-dimensional difference equation (sequence func-
tion) Ln+1 = F (Ln) that relates normalized lemming populations Ln in two consecutive years
[6, 11, 16, 17]. The equation is graphically represented on Fig. 2. Here A is the equilibrium popu-
lation; d—lemming population in the optimal biotope: the notion of an “optimal biotope” means
a region of inhabitance space with optimal living conditions; in an optimal biotope, under any
conditions a certain number of animal survives; P—the yearly increase in lemming population;
1/P , the point when the maximal value of lemming population is reached.
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Fig. 2. Graphical representation of difference equation.

The special role of the sequence function in the studies of population fluctuations of tundra
animals has led to looking for a closer connection of sequence functions and the original VLF
model. Based on joint analysis of ecologo–biological information and results of computational
experiments, we have been able to formulate and solve the “inverse imitational problem” (see
Appendix), namely to introduce additional assumptions that let us obtain formulas relating the
parameters of the original community model with parameters of the difference equation. This
transition is based on the fact that at a certain time interval (season), the corresponding variables
change in a relatively narrow range, which lets us linearize the original (expert) functions in a given
range.

After solving the “inverse imitational problem,” we can tune the original (imitational) VLF
model as follows: first, by the sequence function we find what its parameters should be to get
the necessary dynamics. Then, using transition functions we find what parameters in the original
models can be changed in order to change the necessary parameter or several parameters in the
sequence function. Since nearly all of them depend on several original parameters, we have im-
plemented a possibility to choose different versions and introduce the most biologically meaningful
changes.

Using the complex approach to model tundra populations and communities [6, 17] has let us
formulate quantitative hypotheses on the leading (main, determining) mechanisms that create popu-
lation fluctuations for tundra animals. As we have already noted, the leading factor that determines
these fluctuations is the dynamics of lemming population. This dynamic, in turn, is determined by
three parameters: (1) rate of biomass growth in a favorable year; (2) maximal population; (3) sur-
vival rate under the least favorable conditions. The first parameter characterizes the balance
between birth and death processes under no “environmental pressure”; the second characterizes
the ecosystem as a whole and reflects the coevolution of lemmings and the food supply; the third
characterizes adaptive properties of lemmings in extreme conditions and is in many ways deter-
mined by local characteristics, in particular the landscape in wintering places. Our results agree
well with one of the widely accepted hypotheses that states that there is no single factor that forms
population fluctuations but rather a combination of factors [13–15]. The resulting quantitative
relations that link generalized parameters with population dynamic parameters can be used in pa-
rameter estimation procedures for real populations with parameters such as birth rate, death rate,
etc. Difference equations can serve as a simple instrument to forecast the possible population of
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lemmings and arctic foxes. At the same time, in order to adapt this approach to study different
tundra regions and analyze significant changes in its properties, in particular due to anthropogenic
factors (climate changes, etc.) one has to use the full imitational model.

4. DISCUSSION

Imitational modeling in an ecologo–biological domain is the art of using computer technology in
an interdisciplinary process of creating mathematical models under incomplete and always distorted
data of various nature about the properties of the object under study [8]. It is the art of compro-
mise between ecological and mathematical requirements: for efficient modeling, we need not only
to accommodate the informational fundaments of the model with data and biologists’ perceptions
but also successfully tune mathematical tools needed to express the specifics of the object; it is
hard to predict in advance what these properties may be. Only a computational experiment with
a complete model (from the informational point of view) can show the possibility of reconstruct-
ing the population dynamics time series with a combination of the chosen model structure and
corresponding informational base.

The search for such successful combinations is based on the idea of an “ecological constructor”
(EC), an algorithmic structure of the model that lets one relatively easily modify it. The imple-
mentation of this idea is based on joining Forrester’s system dynamics with the Volterra–Kosticyn
hypothesis on the possibility to use systems of ordinary differential equations to describe ecological
objects [2].

Imitational modeling lets one immediately, based on expert data and models left over from pre-
vious studies, begin model construction. EC allows for a relatively simple (on the formal level)
implementation of various ideas. One can consider alternative possibilities (various “perceptrons”)
and use the knowledge about similar processes of different nature. As the subject domain is inter-
nalized, the mathematician’s role in model modification becomes more prominent, the “modeling
mathematician” takes on the functions of an expert and filters information from the point of view
of modeling efficiency. Informal (intuitive) considerations play an important role in the mutual
adaptation of the information base and its representations; one can use his knowledge about simi-
lar processes of other nature, consider alternative descriptions (various “perceptrons”). The thesis
of removing the dependency of modeling results on a specific parameterization, which dates back
to the works of A.N. Kolmogorov [3], is implemented here.

However, purely imitational techniques are hard pressed to get a satisfactory description of the
mechanisms of the phenomenon under study, distinguish its most important mechanisms even un-
der perfect conditions for interdisciplinary interactions. A combination of imitational and analytic
approaches, considering sets of interrelated models, including simplified ones that admit an analytic
(parametric) study, presents an attractive option. The search for ways to implement such combina-
tions has led to the creation of complex studies (COST). In justifying simplified models, we use the
original detailed imitational model. This model serves as a kind of filter that the entire spectrum
of available biological information is passed through. The iterative process of model modification
leads to an enumeration of possible versions. The process of modifying and justifying simplified
models is performed under expert control over the assumptions being used. Thus, unfoundedness
claims regarding the analytic model can only be made concerning the trust put into experts and
original biological data and the possibility to use mathematical means of representing them, whose
scope has been greatly widened by computer technology.

Simplified models that admit parametric studies have completely changes the possibilities and
potential of the modeling. This is both a tool for tuning the original imitational model in corre-
sponding dynamic modes and a way to generate hypotheses regarding the leading mechanisms of
the phenomenon under consideration.
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Our complex approach shows how we can use the computer not only to produce corollaries of
known facts or input a huge number of parameters but also to simplify the model and generate
hypotheses regarding the mechanisms of the phenomenon under study. Using this approach to
model tundra populations and communities has let us implement the idea of efficiency in imita-
tional technologies in order to justify simplified equations that admit parametric studies. We have
created a special class of models that take into account both seasonality [17–19] and the type of
difference equations for which, under a certain scenario of sequential parameter changes, there arise
stability zones with stable cycles, their periods change as natural numbers, and stability zones are
divided from each other by transition zones with more complex modes [16]. Our previous modeling
experience has let us move on to another level of description, namely using individually–oriented
models [17, 20, 21]. Development of adequate mathematical models for various biological processes
is necessary to form the framework of theoretical biology. Besides, under increasing global anthro-
pogenic influences the model approach is virtually the only way to preserve an integral concept of
biospheric objects being destroyed.
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APPENDIX

Description of the imitational model “vegetation–lemmings–arctic foxes.”

Biomass dynamics in a tundra community is given by a non-autonomous system:

dV

dt
= fV (V,L, γ),

dL

dt
= fL(V,L, F, γ),

dF

dt
= fF (L,F, γ),

where F,L, V are biomass (population) dynamics for arctic foxes, lemmings, and vegetation (their
fodder) respectively; γ, the vector of system parameters. For each variable X, fX = RX−MX−DX ,
RX denotes the growth rate; MX , the natural death rate; DX , alienation. Seasonal influences on
the dynamics are modeled with auxiliary functions s1 and s2. In winter, s1 = s2 = 0. In spring,
s1 = 1, s2 = 0. In summer, s1 = s2 = 1.

During winter and spring, a part of the vegetation V (1 − ω) is unavailable for the lemmings,
where ω is the fraction of territory on which vegetation is available throughout the year. As summer
comes, both parts of the vegetation are united. Besides, lemmings can eat out only a fraction d̃
of the total vegetation biomass (mainly above-ground). Eating becomes energetically detrimental
and stops if the biomass of available vegetation drops under a certain number α.

Vegetation dynamics V is determined by the Verhulst formula in the summer, undergoes expo-
nential dying out in winter, and matches dying and growth in spring:

RV = a4 (1− V/Vmax) s1V,

MV = a3V (1− s2) .

Here a4, a3 are growth and dying coefficients for the vegetation biomass respectively, and Vmax is
the capacity of the ecological niche.

Alienation of the vegetation by lemmings, taking into account seasonality, is given by the for-
mula DV = {a1 (1− s1) + a2s1}L, where a1, a2 are vegetation alienation coefficients: the first
corresponds to winter and spring, the second, to summer. Lemming biomass growth RL is propor-
tional to the product of three factors: the amount of alienated vegetation DV and the functions
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Fig. 3. Auxiliary functions the used in model: (a) functions of optimal density of lemmings (Allee functions);
(b) function that formalize the decrease in the utility of fodders when they are in shortage; (c) function that
define natural lemmings death rate depending on the season; (d) saturation function of lemming grazing by
the arctic foxes; (e) function of the arctic foxes selflimitation.

g1 (L) and g2 (Vd/L), where Vd is the vegetation available for eating (Vd = 0 for V ≤ α, Vd = d̃V
for V > α):

RL = DV g1 (L) g2 (Vd/L) [b9 s2 + b10 s1] .

The function g1(L) has been introduced according to the Allee principle that states that lem-
mings have an optimal density, while the function g2(Vd/L) is a trophic function and reflects the
decrease in the utility of fodders when they are in shortage (see Figs. 3a and 3b). Coefficients b9
and b10 characterize seasonal changes.

Natural lemming death rate ML depends on the season and fodder availability and is given by:

(1) ML = b5 g3 (t) L—when fodder is available in sufficient quantities;
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(2) ML = b4 [1− Vd/ (Lq)] g3 (t) L—when the fodder is in shortage (Vd/L < q);

(3) ML = b2 g3 (t) L—when there is no fodder (Vd = 0) in case everything has been eaten in spring ;

(4) ML = bβ L—when there is no fodder (Vd = 0) in case everything has been already eaten
in winter, and by the end of winter lemmings remain only in the optimal biotope and their
population in it equals β, and then the population is computed as in the third item.

Here the function g3 (t) describes seasonal changes in the death rate (see Fig. 3c); q, the critical
unit weight of vegetation below which fodder is in shortage; b5, b4, b2, bβ, death rate coefficients:
b5 if there is sufficient fodder, b4 in case of fodder shortage, b2 if there is no fodder in spring, and
bβ if there is no fodder in winter.

Alienation of lemmings by arctic foxes, DL, is proportional to the product of biomasses of both
species when lemming density is relatively low (the ratio L/F is small) and proportional to the
arctic fox biomass when the density is high (the ratio L/F is large):

DL = F g4 (L/F ) (b6 + b7 s1) .

Here coefficients b6, b7 characterize seasonal changes in the intensity of harvesting lemmings, and
the function g4 (L/F ) describes the trophic function of arctic foxes (see Fig. 3d).

Increase in the arctic fox biomass RF due to the lemmings is proportional to the product of
the biomass of hunted lemmings and the function g5 (F ) (it reflect the limiting influence of high
density). Apart from lemmings, arctic foxes also eat other, nonspecific fodder whose consumption
is assumed to be proportional to the foxes’ biomass:

RF = c1 g5 (F ) DL + (c2 + c3 s1) F.

Here c1 is the coefficient of lemming biomass transition into arctic fox biomass, while coefficients
c2, c3 describe the influence of nonspecific diet on seasonal changes.

Natural death rate and hunting-related deaths are assumed to be proportional to the total arctic
fox biomass: MF = c4 F , DF = c5 F , where c4, c5 are natural death rate and hunting intensity
coefficients respectively.

The numerical study was conducted for the following values of coefficients: the vector a =
(0.05; 0.12; 0.05; 1.35), b = (500.00; 9.60; 0.00; 0.80; 0.05; 0.10; 0.20; 0.10; 3.40; 1.00), c =
(1.000; 0.025; 0.095; 0.055; 0.005), ω = 0.15, d̃ = 0.6, α = 2.0, Vmax = 30.0, q = 0.3, β = 2.5.
Initial conditions under which numerical experiments were conducted: V0 = 10, L0 = β, F0 = 5.

Inverse imitational problem (constructing the simplified model).

Based on joint analysis of ecologo–biological information and results of computational experi-
ments, we have been able to formulate and solve the so-called “inverse imitational problem” [6],
namely choose such axioms in the original imitational model that would let us get, based on this
original model, the difference equation shown above.

To solve this problem from the results of computational experiments (and in accordance with
ecologo–biological data), we have made the following simplifying assumptions:

(1) we have removed the arctic fox subsystem from consideration since their influence on the
lemming population dynamics is small;

(2) we have assumed that at the end of the summer period vegetation biomass reaches its
maximum V = Vmax, and in all periods except winter and spring after the population peak the
food supply (vegetation) does not limit the lemmings’ population dynamics;

(3) the function g1 (L) was replaced with a constant ĝ1 during the entire year; the trophic function
g2 (Vd/L) equals the constant ĝ12 under a shortage of fodder and ĝ22 when fodder is plentiful; the
dependence of the lemming death rate on fodder availability was described in two ways: either
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fodder is sufficient (minimal death rate) or fodder is not available at all (maximal death rate). The
function g3 (t) that reflects the dependence of the lemmings’ death rate on the season was chosen
to be constant in each season: ĝi3, i = 1 for winter, i = 2 for spring, and i = 3 for summer.

According to these assumptions, changes in the lemming population biomass in a “good year,”
when fodder is plentiful throughout the year, is governed in each season by an autonomous first
order differential equation. As a result, for this case we get a difference equation that relates
lemming population in two consecutive years:

L̃n+1 = PL̃n.

Here L̃ = L/Lmax, P = ηνμ1 is the biomass increase rate in a good year; η = exp (pStS), μ1 =
exp(pP1tP ), ν = exp(pW tW ) is the ratio of lemming biomass at the end and beginning of a season
in summer, spring, and winter respectively, assuming that fodder is available throughout the entire

season; tS, tW , tP are the durations of summer, winter, and spring; pS = a2(b9 + b10)
�
g 1

�
g 2
2 − b5

�
g3
3,

pP1 = a2b10
�
g 1

�
g 2
2 − b5

�
g 2
3, pW = −b5

�
g 2
3, and parameters ai and bi have been defined above.

When lemming population is high, vegetation can serve as a limiting influence. In winter,
vegetation biomass is governed by the formula

dV

dt
= −MV −DV =

{
−a3V − a2L, if V > α

−a3V, if V ≤ α,

with initial conditions V = Vmax, and changes in the lemming population biomass are given either
by formula

dL

dt
= pWL, if V > α,

where pW = −b5ĝ
1
3 , or, if V = α, we assume that lemmings remain only in the optimal biotope,

i.e., at the end of winter L = β.

In spring, in turn, according to the assumptions of the original base model vegetation growth
and death processes compensate for each other, and vegetation biomass dynamics is defined by
lemming influence:

dV

dt
= −DV =

{
−a1L, if V < α

0, if V ≤ α,

while lemming population biomass dynamics is given by

dL

dt
= RL −ML = pPiL.

Here pPi =

{
a2(b10

�
g 1

�
g 2
2)− b5

�
g 2
3, if V < α

−b2
�
g 2
3, if V ≤ α.

Let us use these formulas to get the necessary difference equation. Under our assumptions, it
consists of three fragments. First fragment: fodder is plentiful throughout the year, and lemming
biomass (population) grows linearly; third: fodder is not available already in winter, and only
lemmings in the optimal biotope survive, so the biomass (population) is constant in this range
(the horizontal segment, a “step”); second fragment: the transition zone when fodder runs out
in sprint. While the first and third fragments have a simple representation, computations of the
difference equation form in the transition zone yield cumbersome expressions. However, this is not
really justified. Computational experiments show that the transition zone is rather narrow, and
assuming that the influence of variations in this zone’s description have a small influence on the
population dynamics, we can describe the transition zone by a straight line segment connecting the
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first and third fragments. To do so, we find the condition of transitioning into the third fragment,
namely the value of B, lemming population at the end of summer when available fodder is eaten out
by the end of winter, i.e., by end of winter the vegetation biomass equals α. Due to linearity of the
corresponding equation, vegetation biomass changes additively based on its own intrapopulational
processes and based on lemmings feasting on it.

The corresponding equation for finding B has the following form:

B =
VSz − α

a1pW tW (1− ν) /2
.

Here z = exp (−a3tW ) is the ratio of vegetation biomasses at the end and beginning of winter given
that there is no influence by the lemmings, and B (1− ν) /2 is the average lemming biomass during
winter.

The difference equation whose graphic representation is given on Fig. 2 relates lemming popula-
tion in two consecutive years and has the following form for the normalized variable L̃ = L/Lmax:

L̃n+1 =

⎧⎪⎨
⎪⎩

PL̃n, L̃n ≤ 1/P

1− r
(
L̃n − 1/P

)
, 1/P < L̃n ≤ B

d, L̃n > B.

Here d = βμ2

P , r =
P(1−d)
BP−1 , μ2 = exp (pP2tP ) is the ratio of lemming biomass at the end and

beginning of spring if fodder is unavailable during the entire season; β is the lemming’s biomass by
end of winter if fodder shortage occurred already in winter (capacity of the optimal biotope).
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